Files
mercury/compiler/cse_detection.m
Zoltan Somogyi 036b97ff7d Emit a reminder about a limitation of cse_detection when needed.
Common subexpression elimination (cse) declines to do its job of transforming

    (
        X = f(A1, ..., An),
        goal A
    ;
        X = f(B1, ..., Bn),
        goal B
    )

into

    X = f(X1, ..., Xn),
    (
        A1 = X1, ..., An = Xn,
        goal A
    ;
        B1 = X1, ..., Bn = Xn,
        goal B
    )

when the insts of some of X's arguments are at least partially unique,
because mode analysis cannot track uniqueness through the extra unifications
that this transformation introduces. When this happens, and the procedure
this code is in does not match its declared determinism, generate a message
that gives this fact as a possible reason for that determinism mismatch.

This fixes Mantis bug #496 to the extent that we *can* fix it
without rewriting the whole of mode analysis.

compiler/hlds_pred.m:
    Provide a slot in the proc_info for recording whether cse has declined
    to pull a common unification out of a branched control structure because
    of this concern, and if so, at what locations in the source code.

    An unrelated change: move a slot used only by constraint-based mode
    analysis, which is never enabled, from the proc_info to the proc_sub_info.
    This should improve both speed and memory consumption, though very
    slightly.

compiler/cse_detection.m:
    Record each such location in this slot.

    Doing this requires a change in approach. Previously, we did not try
    to pull a unification out of any branch of a branched control structure
    if it involved (partially or wholly) unique arguments. However, doing
    this in just one branch cannot possibly affect the output of cse detection,
    since it pulls a unification out of a branch only if can pull the same
    unification out of all the other branches as well.

    Our new approach is to transform branched control structures regardless
    of uniqueness, and then *undo* the transformation (simply by discarding
    its result) if it involves unique arguments. It is such undoing that we
    record in the proc_info.

compiler/switch_detection.m:
    Conform to the new approach.

compiler/hlds_out_pred.m:
    Print the contents of the new slot in HLDS dumps.

compiler/det_report.m:
    If the actual determinism of a procedure, as computed by determinism
    analysis, does not match its declared determinism, *and* if the proc_info's
    new slot says that cse declined to pull some common unifications
    out of a branched control structure, then mention that fact, and
    the usual fix, as a possible explanation of the determinism problem.

tests/invalid/bug496.{m,err_exp}:
    The Mantis test case.

tests/invalid/Mmakefile:
    Enable the new test case.
2020-02-07 11:56:54 +11:00

