Files
mercury/compiler/code_util.m
Simon Taylor 0387a6e9c2 Improvements for `:- pragma foreign_type'.
Estimated hours taken: 10
Branches: main

Improvements for `:- pragma foreign_type'.
- Allow default Mercury definitions. The Mercury definition must define
  a discriminated union type. The constructors of the Mercury type are
  only visible in predicates which have implementations for all the
  foreign languages the type has implementations for. In all other
  predicates the type is treated as an abstract type (the check for
  this isn't quite right).
- Allow polymorphic foreign types.
- Don't require the `:- pragma foreign_type' for exported foreign types
  to be in the interface. We now only require that all definitions
  have the same visibility.

compiler/prog_data.m:
compiler/prog_io_pragma.m:
	Allow polymorphic foreign types.

compiler/prog_io.m:
	Export code to parse the type name in a type definition for
	use by prog_io_pragma.m.

compiler/make_hlds.m:
	Handle Mercury definitions for foreign types.

	Separate out the code to add constructors and special predicates
	to the HLDS into a separate pass. For foreign types, we don't know
	what to add until all type definitions have been seen.

	Use the C definition for foreign types with `--target asm'.

compiler/modules.m:
	Distinguish properly between `exported' and `exported_to_submodules'.
	Previously, if a module had sub-modules, all declarations,
	including those in the interface, had import_status
	`exported_to_submodules'. Now, the declarations in the
	interface have status `exported' or `abstract_exported'.
	This is needed to check that the visibility of all the
	definitions of a type is the same.

compiler/hlds_pred.m:
	Add a predicate status_is_exported_to_non_submodules, which
	fails if an item is local to the module and its sub-modules.

compiler/hlds_data.m:
compiler/*.m:
	Record whether a du type has foreign definitions as well.

	Also record whether uses of the type or its constructors
	need to be qualified (this is needed now that adding
	the constructors to the HLDS is a separate pass).

compiler/typecheck.m:
	Check that a predicate or function has foreign clauses before
	allowing the use of a constructor of a type which also has
	foreign definitions.

compiler/hlds_pred.m:
compiler/make_hlds.m:
	Simplify the code to work out the goal_type for a predicate.

compiler/hlds_out.m:
	Don't abort on foreign types.

	Print the goal type for each predicate.

compiler/error_util.m:
	Handle the case where the message being written is a
	continuation of an existing message, so the first line
	should be indented.

compiler/module_qual.m:
	Remove unnecessary processing of foreign types.

doc/reference_manual.tex:
	Document the change.

	Update the documentation for mixing Mercury and foreign clauses.
	The Mercury clauses no longer need to be mode-specific.

tests/hard_coded/Mmakefile:
tests/hard_coded/foreign_type2.{m,exp}:
tests/hard_coded/foreign_type.m:
tests/hard_coded/intermod_foreign_type.{m,exp}:
tests/hard_coded/intermod_foreign_type2.m:
tests/invalid/Mmakefile:
tests/invalid/foreign_type_2.{m,err_exp}:
tests/invalid/foreign_type_visibility.{m,err_exp}:
	Test cases.

tests/invalid/record_syntax.err_exp:
	Update expected output.
2002-06-30 17:07:20 +00:00

