Files
mercury/compiler/prog_data.m
Tyson Dowd ea6ba74472 Implement `:- pragma no_inline'. This pragma prevents the compiler from
Estimated hours taken: 3

Implement `:- pragma no_inline'. This pragma prevents the compiler from
inlining predicates.

compiler/higher_order.m:
compiler/unused_args.m:
	Create new preds using entire marker list, rather than just
	inlining.

compiler/hlds_out.m:
compiler/mercury_to_mercury.m:
compiler/module_qual.m:
compiler/prog_data.m:
compiler/prog_io_pragma.m:
	Add code to support no_inline marker and pragma.

compiler/hlds_pred.m:
	Add `no_inline' marker.
	Create new preds using entire marker list, rather than just
	inlining.
	Change `pred_info_is_inlined' to `pred_info_requested_inlining',
	as it was inappropriately named, and added
	`pred_info_requested_no_inlining'.

compiler/inlining.m:
	Don't inline predicates with pragma no_inlines

compiler/intermod.m:
	Use `pred_info_requested_inlining'.

compiler/make_hlds.m:
	Add code to check for conflicting markers, check for conflicts
	between `inline' and `no_inline' markers.
	Add `no_inline' markers.
	Rename pragma_set_markers as pragma_add_markers, as it was
	actually adding extra markers to what was already there.

doc/reference_manual.texi:
	Document no_inline.

tests/hard_coded/Mmake:
tests/invalid/Mmake:
tests/hard_coded/no_inline.exp:
tests/hard_coded/no_inline.m:
tests/invalid/inline_conflict.err_exp:
tests/invalid/inline_conflict.m:
	Add test cases for no_inline and conflicts between inline and
	no_inline.
1997-06-27 04:05:22 +00:00