1224 lines
50 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1995-2012 The University of Melbourne.
% Copyright (C) 2015 The Mercury team.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: cse_detection.m.
% Main author: zs.
% Much of the code is based on switch_detection.m by fjh.
%
% This module looks for unifications that deconstruct the same variable
% with the SAME function symbol in different arms of a disjunction, and
% hoists those deconstructions out of the disjuncts, thus replacing
%
% (
% X = f(A1, B1, C1),
% <arm 1>
% ;
% X = f(A2, B2, C2),
% <arm 2>
% )
%
% with
%
% X = f(A0, B0, C0),
% (
% A1 := A0, B1 := B0, C1 := C0,
% <arm 1>
% ;
% A2 := A0, B2 := B0, C2 := C0,
% <arm 2>
% )
%
% This may (and often does) allow switch detection to recognize that
% the transformed disjunction is in fact a switch, e.g. on A0.
% This in turn often allows determinism analysis to recognize that
% the code is in fact deterministic.
%
% In theory, we could use goal renames instead of adding unifications.
% This means that we instead of the above, we could generate this:
%
% X = f(A0, B0, C0),
% (
% <arm 1> with the substitution [A1 -> A0, B1 -> B0, C1 -> C0]
% ;
% <arm 2> with the substitution [A2 -> A0, B2 -> B0, C2 -> C0]
% )
%
% This would reduce the size of the goal instead of increasing it,
% which would help speed up later passes of the compiler. Unfortunately,
% it also has the potential to make error messages about code in the
% various <arm i> confusing: if the user wrote "p(A2, ...)", he/she will
% be surprised to see an error message mention "A0" in the call to p.
% That is why we add unifications instead of doing renaming.
%
%---------------------------------------------------------------------------%
%
% Note that the structure of the code in this module is similar to the
% structure of the code in switch_detection.m. That is because the jobs of
% the two modules are related:
%
% cse_detection.m:
% looks for unifications that deconstruct the same variable
% with the SAME function symbol in different arms of a disjunction
%
% switch_detection.m:
% looks for unifications that deconstruct the same variable
% with DIFFERENT function symbols in different arms of a disjunction
%
%---------------------------------------------------------------------------%
:- module check_hlds.cse_detection.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- pred detect_cse_in_module(module_info::in, module_info::out) is det.
:- pred detect_cse_in_proc(pred_id::in, proc_id::in,
module_info::in, module_info::out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.inst_test.
:- import_module check_hlds.modes.
:- import_module check_hlds.switch_detection.
:- import_module check_hlds.type_util.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_out.hlds_out_util.
:- import_module hlds.hlds_rtti.
:- import_module hlds.instmap.
:- import_module hlds.make_goal.
:- import_module hlds.passes_aux.
:- import_module hlds.quantification.
:- import_module hlds.vartypes.
:- import_module libs.
:- import_module libs.file_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module parse_tree.
:- import_module parse_tree.error_util.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.set_of_var.
:- import_module assoc_list.
:- import_module bool.
:- import_module io.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module require.
:- import_module string.
:- import_module term.
:- import_module varset.
%---------------------------------------------------------------------------%
detect_cse_in_module(!ModuleInfo) :-
% Traverse the module structure, calling `detect_cse_in_goal'
% for each procedure body.
module_info_get_valid_pred_ids(!.ModuleInfo, PredIds),
detect_cse_in_preds(PredIds, !ModuleInfo).
:- pred detect_cse_in_preds(list(pred_id)::in,
module_info::in, module_info::out) is det.
detect_cse_in_preds([], !ModuleInfo).
detect_cse_in_preds([PredId | PredIds], !ModuleInfo) :-
module_info_get_preds(!.ModuleInfo, PredTable),
map.lookup(PredTable, PredId, PredInfo),
detect_cse_in_pred(PredId, PredInfo, !ModuleInfo),
detect_cse_in_preds(PredIds, !ModuleInfo).
:- pred detect_cse_in_pred(pred_id::in, pred_info::in,
module_info::in, module_info::out) is det.
detect_cse_in_pred(PredId, PredInfo, !ModuleInfo) :-
ProcIds = pred_info_non_imported_procids(PredInfo),
detect_cse_in_procs(PredId, ProcIds, !ModuleInfo).
:- pred detect_cse_in_procs(pred_id::in, list(proc_id)::in,
module_info::in, module_info::out) is det.
detect_cse_in_procs(_PredId, [], !ModuleInfo).
detect_cse_in_procs(PredId, [ProcId | ProcIds], !ModuleInfo) :-
detect_cse_in_proc(PredId, ProcId, !ModuleInfo),
detect_cse_in_procs(PredId, ProcIds, !ModuleInfo).
detect_cse_in_proc(PredId, ProcId, !ModuleInfo) :-
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, very_verbose, VeryVerbose),
(
VeryVerbose = yes,
trace [io(!IO)] (
io.write_string("% Detecting common deconstructions for ", !IO),
write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
)
;
VeryVerbose = no
),
% XXX We wouldn't have to keep getting the proc_info out of and back into
% the module_info if modecheck didn't take a whole module_info.
module_info_get_preds(!.ModuleInfo, PredTable0),
map.lookup(PredTable0, PredId, PredInfo0),
pred_info_get_proc_table(PredInfo0, ProcTable0),
map.lookup(ProcTable0, ProcId, ProcInfo0),
detect_cse_in_proc_pass(!.ModuleInfo, Redo, ProcInfo0, ProcInfo1),
map.det_update(ProcId, ProcInfo1, ProcTable0, ProcTable1),
pred_info_set_proc_table(ProcTable1, PredInfo0, PredInfo1),
map.det_update(PredId, PredInfo1, PredTable0, PredTable1),
module_info_set_preds(PredTable1, !ModuleInfo),
globals.lookup_bool_option(Globals, detailed_statistics, Statistics),
trace [io(!IO)] (
maybe_report_stats(Statistics, !IO)
),
(
Redo = no
;
Redo = yes,
(
VeryVerbose = yes,
trace [io(!IO)] (
io.write_string("% Repeating mode check for ", !IO),
write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
)
;
VeryVerbose = no
),
modecheck_proc(ProcId, PredId, !ModuleInfo, ModeSpecs, _Changed),
trace [io(!IO)] (