1018 lines
36 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module ll_backend__code_util.
:- interface.
:- import_module parse_tree__prog_data, hlds__hlds_module, hlds__hlds_pred.
:- import_module hlds__hlds_goal, hlds__hlds_data.
:- import_module backend_libs__rtti, ll_backend__llds.
:- import_module bool, list, std_util.
% Create a code address which holds the address of the specified
% procedure.
% The `immed' argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- type immed == maybe(pair(int, pred_proc_id)).
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
immed, code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
:- pred code_util__make_entry_label_from_rtti(rtti_proc_label, immed,
code_addr).
:- mode code_util__make_entry_label_from_rtti(in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
immed, label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
:- func code_util__make_proc_label_from_rtti(rtti_proc_label) = proc_label.
% code_util__make_user_proc_label(ModuleName, PredIsImported,
% PredOrFunc, ModuleName, PredName, Arity, ProcId, Label):
% Make a proc_label for a user-defined procedure.
%
% The PredIsImported argument should be the result of
% calling pred_info_is_imported.
:- pred code_util__make_user_proc_label(module_name, bool,
pred_or_func, module_name, string, arity, proc_id, proc_label).
:- mode code_util__make_user_proc_label(in, in,
in, in, in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_ctor, proc_id, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__extract_proc_label_from_code_addr(code_addr, proc_label).
:- mode code_util__extract_proc_label_from_code_addr(in, out) is det.
:- pred code_util__extract_proc_label_from_label(label, proc_label).
:- mode code_util__extract_proc_label_from_label(in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
:- pred code_util__max_mentioned_reg(list(lval), int).
:- mode code_util__max_mentioned_reg(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds_goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
:- pred code_util__goal_may_alloc_temp_frame(hlds_goal).
:- mode code_util__goal_may_alloc_temp_frame(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
% code_util__compiler_generated(PredInfo) succeeds iff
% the PredInfo is for a compiler generated instance of a
% type-specific special_pred (i.e. one of the __Unify__,
% __Index__, or __Compare__ predicates generated as a
% type-specific instance of unify/2, index/2, or compare/3).
%
% XXX The name of this predicate is misleading, because there
% are other kinds of compiler-generated predicates, e.g. those
% for lambda expressions, those generated by higher-order
% specialization, ordinary type specialization, deforestation,
% etc., for which this predicate does not succeed.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(pred_info).
:- mode code_util__predinfo_is_builtin(in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if execution of the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds_goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if execution of the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot or to a
% register.
:- pred code_util__cannot_flush(hlds_goal).
:- mode code_util__cannot_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
:- pred code_util__lvals_in_rval(rval, list(lval)).
:- mode code_util__lvals_in_rval(in, out) is det.
:- pred code_util__lvals_in_lval(lval, list(lval)).
:- mode code_util__lvals_in_lval(in, out) is det.
:- pred code_util__lvals_in_lvals(list(lval), list(lval)).
:- mode code_util__lvals_in_lvals(in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree__prog_util, check_hlds__type_util.
:- import_module hlds__special_pred, backend_libs__builtin_ops.
:- import_module backend_libs__code_model.
:- import_module char, int, string, set, map, term, varset.
:- import_module require, std_util, assoc_list.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, ProcAddr) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr).
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr) :-
(
(
RttiProcLabel^is_imported = yes
;
RttiProcLabel^is_pseudo_imported = yes,
% only the (in, in) mode of unification is imported
hlds_pred__in_in_unification_proc_id(
RttiProcLabel^proc_id)
)
->
code_util__make_proc_label_from_rtti(RttiProcLabel)
= ProcLabel,
ProcAddr = imported(ProcLabel)
;
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label),
ProcAddr = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label).
:- pred code_util__make_local_entry_label_from_rtti(rtti_proc_label, immed,
label).
:- mode code_util__make_local_entry_label_from_rtti(in, in, out) is det.
code_util__make_local_entry_label_from_rtti(RttiProcLabel, Immed, Label) :-
code_util__make_proc_label_from_rtti(RttiProcLabel) = ProcLabel,
(
Immed = no,
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