413 lines
14 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_data.m.
% Main author: fjh.
%
% This module defines a data structure for representing Mercury programs.
%
% This data structure specifies basically the same information as is
% contained in the source code, but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
:- module prog_data.
:- interface.
:- import_module hlds_pred.
:- import_module list, varset, term, std_util.
%-----------------------------------------------------------------------------%
% This is how programs (and parse errors) are represented.
:- type message_list == list(pair(string, term)).
% the error/warning message, and the
% term to which it relates
:- type program ---> module(
module_name,
item_list
).
:- type item_list == list(item_and_context).
:- type item_and_context == pair(item, term__context).
:- type item ---> pred_clause(varset, sym_name, list(term), goal)
% VarNames, PredName, HeadArgs, ClauseBody
; func_clause(varset, sym_name, list(term), term,
goal)
% VarNames, PredName, HeadArgs, Result,
% ClauseBody
; type_defn(varset, type_defn, condition)
; inst_defn(varset, inst_defn, condition)
; mode_defn(varset, mode_defn, condition)
; module_defn(varset, module_defn)
; pred(varset, sym_name, list(type_and_mode),
maybe(determinism), condition)
% VarNames, PredName, ArgTypes,
% Deterministicness, Cond
; func(varset, sym_name, list(type_and_mode),
type_and_mode,
maybe(determinism), condition)
% VarNames, PredName, ArgTypes,
% ReturnType,
% Deterministicness, Cond
; pred_mode(varset, sym_name, list(mode),
maybe(determinism), condition)
% VarNames, PredName, ArgModes,
% Deterministicness, Cond
; func_mode(varset, sym_name, list(mode), mode,
maybe(determinism), condition)
% VarNames, PredName, ArgModes,
% ReturnValueMode,
% Deterministicness, Cond
; pragma(pragma_type)
; nothing.
% used for items that should be ignored
% (currently only NU-Prolog `when' declarations,
% which are silently ignored for backwards
% compatibility).
:- type type_and_mode ---> type_only(type)
; type_and_mode(type, mode).
:- type pragma_type ---> c_header_code(string)
; c_code(string)
; c_code(may_call_mercury, sym_name, pred_or_func,
list(pragma_var), varset, string)
% Whether or not the C code may call Mercury,
% PredName, Predicate or Function, Vars/Mode,
% VarNames, C Code
; c_code(may_call_mercury, sym_name,
pred_or_func, list(pragma_var),
list(string), list(string),
varset, string)
% Whether or not the C code may call Mercury,
% PredName, Predicate or Function, Vars/Mode,
% SavedeVars, LabelNames, VarNames, C Code
; memo(sym_name, int)
% Predname, Arity
; inline(sym_name, int)
% Predname, Arity
; no_inline(sym_name, int)
% Predname, Arity
; obsolete(sym_name, int)
% Predname, Arity
; export(sym_name, pred_or_func, list(mode),
string)
% Predname, Predicate/function, Modes,
% C function name.
; source_file(string)
% Source file name.
; unused_args(pred_or_func, sym_name, int,
proc_id, list(int))
% PredName, Arity, Mode, Optimized pred name,
% Removed arguments.
% Used for inter-module unused argument
% removal, should only appear in .opt files.
; fact_table(sym_name, arity, string).
% Predname, Arity, Fact file name.
% For pragma c_code, there are two different calling conventions,
% one for C code that may recursively call Mercury code, and another
% more efficient one for the case when we know that the C code will
% not recursively invoke Mercury code.
:- type may_call_mercury
---> may_call_mercury
; will_not_call_mercury.
:- type pragma_var ---> pragma_var(var, string, mode).
% variable, name, mode
% we explicitly store the name because we
% need the real name in code_gen
%-----------------------------------------------------------------------------%
% Here's how clauses and goals are represented.
% a => b --> implies(a, b)
% a <= b --> implies(b, a) [just flips the goals around!]
% a <=> b --> equivalent(a, b)
% clause/4 defined above
:- type goal == pair(goal_expr, term__context).
:- type goal_expr ---> (goal,goal)
; true
% could use conj(goals) instead
; {goal;goal} % {...} quotes ';'/2.
; fail
% could use disj(goals) instead
; not(goal)
; some(vars,goal)
; all(vars,goal)
; implies(goal,goal)
; equivalent(goal,goal)
; if_then(vars,goal,goal)
; if_then_else(vars,goal,goal,goal)
; call(sym_name, list(term))
; unify(term, term).
:- type goals == list(goal).
:- type vars == list(var).
%-----------------------------------------------------------------------------%
% This is how types are represented.
% one day we might allow types to take
% value parameters as well as type parameters.
% type_defn/3 define above
:- type type_defn ---> du_type(sym_name, list(type_param),
list(constructor))
; uu_type(sym_name, list(type_param), list(type))
; eqv_type(sym_name, list(type_param), type)
; abstract_type(sym_name, list(type_param)).
:- type constructor == pair(sym_name, list(constructor_arg)).
:- type constructor_arg == pair(string, type).
% probably type parameters should be variables not terms.
:- type type_param == term.
% Module qualified types are represented as ':'/2 terms.
% Use type_util:type_to_type_id to convert a type to a qualified
% type_id and a list of arguments.
% type_util:construct_type to construct a type from a type_id
% and a list of arguments.
:- type (type) == term.
:- type tvar == var. % used for type variables
:- type tvarset == varset. % used for sets of type variables
:- type tsubst == map(tvar, type). % used for type substitutions
% Types may have arbitrary assertions associated with them
% (eg. you can define a type which represents sorted lists).
% Similarly, pred declarations can have assertions attached.
% The compiler will ignore these assertions - they are intended
% to be used by other tools, such as the debugger.
:- type condition ---> true
; where(term).
%-----------------------------------------------------------------------------%
% This is how instantiatednesses and modes are represented.
% Note that while we use the normal term data structure to represent
% type terms (see above), we need a separate data structure for inst
% terms.
% inst_defn/3 defined above
:- type inst_defn ---> eqv_inst(sym_name, list(inst_param), inst)
; abstract_inst(sym_name, list(inst_param)).