maybe_report_stats(Statistics, !IO)
),
ContainsErrors = contains_errors(Globals, ModeSpecs),
(
ContainsErrors = yes,
trace [io(!IO)] (
maybe_dump_hlds(!.ModuleInfo, 46, "cse_repeat_modecheck",
no_prev_dump, _DumpInfo, !IO),
write_error_specs_ignore(ModeSpecs, Globals, !IO)
),
unexpected($pred, "mode check fails when repeated")
;
ContainsErrors = no
% There is no point in returning any warnings and/or informational
% messages to our caller, since any such messages should already
% have been gathered during the initial mode analysis pass.
),
(
VeryVerbose = yes,
trace [io(!IO)] (
io.write_string("% Repeating switch detection for ", !IO),
write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
)
;
VeryVerbose = no
),
module_info_get_preds(!.ModuleInfo, PredTable2),
map.lookup(PredTable2, PredId, PredInfo2),
pred_info_get_proc_table(PredInfo2, ProcTable2),
map.lookup(ProcTable2, ProcId, ProcInfo2),
SwitchDetectInfo = init_switch_detect_info(!.ModuleInfo),
detect_switches_in_proc(SwitchDetectInfo, ProcInfo2, ProcInfo),
map.det_update(ProcId, ProcInfo, ProcTable2, ProcTable3),
pred_info_set_proc_table(ProcTable3, PredInfo2, PredInfo3),
map.det_update(PredId, PredInfo3, PredTable2, PredTable3),
module_info_set_preds(PredTable3, !ModuleInfo),
trace [io(!IO)] (
maybe_report_stats(Statistics, !IO)
),
(
VeryVerbose = yes,
trace [io(!IO)] (
io.write_string("% Repeating common " ++
"deconstruction detection for ", !IO),
write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
)
;
VeryVerbose = no
),
disable_warning [suspicious_recursion] (
detect_cse_in_proc(PredId, ProcId, !ModuleInfo)
)
).
:- type cse_info
---> cse_info(
csei_module_info :: module_info,
csei_varset :: prog_varset,
csei_vartypes :: vartypes,
csei_rtti_varmaps :: rtti_varmaps,
csei_redo :: bool,
csei_nopull_contexts :: list(prog_context)
).
:- pred detect_cse_in_proc_pass(module_info::in, bool::out,
proc_info::in, proc_info::out) is det.
detect_cse_in_proc_pass(ModuleInfo, Redo, !ProcInfo) :-
% To process each ProcInfo, we get the goal, initialize the instmap
% based on the modes of the head vars, and pass these to
% `detect_cse_in_goal'.
proc_info_get_goal(!.ProcInfo, Goal0),
proc_info_get_initial_instmap(!.ProcInfo, ModuleInfo, InstMap0),
proc_info_get_varset(!.ProcInfo, Varset0),
proc_info_get_vartypes(!.ProcInfo, VarTypes0),
proc_info_get_rtti_varmaps(!.ProcInfo, RttiVarMaps0),
Redo0 = no,
CseInfo0 =
cse_info(ModuleInfo, Varset0, VarTypes0, RttiVarMaps0, Redo0, []),
detect_cse_in_goal(Goal0, Goal1, CseInfo0, CseInfo, InstMap0),
CseInfo = cse_info(_, _, _, _, Redo, CseNoPullContexts),
proc_info_get_cse_nopull_contexts(!.ProcInfo, NoPullContexts0),
NoPullContexts = CseNoPullContexts ++ NoPullContexts0,
proc_info_set_cse_nopull_contexts(NoPullContexts, !ProcInfo),
(
Redo = no
;
Redo = yes,
% ModuleInfo should not be changed by detect_cse_in_goal.
CseInfo =
cse_info(_ModuleInfo, VarSet1, VarTypes1, RttiVarMaps1, _, _),
proc_info_get_headvars(!.ProcInfo, HeadVars),
implicitly_quantify_clause_body_general(
ordinary_nonlocals_maybe_lambda, HeadVars, _Warnings, Goal1, Goal,
VarSet1, VarSet, VarTypes1, VarTypes, RttiVarMaps1, RttiVarMaps),
proc_info_set_goal(Goal, !ProcInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_rtti_varmaps(RttiVarMaps, !ProcInfo)
).
%---------------------------------------------------------------------------%
% Given a goal, and the instmap on entry to that goal,
% find disjunctions that contain common subexpressions
% and hoist these out of the disjunction. At the moment
% we only look for cses that are deconstruction unifications.
%
:- pred detect_cse_in_goal(hlds_goal::in, hlds_goal::out,
cse_info::in, cse_info::out, instmap::in) is det.
detect_cse_in_goal(Goal0, Goal, !CseInfo, InstMap0) :-
detect_cse_in_goal_update_instmap(Goal0, Goal, !CseInfo,
InstMap0, _InstMap).
% This version is the same as the above except that it returns
% the resulting instmap on exit from the goal, which is computed by
% applying the instmap delta specified in the goal's goalinfo.
%
:- pred detect_cse_in_goal_update_instmap(hlds_goal::in, hlds_goal::out,
cse_info::in, cse_info::out, instmap::in, instmap::out) is det.
detect_cse_in_goal_update_instmap(Goal0, Goal, !CseInfo, InstMap0, InstMap) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo),
(
( GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _)
; GoalExpr0 = generic_call(_, _, _, _, _)
; GoalExpr0 = plain_call(_, _, _, _, _, _)
),
GoalExpr = GoalExpr0
;
GoalExpr0 = unify(LHS, RHS0, Mode, Unify, UnifyContext),
(
RHS0 = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
NonLocalVars, Vars, Modes, Det, LambdaGoal0),
ModuleInfo = !.CseInfo ^ csei_module_info,
instmap.pre_lambda_update(ModuleInfo, Vars, Modes,
InstMap0, InstMap1),
detect_cse_in_goal(LambdaGoal0, LambdaGoal, !CseInfo, InstMap1),
RHS = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
NonLocalVars, Vars, Modes, Det, LambdaGoal)
;
( RHS0 = rhs_var(_)
; RHS0 = rhs_functor(_, _, _)
),
RHS = RHS0
),
GoalExpr = unify(LHS, RHS, Mode,Unify, UnifyContext)
;
GoalExpr0 = negation(SubGoal0),
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0),
GoalExpr = negation(SubGoal)
;
GoalExpr0 = scope(Reason0, SubGoal0),
(
Reason0 = from_ground_term(_, FGTReason),
(
FGTReason = from_ground_term_construct,
% There are no deconstructions at all inside these scopes.
GoalExpr = GoalExpr0
;
FGTReason = from_ground_term_deconstruct,
% We want to know whether the redo flag is set during the
% processing of SubGoal0.
OldRedo = !.CseInfo ^ csei_redo,
!CseInfo ^ csei_redo := no,
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0),
SubGoalRedo = !.CseInfo ^ csei_redo,
!CseInfo ^ csei_redo := bool.or(OldRedo, SubGoalRedo),
(
SubGoalRedo = no,
GoalExpr = scope(Reason0, SubGoal)
;
SubGoalRedo = yes,
% If we remove a goal from such a scope, what is left
% may no longer satisfy the invariants we expect it
% to satisfy.
SubGoal = hlds_goal(GoalExpr, _)
)
;
FGTReason = from_ground_term_other,
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0),
GoalExpr = scope(Reason0, SubGoal)
;