( RttiProcLabel^is_exported = yes ->
Label = exported(ProcLabel)
;
Label = local(ProcLabel)
)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
RttiProcLabel^pred_id, RttiProcLabel^proc_id,
ProcLabel, Label)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(LabelNum, ProcLabel).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_proc_label_from_rtti(RttiProcLabel) = ProcLabel.
code_util__make_proc_label_from_rtti(RttiProcLabel) = ProcLabel :-
RttiProcLabel = rtti_proc_label(PredOrFunc, ThisModule,
PredModule, PredName, PredArity, ArgTypes, _PredId, ProcId,
_VarSet, _HeadVars, _ArgModes, _CodeModel,
IsImported, _IsPseudoImported, _IsExported,
IsSpecialPredInstance),
(
IsSpecialPredInstance = yes
->
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_ctor_and_args(Type, TypeCtor, _),
% All type_ctors other than tuples here should be
% module qualified, since builtin types are
% handled separately in polymorphism.m.
(
TypeCtor = unqualified(TypeName) - _,
type_ctor_is_tuple(TypeCtor),
mercury_public_builtin_module(TypeModule)
;
TypeCtor = qualified(TypeModule, TypeName) - _
)
->
TypeCtor = _ - TypeArity,
(
ThisModule \= TypeModule,
PredName = "__Unify__",
\+ hlds_pred__in_in_unification_proc_id(ProcId)
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, TypeArity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
code_util__make_user_proc_label(ThisModule, IsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel)
).
code_util__make_user_proc_label(ThisModule, PredIsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel) :-
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
PredIsImported = no
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, PredArity, ProcId).
code_util__make_uni_label(ModuleInfo, TypeCtor, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeCtor = qualified(TypeModule, TypeName) - Arity ->
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_ctor")
).
code_util__extract_proc_label_from_code_addr(CodeAddr, ProcLabel) :-
( code_util__proc_label_from_code_addr(CodeAddr, ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
error("code_util__extract_label_from_code_addr failed")
).
:- pred code_util__proc_label_from_code_addr(code_addr::in,
proc_label::out) is semidet.
code_util__proc_label_from_code_addr(CodeAddr, ProcLabel) :-
(
CodeAddr = label(Label),
code_util__extract_proc_label_from_label(Label, ProcLabel)
;
CodeAddr = imported(ProcLabel)
).
code_util__extract_proc_label_from_label(local(_, ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(c_local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(exported(ProcLabel), ProcLabel).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__max_mentioned_reg(Lvals, MaxRegNum) :-
code_util__max_mentioned_reg_2(Lvals, 0, MaxRegNum).
:- pred code_util__max_mentioned_reg_2(list(lval)::in, int::in, int::out)
is det.
code_util__max_mentioned_reg_2([], MaxRegNum, MaxRegNum).
code_util__max_mentioned_reg_2([Lval | Lvals], MaxRegNum0, MaxRegNum) :-
( Lval = reg(r, N) ->
int__max(MaxRegNum0, N, MaxRegNum1)
;
MaxRegNum1 = MaxRegNum0
),
code_util__max_mentioned_reg_2(Lvals, MaxRegNum1, MaxRegNum).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
hlds_pred__initial_proc_id(ProcId),
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity).
code_util__builtin_state(ModuleInfo, PredId, ProcId, BuiltinState) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
( code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__is_inline_builtin(module_name, string, proc_id, arity).
:- mode code_util__is_inline_builtin(in, in, in, in) is semidet.
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) :-
Arity =< 3,
prog_varset_init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
builtin_ops__translate_builtin(ModuleName, PredName, ProcId, Args, _).
:- pred prog_varset_init(prog_varset::out) is det.
prog_varset_init(VarSet) :- varset__init(VarSet).
%-----------------------------------------------------------------------------%
% XXX The name of this predicate is misleading -- see the comment
% in the declaration.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
special_pred_name_arity(_, _, PredName, PredArity).
%-----------------------------------------------------------------------------%
code_util__goal_may_allocate_heap(Goal) :-
code_util__goal_may_allocate_heap(Goal, yes).
code_util__goal_list_may_allocate_heap(Goals) :-
code_util__goal_list_may_allocate_heap(Goals, yes).
:- pred code_util__goal_may_allocate_heap(hlds_goal::in, bool::out) is det.
code_util__goal_may_allocate_heap(Goal - _GoalInfo, May) :-
code_util__goal_may_allocate_heap_2(Goal, May).
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr::in, bool::out)
is det.
code_util__goal_may_allocate_heap_2(generic_call(_, _, _, _), yes).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _), May) :-
( Builtin = inline_builtin ->
May = no
;