% probably inst parameters should be variables not terms
:- type inst_param == term.
:- type (inst) ---> any(uniqueness)
; free
; free(type)
; bound(uniqueness, list(bound_inst))
% The list(bound_inst) must be sorted
; ground(uniqueness, maybe(pred_inst_info))
% The pred_inst_info is used for
% higher-order pred modes
; not_reached
; inst_var(var)
% A defined_inst is possibly recursive
% inst whose value is stored in the
% inst_table. This is used both for
% user-defined insts and for
% compiler-generated insts.
; defined_inst(inst_name)
% An abstract inst is a defined inst which
% has been declared but not actually been
% defined (yet).
; abstract_inst(sym_name, list(inst)).
:- type uniqueness
---> shared % there might be other references
; unique % there is only one reference
; mostly_unique % there is only one reference
% but there might be more on
% backtracking
; clobbered % this was the only reference, but
% the data has already been reused
; mostly_clobbered.
% this was the only reference, but
% the data has already been reused;
% however, there may be more references
% on backtracking, so we will need to
% restore the old value on backtracking
% higher-order predicate terms are given the inst
% `ground(shared, yes(PredInstInfo))'
% where the PredInstInfo contains the extra modes and the determinism
% for the predicate. Note that the higher-order predicate term
% itself must be ground.
:- type pred_inst_info
---> pred_inst_info(
pred_or_func, % is this a higher-order func
% mode or a higher-order pred
% mode?
list(mode), % the modes of the additional
% (i.e. not-yet-supplied)
% arguments of the pred;
% for a function, this includes
% the mode of the return value
% as the last element of the
% list.
determinism % the determinism of the
% predicate or function
).
:- type bound_inst ---> functor(cons_id, list(inst)).
% An `inst_name' is used as a key for the inst_table.
% It is either a user-defined inst `user_inst(Name, Args)',
% or some sort of compiler-generated inst, whose name
% is a representation of it's meaning. For example
% `merge_inst(InstA, InstB)' is the name used for the inst
% that results from merging InstA and InstB using `merge_inst'.
% Similarly `unify_inst(IsLive, InstA, InstB, IsReal)' is
% the name for the inst that results from a call to
% `abstractly_unify_inst(IsLive, InstA, InstB, IsReal)', etc.
:- type inst_name ---> user_inst(sym_name, list(inst))
; merge_inst(inst, inst)
; unify_inst(is_live, inst, inst, unify_is_real)
; ground_inst(inst_name, is_live, uniqueness,
unify_is_real)
; shared_inst(inst_name)
; mostly_uniq_inst(inst_name)
; typed_ground(uniqueness, type)
; typed_inst(type, inst_name).
% Note: `is_live' records liveness in the sense used by
% mode analysis. This is not the same thing as the notion of liveness
% used by code generation. See compiler/notes/GLOSSARY.
:- type is_live ---> live ; dead.
% Unifications of insts fall into two categories, "real" and "fake".
% The "real" inst unifications correspond to real unifications,
% and are not allowed to unify with `clobbered' insts (unless
% the unification would be `det').
% Any inst unification which is associated with some code that
% will actually examine the contents of the variables in question
% must be "real". Inst unifications that are not associated with
% some real code that examines the variables' values are "fake".
% "Fake" inst unifications are used for procedure calls in implied
% modes, where the final inst of the var must be computed by
% unifying its initial inst with the procedure's final inst,
% so that if you pass a ground var to a procedure whose mode
% is `free -> list_skeleton', the result is ground, not list_skeleton.
% But these fake unifications must be allowed to unify with `clobbered'
% insts. Hence we pass down a flag to `abstractly_unify_inst' which
% specifies whether or not to allow unifications with clobbered values.
:- type unify_is_real
---> real_unify
; fake_unify.
% mode_defn/3 defined above
:- type mode_defn ---> eqv_mode(sym_name, list(inst_param), mode).
:- type (mode) ---> ((inst) -> (inst))
; user_defined_mode(sym_name, list(inst)).
% mode/4 defined above
%-----------------------------------------------------------------------------%
% This is how module-system declarations (such as imports
% and exports) are represented.
:- type module_defn ---> module(module_name)
; interface
; implementation
; imported
% this is used internally by the compiler,
% to identify declarations which originally
% came from some other module
; external(sym_name_specifier)
% this is used internally by the compiler,
% to identify items which originally
% came from a .opt file
; opt_imported
; end_module(module_name)
; export(sym_list)
; import(sym_list)
; use(sym_list).
:- type sym_list ---> sym(list(sym_specifier))
; pred(list(pred_specifier))
; func(list(func_specifier))
; cons(list(cons_specifier))
; op(list(op_specifier))
; adt(list(adt_specifier))
; type(list(type_specifier))
; module(list(module_specifier)).
:- type sym_specifier ---> sym(sym_name_specifier)
; typed_sym(typed_cons_specifier)
; pred(pred_specifier)
; func(func_specifier)
; cons(cons_specifier)
; op(op_specifier)
; adt(adt_specifier)
; type(type_specifier)
; module(module_specifier).
:- type pred_specifier ---> sym(sym_name_specifier)
; name_args(sym_name, list(type)).
:- type func_specifier == cons_specifier.
:- type cons_specifier ---> sym(sym_name_specifier)
; typed(typed_cons_specifier).
:- type typed_cons_specifier --->
name_args(sym_name, list(type))
; name_res(sym_name_specifier, type)
; name_args_res(sym_name,
list(type), type).
:- type adt_specifier == sym_name_specifier.
:- type type_specifier == sym_name_specifier.
:- type op_specifier ---> sym(sym_name_specifier)
% operator fixity specifiers not yet implemented
; fixity(sym_name_specifier, fixity).
:- type fixity ---> infix ; prefix ; postfix ;
binary_prefix ; binary_postfix.
:- type sym_name_specifier ---> name(sym_name)
; name_arity(sym_name, arity).
:- type sym_name ---> unqualified(string)
; qualified(module_specifier, string).
:- type module_specifier == string.
:- type module_name == string.
:- type arity == int.
%-----------------------------------------------------------------------------%