FGTReason = from_ground_term_initial,
% Mode analysis should have replaced this kind of fgt scope
% with one of the other kinds.
unexpected($pred, "from_ground_term_initial")
)
;
Reason0 = require_switch_arms_detism(_, _),
SubGoal0 = hlds_goal(SubGoalExpr0, SubGoalInfo0),
( if SubGoalExpr0 = switch(SwitchVar, CanFail, Cases0) then
% If we find some common subexpressions in Cases0 and
% pull them out of the switch, then the updated subgoal
% of the scope will be a *conjunction* of the pulled-out
% subexpressions and the modified switch. Simply checking that
% each arm of the modified switch has the required determinism
% is not enough, because it is possible for the determinism
% of an arm to differ between the original and the modified
% switch. For example, an original arm could consist of a
% semidet unification and some det code; pulling the semidet
% unification out of the arm would transform a switch arm
% from one for which we want to generate an error and do,
% to one for which we want to generate an error but don't.
%
% We could in theory fix this by modifying the code that
% checks require_switch_arms_detism scopes to take into account
% the possibility that we modified the switch, but it is
% simpler not to modify such the arms of such switches at all.
% Since require_switch_arms_detism scopes are rare, the impact
% should be negligible in terms of both code size and speed.
detect_cse_in_cases_arms(Cases0, Cases, !CseInfo, InstMap0),
SubGoalExpr = switch(SwitchVar, CanFail, Cases),
SubGoal = hlds_goal(SubGoalExpr, SubGoalInfo0),
GoalExpr = scope(Reason0, SubGoal)
else
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0),
GoalExpr = scope(Reason0, SubGoal)
)
;
( Reason0 = exist_quant(_)
; Reason0 = disable_warnings(_, _)
; Reason0 = barrier(_)
; Reason0 = commit(_)
; Reason0 = loop_control(_, _, _)
; Reason0 = promise_purity(_)
; Reason0 = promise_solutions(_, _)
; Reason0 = require_complete_switch(_)
; Reason0 = require_detism(_)
; Reason0 = trace_goal(_, _, _, _, _)
),
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0),
GoalExpr = scope(Reason0, SubGoal)
)
;
GoalExpr0 = conj(ConjType, Goals0),
detect_cse_in_conj(Goals0, Goals, !CseInfo, ConjType, InstMap0),
GoalExpr = conj(ConjType, Goals)
;
GoalExpr0 = disj(Goals0),
(
Goals0 = [],
GoalExpr = disj([])
;
Goals0 = [_ | _],
NonLocals = goal_info_get_nonlocals(GoalInfo),
NonLocalsList = set_of_var.to_sorted_list(NonLocals),
detect_cse_in_disj(NonLocalsList, Goals0, GoalInfo,
InstMap0, !CseInfo, GoalExpr)
)
;
GoalExpr0 = switch(Var, CanFail, Cases0),
NonLocals = goal_info_get_nonlocals(GoalInfo),
NonLocalsList = set_of_var.to_sorted_list(NonLocals),
detect_cse_in_cases(NonLocalsList, Var, CanFail, Cases0, GoalInfo,
InstMap0, !CseInfo, GoalExpr)
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0),
NonLocals = goal_info_get_nonlocals(GoalInfo),
NonLocalsList = set_of_var.to_sorted_list(NonLocals),
detect_cse_in_ite(NonLocalsList, Vars, Cond0, Then0, Else0, GoalInfo,
InstMap0, !CseInfo, GoalExpr)
;
GoalExpr0 = shorthand(ShortHand0),
(
ShortHand0 = atomic_goal(AtomicGoalType, Outer, Inner,
MaybeOutputVars, MainGoal0, OrElseGoals0, OrElseInners),
detect_cse_in_goal(MainGoal0, MainGoal, !CseInfo, InstMap0),
detect_cse_in_independent_goals(OrElseGoals0, OrElseGoals,
!CseInfo, InstMap0),
ShortHand = atomic_goal(AtomicGoalType, Outer, Inner,
MaybeOutputVars, MainGoal, OrElseGoals, OrElseInners)
;
ShortHand0 = bi_implication(_, _),
% These should have been expanded out by now.
unexpected($pred, "bi_implication")
;
ShortHand0 = try_goal(MaybeIO, ResultVar, SubGoal0),
% XXX not sure about this as SubGoal0 is not in its final form.
% Also, mightn't the try "Goal" part get hoisted out?
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0),
ShortHand = try_goal(MaybeIO, ResultVar, SubGoal)
),
GoalExpr = shorthand(ShortHand)
),
Goal = hlds_goal(GoalExpr, GoalInfo),
InstMapDelta = goal_info_get_instmap_delta(GoalInfo),
apply_instmap_delta(InstMapDelta, InstMap0, InstMap).
%---------------------------------------------------------------------------%
:- pred detect_cse_in_conj(list(hlds_goal)::in, list(hlds_goal)::out,
cse_info::in, cse_info::out, conj_type::in, instmap::in) is det.
detect_cse_in_conj([], [], !CseInfo, _ConjType, _InstMap).
detect_cse_in_conj([Goal0 | Goals0], Goals, !CseInfo, ConjType, !.InstMap) :-
detect_cse_in_goal_update_instmap(Goal0, Goal, !CseInfo, !InstMap),
detect_cse_in_conj(Goals0, TailGoals, !CseInfo, ConjType, !.InstMap),
% Flatten any non-flat conjunctions we create.
( if
Goal = hlds_goal(conj(InnerConjType, ConjGoals), _),
ConjType = InnerConjType
then
Goals = ConjGoals ++ TailGoals
else
Goals = [Goal | TailGoals]
).
%---------------------------------------------------------------------------%
%
% We have found a non-empty branched structure, and we have a list
% of the nonlocal variables of that structure. For each nonlocal variable,
% we check whether each branch matches that variable against
% the same functor.
%
:- pred detect_cse_in_disj(list(prog_var)::in, list(hlds_goal)::in,
hlds_goal_info::in, instmap::in, cse_info::in, cse_info::out,
hlds_goal_expr::out) is det.
detect_cse_in_disj([], Goals0, _GoalInfo0, InstMap0, !CseInfo, GoalExpr) :-
% We get here only if we couldn't pull any common unifications
% out of two or more of the disjuncts represented by Goals0.
% In that case, we look for transformation opportunities inside
% *each* disjunct.
detect_cse_in_independent_goals(Goals0, Goals, !CseInfo, InstMap0),
GoalExpr = disj(Goals).
detect_cse_in_disj([Var | Vars], Goals0, GoalInfo0, InstMap0,
!CseInfo, GoalExpr) :-
CseInfo0 = !.CseInfo,
( if
common_deconstruct(Goals0, Var, !CseInfo, UnifyGoal, ConsId,
FirstOldNew, LaterOldNew, Goals)
then
instmap_lookup_var(InstMap0, Var, VarInst0),
( if may_pull_lhs_inst_cons_id(!.CseInfo, VarInst0, ConsId) then
maybe_update_existential_data_structures(UnifyGoal,
FirstOldNew, LaterOldNew, !CseInfo),
GoalExpr = conj(plain_conj,
[UnifyGoal, hlds_goal(disj(Goals), GoalInfo0)]),
!CseInfo ^ csei_redo := yes
else