May = yes
).
code_util__goal_may_allocate_heap_2(unify(_, _, _, Unification, _), May) :-
( Unification = construct(_,_,Args,_,_,_,_), Args = [_|_] ->
May = yes
;
May = no
).
% We cannot safely say that a foreign code fragment does not
% allocate memory without knowing all the #defined macros that
% expand to incr_hp and variants thereof.
% XXX although you could make it an attribute of the foreign code and
% trust the programmer
code_util__goal_may_allocate_heap_2(foreign_proc(_,_,_,_,_,_,_), yes).
code_util__goal_may_allocate_heap_2(some(_Vars, _, Goal), May) :-
code_util__goal_may_allocate_heap(Goal, May).
code_util__goal_may_allocate_heap_2(not(Goal), May) :-
code_util__goal_may_allocate_heap(Goal, May).
code_util__goal_may_allocate_heap_2(conj(Goals), May) :-
code_util__goal_list_may_allocate_heap(Goals, May).
code_util__goal_may_allocate_heap_2(par_conj(_), yes).
code_util__goal_may_allocate_heap_2(disj(Goals), May) :-
code_util__goal_list_may_allocate_heap(Goals, May).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases), May) :-
code_util__cases_may_allocate_heap(Cases, May).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, C, T, E), May) :-
( code_util__goal_may_allocate_heap(C, yes) ->
May = yes
; code_util__goal_may_allocate_heap(T, yes) ->
May = yes
;
code_util__goal_may_allocate_heap(E, May)
).
code_util__goal_may_allocate_heap_2(shorthand(ShorthandGoal), May) :-
code_util__goal_may_allocate_heap_2_shorthand(ShorthandGoal, May).
:- pred code_util__goal_may_allocate_heap_2_shorthand(shorthand_goal_expr::in,
bool::out) is det.
code_util__goal_may_allocate_heap_2_shorthand(bi_implication(G1, G2), May) :-
( code_util__goal_may_allocate_heap(G1, yes) ->
May = yes
;
code_util__goal_may_allocate_heap(G2, May)
).
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)::in, bool::out)
is det.
code_util__goal_list_may_allocate_heap([], no).
code_util__goal_list_may_allocate_heap([Goal | Goals], May) :-
( code_util__goal_may_allocate_heap(Goal, yes) ->
May = yes
;
code_util__goal_list_may_allocate_heap(Goals, May)
).
:- pred code_util__cases_may_allocate_heap(list(case)::in, bool::out) is det.
code_util__cases_may_allocate_heap([], no).
code_util__cases_may_allocate_heap([case(_, Goal) | Cases], May) :-
( code_util__goal_may_allocate_heap(Goal, yes) ->
May = yes
;
code_util__cases_may_allocate_heap(Cases, May)
).
%-----------------------------------------------------------------------------%
code_util__goal_may_alloc_temp_frame(Goal) :-
code_util__goal_may_alloc_temp_frame(Goal, yes).
:- pred code_util__goal_may_alloc_temp_frame(hlds_goal::in, bool::out) is det.
code_util__goal_may_alloc_temp_frame(Goal - _GoalInfo, May) :-
code_util__goal_may_alloc_temp_frame_2(Goal, May).
:- pred code_util__goal_may_alloc_temp_frame_2(hlds_goal_expr::in, bool::out)
is det.
code_util__goal_may_alloc_temp_frame_2(generic_call(_, _, _, _), no).
code_util__goal_may_alloc_temp_frame_2(call(_, _, _, _, _, _), no).
code_util__goal_may_alloc_temp_frame_2(unify(_, _, _, _, _), no).
% We cannot safely say that a foreign code fragment does not allocate
% temporary nondet frames without knowing all the #defined macros
% that expand to mktempframe and variants thereof. The performance
% impact of being too conservative is probably not too bad.
code_util__goal_may_alloc_temp_frame_2(foreign_proc(_,_,_,_,_,_,_),
yes).
code_util__goal_may_alloc_temp_frame_2(some(_Vars, _, Goal), May) :-
Goal = _ - GoalInfo,
goal_info_get_code_model(GoalInfo, CodeModel),
( CodeModel = model_non ->
May = yes
;
code_util__goal_may_alloc_temp_frame(Goal, May)
).
code_util__goal_may_alloc_temp_frame_2(not(Goal), May) :-
code_util__goal_may_alloc_temp_frame(Goal, May).
code_util__goal_may_alloc_temp_frame_2(conj(Goals), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(par_conj(Goals), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(disj(Goals), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(switch(_Var, _Det, Cases), May) :-
code_util__cases_may_alloc_temp_frame(Cases, May).
code_util__goal_may_alloc_temp_frame_2(if_then_else(_Vars, C, T, E), May) :-
( code_util__goal_may_alloc_temp_frame(C, yes) ->
May = yes
; code_util__goal_may_alloc_temp_frame(T, yes) ->
May = yes
;
code_util__goal_may_alloc_temp_frame(E, May)
).
code_util__goal_may_alloc_temp_frame_2(shorthand(ShorthandGoal), May) :-
code_util__goal_may_alloc_temp_frame_2_shorthand(ShorthandGoal,May).
:- pred code_util__goal_may_alloc_temp_frame_2_shorthand(
shorthand_goal_expr::in, bool::out) is det.
code_util__goal_may_alloc_temp_frame_2_shorthand(bi_implication(G1, G2),
May) :-
( code_util__goal_may_alloc_temp_frame(G1, yes) ->
May = yes
;
code_util__goal_may_alloc_temp_frame(G2, May)
).
:- pred code_util__goal_list_may_alloc_temp_frame(list(hlds_goal)::in,
bool::out) is det.
code_util__goal_list_may_alloc_temp_frame([], no).