% Throw away any changes made by common_deconstruct above.
!:CseInfo = CseInfo0,
% Record the fact that we *could* have pulled a deconstruction
% out of two or more arms *if* uniqueness in the inst of the
% variable concerned didn't stop us.
record_pull_decline(UnifyGoal, !CseInfo),
detect_cse_in_disj(Vars, Goals0, GoalInfo0, InstMap0,
!CseInfo, GoalExpr)
)
else
detect_cse_in_disj(Vars, Goals0, GoalInfo0, InstMap0,
!CseInfo, GoalExpr)
).
:- pred detect_cse_in_independent_goals(
list(hlds_goal)::in, list(hlds_goal)::out,
cse_info::in, cse_info::out, instmap::in) is det.
detect_cse_in_independent_goals([], [], !CseInfo, _).
detect_cse_in_independent_goals([Goal0 | Goals0], [Goal | Goals], !CseInfo,
InstMap0) :-
detect_cse_in_goal(Goal0, Goal, !CseInfo, InstMap0),
detect_cse_in_independent_goals(Goals0, Goals, !CseInfo, InstMap0).
:- pred detect_cse_in_cases(list(prog_var)::in, prog_var::in, can_fail::in,
list(case)::in, hlds_goal_info::in, instmap::in,
cse_info::in, cse_info::out, hlds_goal_expr::out) is det.
detect_cse_in_cases([], SwitchVar, CanFail, Cases0, _GoalInfo,
InstMap0, !CseInfo, GoalExpr) :-
% We get here only if we couldn't pull any common unifications
% out of two or more of the switch arms represented by Cases0.
% In that case, we look for transformation opportunities inside
% *each* switch arm.
detect_cse_in_cases_arms(Cases0, Cases, !CseInfo, InstMap0),
GoalExpr = switch(SwitchVar, CanFail, Cases).
detect_cse_in_cases([Var | Vars], SwitchVar, CanFail, Cases0, GoalInfo,
InstMap0, !CseInfo, GoalExpr) :-
CseInfo0 = !.CseInfo,
( if
Var \= SwitchVar,
common_deconstruct_cases(Cases0, Var, !CseInfo, UnifyGoal, ConsId,
FirstOldNew, LaterOldNew, Cases)
then
instmap_lookup_var(InstMap0, Var, VarInst0),
( if may_pull_lhs_inst_cons_id(!.CseInfo, VarInst0, ConsId) then
maybe_update_existential_data_structures(UnifyGoal,
FirstOldNew, LaterOldNew, !CseInfo),
SwitchGoalExpr = switch(SwitchVar, CanFail, Cases),
SwitchGoal = hlds_goal(SwitchGoalExpr, GoalInfo),
GoalExpr = conj(plain_conj, [UnifyGoal, SwitchGoal]),
!CseInfo ^ csei_redo := yes
else
% Throw away any changes made by common_deconstruct above.
!:CseInfo = CseInfo0,
% Record the fact that we *could* have pulled a deconstruction
% out of two or more arms *if* uniqueness in the inst of the
% variable concerned didn't stop us.
record_pull_decline(UnifyGoal, !CseInfo),
detect_cse_in_cases(Vars, SwitchVar, CanFail, Cases0, GoalInfo,
InstMap0, !CseInfo, GoalExpr)
)
else
detect_cse_in_cases(Vars, SwitchVar, CanFail, Cases0, GoalInfo,
InstMap0, !CseInfo, GoalExpr)
).
:- pred detect_cse_in_cases_arms(list(case)::in, list(case)::out,
cse_info::in, cse_info::out, instmap::in) is det.
detect_cse_in_cases_arms([], [], !CseInfo, _).
detect_cse_in_cases_arms([Case0 | Cases0], [Case | Cases], !CseInfo,
InstMap0) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
detect_cse_in_goal(Goal0, Goal, !CseInfo, InstMap0),
Case = case(MainConsId, OtherConsIds, Goal),
detect_cse_in_cases_arms(Cases0, Cases, !CseInfo, InstMap0).
:- pred detect_cse_in_ite(list(prog_var)::in, list(prog_var)::in,
hlds_goal::in, hlds_goal::in, hlds_goal::in, hlds_goal_info::in,
instmap::in, cse_info::in, cse_info::out, hlds_goal_expr::out) is det.
detect_cse_in_ite([], IfVars, Cond0, Then0, Else0, _, InstMap0, !CseInfo,
GoalExpr) :-
% We get here only if we couldn't pull any common unifications
% out of both arms of the if-then-else. In that case, we look for
% transformation opportunities inside *each* arm.
detect_cse_in_ite_arms(Cond0, Cond, Then0, Then, Else0, Else, !CseInfo,
InstMap0),
GoalExpr = if_then_else(IfVars, Cond, Then, Else).
detect_cse_in_ite([Var | Vars], IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap0, !CseInfo, GoalExpr) :-
CseInfo0 = !.CseInfo,
( if
common_deconstruct([Then0, Else0], Var, !CseInfo, UnifyGoal, ConsId,
FirstOldNew, LaterOldNew, Goals)
then
( if Goals = [Then1, Else1] then
Then = Then1,
Else = Else1
else
unexpected($pred, "common_deconstruct changes number of goals")
),
instmap_lookup_var(InstMap0, Var, VarInst0),
( if may_pull_lhs_inst_cons_id(!.CseInfo, VarInst0, ConsId) then
maybe_update_existential_data_structures(UnifyGoal,
FirstOldNew, LaterOldNew, !CseInfo),
IfGoalExpr = if_then_else(IfVars, Cond0, Then, Else),
IfGoal = hlds_goal(IfGoalExpr, GoalInfo),
GoalExpr = conj(plain_conj, [UnifyGoal, IfGoal]),
!CseInfo ^ csei_redo := yes
else
% Throw away any changes made by common_deconstruct above.
!:CseInfo = CseInfo0,
% Record the fact that we *could* have pulled a deconstruction
% out of two or more arms *if* uniqueness in the inst of the
% variable concerned didn't stop us.
record_pull_decline(UnifyGoal, !CseInfo),
detect_cse_in_ite(Vars, IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap0, !CseInfo, GoalExpr)
)
else
detect_cse_in_ite(Vars, IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap0, !CseInfo, GoalExpr)
).
:- pred detect_cse_in_ite_arms(hlds_goal::in, hlds_goal::out,
hlds_goal::in, hlds_goal::out, hlds_goal::in, hlds_goal::out,
cse_info::in, cse_info::out, instmap::in) is det.
detect_cse_in_ite_arms(Cond0, Cond, Then0, Then, Else0, Else, !CseInfo,
InstMap0) :-
detect_cse_in_goal_update_instmap(Cond0, Cond, !CseInfo,
InstMap0, InstMap1),
detect_cse_in_goal(Then0, Then, !CseInfo, InstMap1),
detect_cse_in_goal(Else0, Else, !CseInfo, InstMap0).
%---------------------------------------------------------------------------%
:- pred record_pull_decline(hlds_goal::in, cse_info::in, cse_info::out) is det.
record_pull_decline(UnifyGoal, !CseInfo) :-
UnifyGoal = hlds_goal(_, UnifyGoalInfo),
Context = goal_info_get_context(UnifyGoalInfo),
NoPullContexts0 = !.CseInfo ^ csei_nopull_contexts,
NoPullContexts = [Context | NoPullContexts0],
!CseInfo ^ csei_nopull_contexts := NoPullContexts.
%---------------------------------------------------------------------------%
% common_deconstruct(Goals0, Var, !CseInfo, Unify, ConsId,
% FirstOldNew, LaterOldNew, Goals):
% input vars:
% Goals0 is a list of parallel goals in a branched structure
% (disjunction, if-then-else, or switch).
% Var is the variable we are looking for a common deconstruction on.
% !.CseInfo contains the original varset and type map.
% output vars:
% !:CseInfo has a varset and a type map reflecting the new variables
% we have introduced.
% Goals is the modified version of Goals0 after the common deconstruction
% has been hoisted out, with the new variables as the functor arguments.
% Unify is the unification goal that was hoisted out; it is guaranteed
% to be a deconstruction unification with the right hand side being an
% rhs_functor naming ConsId as the function symbol.
% FirstOldNew and LaterOldNew give the mapping from argument variables
% in the old unification in the first and later branches respectively
% to the freshly created argument variables in Unify.
%
:- pred common_deconstruct(list(hlds_goal)::in, prog_var::in,
cse_info::in, cse_info::out, hlds_goal::out, cons_id::out,
assoc_list(prog_var)::out, list(assoc_list(prog_var))::out,
list(hlds_goal)::out) is semidet.
common_deconstruct(Goals0, Var, !CseInfo, Unify, ConsId,
FirstOldNew, LaterOldNew, Goals) :-
CseState0 = before_candidate,
common_deconstruct_2(Goals0, Var, CseState0, CseState,
!CseInfo, Goals),
CseState = have_candidate(Unify, ConsId, FirstOldNew, LaterOldNew),
LaterOldNew = [_ | _].
:- pred common_deconstruct_2(list(hlds_goal)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(hlds_goal)::out) is semidet.
common_deconstruct_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_2([Goal0 | Goals0], Var, !CseState, !CseInfo,
[Goal | Goals]) :-
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct,
Goal0, Goal, !CseState, !CseInfo, did_find_deconstruct),
!.CseState = have_candidate(_, _, _, _),
common_deconstruct_2(Goals0, Var, !CseState, !CseInfo, Goals).
%---------------------------------------------------------------------------%
:- pred common_deconstruct_cases(list(case)::in, prog_var::in,
cse_info::in, cse_info::out, hlds_goal::out, cons_id::out,
assoc_list(prog_var)::out, list(assoc_list(prog_var))::out,
list(case)::out) is semidet.
common_deconstruct_cases(Cases0, Var, !CseInfo, Unify, ConsId,
FirstOldNew, LaterOldNew, Cases) :-
CseState0 = before_candidate,
common_deconstruct_cases_2(Cases0, Var, CseState0, CseState,
!CseInfo, Cases),
CseState = have_candidate(Unify, ConsId, FirstOldNew, LaterOldNew),
LaterOldNew = [_ | _].
:- pred common_deconstruct_cases_2(list(case)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(case)::out) is semidet.
common_deconstruct_cases_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_cases_2([Case0 | Cases0], Var, !CseState, !CseInfo,
[Case | Cases]) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct,
Goal0, Goal, !CseState, !CseInfo, did_find_deconstruct),
Case = case(MainConsId, OtherConsIds, Goal),
!.CseState = have_candidate(_, _, _, _),
common_deconstruct_cases_2(Cases0, Var, !CseState, !CseInfo, Cases).
%---------------------------------------------------------------------------%
% This data structure represents the state of the search for
% deconstructions in all the branches of a branched control structure
% that deconstruct a given variable with the same functor.
% Initially, we don't know what unification we will hoist out, so the
% state is before_candidate. When we find a unification we want to
% hoist out, this fixes the functor, and the state is have_candidate.
% If we find that some branches unify that variable with some other
% functor, we have multiple_candidates, which means that we don't hoist
% out any of them. (Although our caller may try again with another
% variable.)
%
% The goal field contains the unification we are proposing to put
% before the branched control structure. The first_old_new field
% gives the mapping from argument variables in the old unification
% in the first branch to the freshly created variables in the goal
% being hoisted before the branched control structure. The later_old_new
% field contains the same information for the second and later branches.
:- type cse_state
---> before_candidate
; have_candidate(
hc_goal :: hlds_goal,
hc_cons_id :: cons_id,
hc_first_old_new :: assoc_list(prog_var),
hc_later_old_new :: list(assoc_list(prog_var))
)
; multiple_candidates.
:- pred find_bind_var_for_cse_in_deconstruct(prog_var::in, hlds_goal::in,
list(hlds_goal)::out, cse_state::in, cse_state::out,
cse_info::in, cse_info::out) is det.
find_bind_var_for_cse_in_deconstruct(Var, Goal0, Goals,
!CseState, !CseInfo) :-
(
!.CseState = before_candidate,
construct_common_unify(Var, Goal0, !CseInfo, ConsId, OldNewVars,
HoistedGoal, Goals),
!:CseState = have_candidate(HoistedGoal, ConsId, OldNewVars, [])
;
!.CseState = have_candidate(HoistedGoal, ConsId,
FirstOldNewVars, LaterOldNewVars0),
Goal0 = hlds_goal(_, GoalInfo),
Context = goal_info_get_context(GoalInfo),
( if
find_similar_deconstruct(HoistedGoal,
Goal0, Context, OldNewVars, Goals0)
then
Goals = Goals0,
LaterOldNewVars = [OldNewVars | LaterOldNewVars0],
!:CseState = have_candidate(HoistedGoal, ConsId,
FirstOldNewVars, LaterOldNewVars)
else
Goals = [Goal0],
!:CseState = multiple_candidates
)
;
!.CseState = multiple_candidates,
Goals = [Goal0],
!:CseState = multiple_candidates
).
:- pred construct_common_unify(prog_var::in, hlds_goal::in,
cse_info::in, cse_info::out, cons_id::out, assoc_list(prog_var)::out,
hlds_goal::out, list(hlds_goal)::out) is det.
construct_common_unify(Var, Goal0, !CseInfo, ConsId, OldNewVars, HoistedGoal,
ReplacementGoals) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo0),
( if
GoalExpr0 = unify(_, RHS, Umode, Unif0, Ucontext),
Unif0 = deconstruct(_, ConsId0, ArgVars, Submodes, CanFail, CanCGC)
then
ConsId = ConsId0,
Unif = deconstruct(Var, ConsId, ArgVars, Submodes, CanFail, CanCGC),
(
RHS = rhs_functor(_, _, _),
GoalExpr1 = unify(Var, RHS, Umode, Unif, Ucontext)
;
( RHS = rhs_var(_)
; RHS = rhs_lambda_goal(_, _, _, _, _, _, _, _, _)
),
unexpected($pred, "non-functor unify")
),
goal_info_add_feature(feature_lifted_by_cse, GoalInfo0, GoalInfo1),
Context = goal_info_get_context(GoalInfo1),
create_new_arg_vars(ArgVars, Context, Ucontext, !CseInfo,