code_util__goal_list_may_alloc_temp_frame([Goal | Goals], May) :-
( code_util__goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
code_util__goal_list_may_alloc_temp_frame(Goals, May)
).
:- pred code_util__cases_may_alloc_temp_frame(list(case)::in, bool::out)
is det.
code_util__cases_may_alloc_temp_frame([], no).
code_util__cases_may_alloc_temp_frame([case(_, Goal) | Cases], May) :-
( code_util__goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
code_util__cases_may_alloc_temp_frame(Cases, May)
).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M,E), _, _, pred_closure_tag(P,M,E)).
code_util__cons_id_to_tag(type_ctor_info_const(M,T,A), _, _,
type_ctor_info_constant(M,T,A)).
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,_,N), _, _,
base_typeclass_info_constant(M,C,N)).
code_util__cons_id_to_tag(tabling_pointer_const(PredId,ProcId), _, _,
tabling_pointer_constant(PredId,ProcId)).
code_util__cons_id_to_tag(deep_profiling_proc_static(PPId), _, _,
deep_profiling_proc_static_tag(PPId)).
code_util__cons_id_to_tag(table_io_decl(PPId), _, _, table_io_decl_tag(PPId)).
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
Name = unqualified(ConsName),
string__char_to_string(Char, ConsName)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% Tuples do not need a tag. Note that unary tuples are not
% treated as no_tag types. There's no reason why they
% couldn't be, it's just not worth the effort.
type_is_tuple(Type, _)
->
Tag = single_functor
;
% Use the type to determine the type_ctor
( type_to_ctor_and_args(Type, TypeCtor0, _) ->
TypeCtor = TypeCtor0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_ctor, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeCtor, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _, _, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(Name, Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases)) :-
code_util__cannot_stack_flush_cases(Cases).
code_util__cannot_stack_flush_2(not(unify(_, _, _, Unify, _) - _)) :-
Unify \= complicated_unify(_, _, _).
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_flush(GoalExpr - _) :-
code_util__cannot_flush_2(GoalExpr).
:- pred code_util__cannot_flush_2(hlds_goal_expr).
:- mode code_util__cannot_flush_2(in) is semidet.
code_util__cannot_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_flush_2(conj(Goals)) :-
code_util__cannot_flush_goals(Goals).
:- pred code_util__cannot_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_flush_goals(in) is semidet.
code_util__cannot_flush_goals([]).
code_util__cannot_flush_goals([Goal | Goals]) :-
code_util__cannot_flush(Goal),
code_util__cannot_flush_goals(Goals).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = generic_call(_, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, _, Goal),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(generic_call(_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(foreign_proc(_, _, _, _, _, _, _),
_, _, 0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(par_conj(Goals), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(disj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
code_util__count_recursive_calls_2(shorthand(_),
_, _, _, _) :-
% these should have been expanded out by now
error("code_util__count_recursive_calls_2: unexpected shorthand").
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, 0, 0).
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
%-----------------------------------------------------------------------------%
code_util__lvals_in_lvals([], []).
code_util__lvals_in_lvals([First | Rest], Lvals) :-
code_util__lvals_in_lval(First, FirstLvals),
code_util__lvals_in_lvals(Rest, RestLvals),
list__append(FirstLvals, RestLvals, Lvals).
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
code_util__lvals_in_lval(Lval, Lvals).
code_util__lvals_in_rval(var(_), []).
code_util__lvals_in_rval(create(_, _, _, _, _, _, _), []).
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(const(_), []).
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
code_util__lvals_in_mem_ref(MemRef, Lvals).
code_util__lvals_in_lval(reg(_, _), []).
code_util__lvals_in_lval(stackvar(_), []).
code_util__lvals_in_lval(framevar(_), []).
code_util__lvals_in_lval(succip, []).
code_util__lvals_in_lval(maxfr, []).
code_util__lvals_in_lval(curfr, []).
code_util__lvals_in_lval(succip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(hp, []).
code_util__lvals_in_lval(sp, []).
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_lval(lvar(_), []).
code_util__lvals_in_lval(temp(_, _), []).
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
:- mode code_util__lvals_in_mem_ref(in, out) is det.
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
code_util__lvals_in_mem_ref(framevar_ref(_), []).
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
%-----------------------------------------------------------------------------%