OldNewVars, ReplacementGoals),
map.from_assoc_list(OldNewVars, Subn),
rename_some_vars_in_goal(Subn, hlds_goal(GoalExpr1, GoalInfo1),
HoistedGoal)
else
unexpected($pred, "non-unify goal")
).
:- pred create_new_arg_vars(list(prog_var)::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::out, list(hlds_goal)::out) is det.
create_new_arg_vars([], _, _, !CseInfo, [], []).
create_new_arg_vars([HeadOldArgVar | TailOldArgVars], Context,
UnifyContext, !CseInfo, !:OldNewVars, ReplacementGoals) :-
create_new_arg_vars(TailOldArgVars, Context, UnifyContext, !CseInfo,
!:OldNewVars, TailReplacementGoals),
create_new_arg_var(HeadOldArgVar, Context, UnifyContext, !CseInfo,
!OldNewVars, HeadReplacementGoal),
ReplacementGoals = [HeadReplacementGoal | TailReplacementGoals].
:- pred create_new_arg_var(prog_var::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::in, assoc_list(prog_var)::out,
hlds_goal::out) is det.
create_new_arg_var(OldArgVar, Context, UnifyContext, !CseInfo, !OldNewVars,
Goal) :-
% If OldArgVar was a type_info, typeclass_info or a component of either,
% and it was named, then we need to preserve the fact that it is named.
% The reason is documented by the comment before delay_death_proc_body
% in liveness.m.
%
% The reason why we don't preserve the name of all fields that have names
% is that taking the name of an argument variable from one branch
% and using it as the name of the argument variable in the hoisted-out
% goal makes that name visible in the other branches as well, and in
% THOSE branches, it can be misleading.
%
% This is illustrated by the merge predicate in tests/debugger/dice.m:
%
% merge([], [], []).
% merge([S | Ss], [], [S | Ss]).
% merge([], [S | Ss], [S | Ss]).
% merge([A | As], [B | Bs], [C | Cs]) :-
% ( if A =< B then
% dice.merge(As, [B | Bs], Cs),
% C = A
% else
% dice.merge(As, [B | Bs], Cs), % BUG
% C = B
% ).
%
% When printing the variables live at some point in the if-then-else,
% programmers shouldn't be surprised by the debugger telling them
% about a live variable named "S" or "Ss", when the names of those fields
% at that point in the code are actually "A" and "As".
VarSet0 = !.CseInfo ^ csei_varset,
VarTypes0 = !.CseInfo ^ csei_vartypes,
lookup_var_type(VarTypes0, OldArgVar, Type),
ModuleInfo = !.CseInfo ^ csei_module_info,
TypeCat = classify_type(ModuleInfo, Type),
( if
TypeCat = ctor_cat_system(_),
varset.search_name(VarSet0, OldArgVar, OldName)
then
varset.new_named_var(OldName, NewArgVar, VarSet0, VarSet)
else
varset.new_var(NewArgVar, VarSet0, VarSet)
),
add_var_type(NewArgVar, Type, VarTypes0, VarTypes),
!:OldNewVars = [OldArgVar - NewArgVar | !.OldNewVars],
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require keeping
% track of the inst of OldArgVar.
create_pure_atomic_complicated_unification(OldArgVar, rhs_var(NewArgVar),
Context, MainCtxt, SubCtxt, Goal),
!CseInfo ^ csei_varset := VarSet,
!CseInfo ^ csei_vartypes := VarTypes.
%---------------------------------------------------------------------------%
:- pred find_similar_deconstruct(hlds_goal::in, hlds_goal::in,
prog_context::in, assoc_list(prog_var)::out, list(hlds_goal)::out)
is semidet.
find_similar_deconstruct(HoistedUnifyGoal, OldUnifyGoal, Context,
OldHoistedVars, Replacements) :-
( if
HoistedUnifyGoal = hlds_goal(unify(_, _, _, HoistedUnifyInfo, OC), _),
HoistedUnifyInfo = deconstruct(_, HoistedFunctor,
HoistedVars, _, _, _),
OldUnifyGoal = hlds_goal(unify(_, _, _, OldUnifyInfo, _NC), _),
OldUnifyInfo = deconstruct(_, OldFunctor, OldVars, _, _, _)
then
HoistedFunctor = OldFunctor,
list.length(HoistedVars, HoistedVarsCount),
list.length(OldVars, OldVarsCount),
HoistedVarsCount = OldVarsCount,
assoc_list.from_corresponding_lists(OldVars, HoistedVars,
OldHoistedVars),
pair_subterms(OldHoistedVars, Context, OC, Replacements)
else
unexpected($pred, "non-deconstruct unify")
).
:- pred pair_subterms(assoc_list(prog_var)::in, prog_context::in,
unify_context::in, list(hlds_goal)::out) is det.
pair_subterms([], _Context, _UnifyContext, []).
pair_subterms([OldVar - HoistedVar | OldHoistedVars], Context, UnifyContext,
Replacements) :-
pair_subterms(OldHoistedVars, Context, UnifyContext, Replacements1),
( if OldVar = HoistedVar then
Replacements = Replacements1
else
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require
% keeping track of the inst of OldVar.
create_pure_atomic_complicated_unification(HoistedVar, rhs_var(OldVar),
Context, MainCtxt, SubCtxt, Goal),
Replacements = [Goal | Replacements1]
).
%---------------------------------------------------------------------------%
%
% This section handles the case where the functor involved in the
% common subexpression contains existentially typed arguments,
% whether or not they are constrained to belong to a typeclass.
% In such cases, what the compiler used to consider several distinct
% types (the types of say the first the existentially typed argument
% in the deconstructions in the different branches) become one (in this
% case, the type of the first existentially typed argument in the
% hoisted out deconstruction). The prog_vars describing the types
% of the existentially typed arguments (i.e. containing their
% typeinfos) change as well, from being some of the variables in
% in the original deconstructions to being the corresponding variables
% in the hoisted out deconstruction.
%
% As an example, consider a disjunction such as
%
% (
% HeadVar.g2_2 = x.u(TypeClassInfo_for_v_8, V_4),
% ...
% ;
% HeadVar.g2_2 = x.u(TypeClassInfo_for_v_14, V_6)
% ...
% )
%
% The main part of cse_detection will replace this with
%
% HeadVar.g2_2 = x.u(V_17, V_16)
% (
% TypeClassInfo_for_v_8 = V_17,
% V_4 = V_16,
% ...
% ;
% TypeClassInfo_for_v_14 = V_17,
% V_6 = V_16,
% ...
% )
%
% However, this is not enough. Since TypeClassInfo_for_v_8 and
% TypeClassInfo_for_v_14 may (and probably will) be eliminated later,
% it is imperative that the data structures in the proc_info that refer
% to them be updated to eliminate references to those variables.
% Those data structures may originally contain something like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(TypeClassInfo_for_v_8, 1)
% T_3 (number 3) -> typeclass_info(TypeClassInfo_for_v_14, 1)
% typeclass_info varmap:
% x:v(T_1) -> TypeClassInfo_for_v_8
% x:v(T_3) -> TypeClassInfo_for_v_14
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_3
%
% They must be updated like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(V_17, 1)
% typeclass_info varmap:
% x:v(T_1) -> V_17
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_1
%
:- pred maybe_update_existential_data_structures(hlds_goal::in,
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
maybe_update_existential_data_structures(UnifyGoal, FirstOldNew, LaterOldNew,
!CseInfo) :-
( if
UnifyGoal = hlds_goal(unify(_, _, _, UnifyInfo, _), _),
UnifyInfo = deconstruct(Var, ConsId, _, _, _, _),
ModuleInfo = !.CseInfo ^ csei_module_info,
VarTypes = !.CseInfo ^ csei_vartypes,
lookup_var_type(VarTypes, Var, Type),
cons_id_is_existq_cons(ModuleInfo, Type, ConsId)
then
update_existential_data_structures(FirstOldNew, LaterOldNew, !CseInfo)
else
true
).
:- pred update_existential_data_structures(
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
update_existential_data_structures(FirstOldNew, LaterOldNews, !CseInfo) :-
list.condense(LaterOldNews, LaterOldNew),
map.from_assoc_list(FirstOldNew, FirstOldNewMap),
map.from_assoc_list(LaterOldNew, LaterOldNewMap),
RttiVarMaps0 = !.CseInfo ^ csei_rtti_varmaps,
VarTypes0 = !.CseInfo ^ csei_vartypes,
% Build a map for all locations in the rtti_varmaps that are changed
% by the application of FirstOldNewMap. The keys of this map are the
% new locations, and the values are the tvars (from the first branch)
% that have had their locations moved.
rtti_varmaps_tvars(RttiVarMaps0, TvarsList),
list.foldl(find_type_info_locn_tvar_map(RttiVarMaps0, FirstOldNewMap),
TvarsList, map.init, NewTvarMap),
% Traverse TVarsList again, this time looking for locations in later
% branches that merge with locations in the first branch. When we find one,
% add a type substitution which represents the type variables that were
% merged.
list.foldl(find_merged_tvars(RttiVarMaps0, LaterOldNewMap, NewTvarMap),
TvarsList, map.init, Renaming),
% Apply the full old->new map and the type substitution to the
% rtti_varmaps, and apply the type substitution to the vartypes.
list.append(FirstOldNew, LaterOldNew, OldNew),
map.from_assoc_list(OldNew, OldNewMap),
apply_substitutions_to_rtti_varmaps(Renaming, map.init, OldNewMap,
RttiVarMaps0, RttiVarMaps),
apply_variable_renaming_to_vartypes(Renaming, VarTypes0, VarTypes),
!CseInfo ^ csei_rtti_varmaps := RttiVarMaps,
!CseInfo ^ csei_vartypes := VarTypes.
:- pred find_type_info_locn_tvar_map(rtti_varmaps::in,
map(prog_var, prog_var)::in, tvar::in,
map(type_info_locn, tvar)::in, map(type_info_locn, tvar)::out) is det.
find_type_info_locn_tvar_map(RttiVarMaps, FirstOldNewMap, Tvar, !NewTvarMap) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( if map.search(FirstOldNewMap, Old, New) then
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
map.det_insert(TypeInfoLocn, Tvar, !NewTvarMap)
else
true
).
:- pred find_merged_tvars(rtti_varmaps::in, map(prog_var, prog_var)::in,
map(type_info_locn, tvar)::in, tvar::in,
tvar_renaming::in, tvar_renaming::out) is det.
find_merged_tvars(RttiVarMaps, LaterOldNewMap, NewTvarMap, Tvar, !Renaming) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( if map.search(LaterOldNewMap, Old, New) then
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
map.lookup(NewTvarMap, TypeInfoLocn, NewTvar),
( if NewTvar = Tvar then
true
else
map.det_insert(Tvar, NewTvar, !Renaming)
)
else
true
).
%---------------------------------------------------------------------------%
% May we pull a deconstruction unification whose left hand side
% variable has this inst out of two or more arms, to put before
% the disjunction, switch or if-then-else?
%
:- pred may_pull_lhs_inst_cons_id(cse_info::in, mer_inst::in, cons_id::in)
is semidet.
may_pull_lhs_inst_cons_id(CseInfo, VarInst, ConsId) :-
ModuleInfo = CseInfo ^ csei_module_info,
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst),
% We need to test for the absence of uniqueness until we can track
% uniqueness through the extra unifications we introduce when we pull
% a deconstruction out of an arm of a disjunction, switch or if-then-else.
%
% We only need the insts of the *arguments* to be free of uniqueness.
% However, the vast majority of the time, the whole inst is free
% of uniqueness, so for efficiency in the common case, we test that first.
( if inst_is_not_partly_unique(ModuleInfo, VarInst) then
true
else
inst_is_bound_to_functors(ModuleInfo, VarInst, FunctorBoundInsts),
compute_may_pull_cons_id(ModuleInfo, FunctorBoundInsts, ConsId,
MayPullConsId),
MayPullConsId = may_pull_cons_id
).
:- type may_pull_cons_id
---> may_pull_cons_id
; may_not_pull_cons_id.
:- pred compute_may_pull_cons_id(module_info::in, list(bound_inst)::in,
cons_id::in, may_pull_cons_id::out) is det.
compute_may_pull_cons_id(_ModuleInfo, [], _ConsId, may_not_pull_cons_id).
compute_may_pull_cons_id(ModuleInfo, [BoundInst | BoundInsts],
ConsId, MayPullConsId) :-
BoundInst = bound_functor(InstConsId, ArgInsts),
( if
(
ConsId = InstConsId
;
% While the type constructor in ConsId is filled in by the type
% checker, the type constructor in InstConsId need not be.
% This code tests whether the two cons_ids are the same
% modulo this irrelevant possible difference.
ConsId = cons(SymName, Arity, _),
InstConsId = cons(InstSymName, InstArity, _),
SymName = InstSymName,
Arity = InstArity
)
then
( if
list.all_true(inst_is_not_partly_unique(ModuleInfo), ArgInsts)
then
MayPullConsId = may_pull_cons_id
else
MayPullConsId = may_not_pull_cons_id
)
else
compute_may_pull_cons_id(ModuleInfo, BoundInsts, ConsId, MayPullConsId)
).
%---------------------------------------------------------------------------%
:- end_module check_hlds.cse_detection.
%---------------------------------------------------------------------------%