Files
mercury/compiler/lambda.m
Zoltan Somogyi df0d9036cf Optimize calls that would be tail calls in Prolog but are followed by
Estimated hours taken: 40
Branches: main

Optimize calls that would be tail calls in Prolog but are followed by
construction unifications in Mercury: last call modulo construction.
For now, the optimization is available only for the LLDS backend.

compiler/lco.m:
	Turn this module from a placeholder to a real implementation
	of the optimization.

compiler/hlds_goal.m:
	Allow lco.m to attach to construction unifications a note that says
	that certain arguments, instead of being filled in by the unification,
	should have their addresses taken and stored in the corresponding
	variables.

	Group this note together with the note that asks for term size
	profiling to avoid an increase in the sizes of goals in the compiler
	in most cases.

compiler/hlds_pred.m:
	Provide a predicate for setting the name of a predicate after its
	creation. This functionality is used by lco.m.

	Extend the pred_transformation part of the pred_origin type to allow
	it to express that a procedure was created by lco.m.

	List the new primitive store_at_ref as a no-typeinfo builtin.

	Fix some problems with indentation.

compiler/layout_out.m:
	Handle the new pred_transformation.

compiler/unify_gen.m:
	When processing construction unifications that have the new feaure
	turned on, perform the requested action.

	Fix some departures from coding style. Shorten lines by deleting
	unnecessary module qualifications. Add some auxiliary predicates
	to make the code easier to read.

compiler/var_locn.m:
	Fix an earlier oversight: when materializing variables inside rvals
	and lvals, look inside memory references too. Previously, the omission
	didn't matter, since we didn't generate such references, but now we do.

	Fix some departures from coding style.

compiler/llds_out.m:
	Fix some old XXXs in code handling memory references. We didn't use to
	generate such references, but now we do.

	Move some functionality here from code_aux.m.

compiler/code_info.m:
	Provide some primitive operations needed by the new code in var_locn.m.

	Delete an unneeded predicate.

compiler/options.m:
	Rename the existing option optimize_constructor_last_call as
	optimize_constructor_last_call_accumulator, since that optimization
	is done by accumulator.m.

	Make optimize_constructor_last_call be the option that calls for the
	new optimization.

compiler/handle_options.m:
	Handle the implications of the new option.

compiler/mercury_compile.m:
	Invoke the lco module by its new interface.

librrary/private_builtin.m:
	Add a new primitive operation, store_at_ref, for use by the new
	optimization.

	Switch the module to four-space indentation.

compiler/add_clause.m:
	Comment out the warning for clauses for builtin, since this is needed
	to bootstrap the addition of the new builtin.

compiler/term_constr_initial.m:
	Handle the new builtin.

compiler/accumulator.m:
	Conform to the change in options.

compiler/builtin_ops.m:
	Provide a third template for builtins, for use by store_at_ref.

	Convert the file to four-space indentation.

compiler/call_gen.m:
	Generate code following the new builtin template.

compiler/rl_exprn.m:
	Minor changes to conform to the changes in builtin templates.

compiler/quantification.m:
	Minor changes to conform to the changes in construct unifications.

	Don't make the "get" predicates operating on quantification_infos
	to return the "new" quantification_info: it is always the same
	as the old one.

compiler/aditi_builtin_ops.m:
compiler/common.m:
compiler/deep_profiling.m:
compiler/higher_order.m:
compiler/hlds_out.m:
compiler/lambda.m:
compiler/magic_util.m:
compiler/ml_unify_gen.m:
compiler/modecheck_unify.m:
compiler/polymorphism.m:
compiler/size_prof.m:
	Minor changes to conform to the changes in construct unifications.

compiler/dependency_graph.m:
	Add a new predicate to recompute the dependency information,
	even if a previous (and possibly now inaccurate) version is present.

	Change the interface to make it clearer, by changing bools into types
	specific to the situation.

	Convert the file to four-space indentation.

compiler/mode_constraints.m:
	Minor changes to conform to the changes in dependency_graph.m.

compiler/code_aux.m:
	Delete this module. Half its functionality has been moved into
	llds_out.m, half to middle_rec.m (its only user).

compiler/goal_form.m:
	Move the predicates in this module that are used only by middle_rec.m
	to middle_rec.m.

	Convert the file to four-space indentation.

compiler/goal_util.m:
compiler/det_util.m:
	Move update_instmap from det_util to goal_util, since it is usefulness
	extends beyond determinism analysis.

	Convert det_util.m to four-space indentation.

compiler/middle_rec.m:
	Move here the code required only here from code_aux and goal_form.
	Update the moved code for the changes in construct unifications.
	The updates are specific to middle_rec.m: they wouldn't be of use
	to other modules. They basically say that any code that takes the
	addresses of fields cannot be handled by middle_rec.m.

compiler/code_gen.m:
compiler/det_analysis.m:
compiler/live_vars.m:
compiler/ll_backend.m:
compiler/loop_inv.m:
compiler/switch_detection.m:
compiler/switch_gen.m:
compiler/notes/compiler_design.html:
	Minor changes to conform to the deletion of code_aux.m and/or the
	movement of code from det_util to goal_util.m.

compiler/opt_debug.m:
	Print info for vars in rvals.

compiler/hlds_module.m:
	Convert a lambda to an explicit predicate to make some code easier to
	read.

	Switch the module to four-space indentation.
2005-09-13 04:56:20 +00:00

620 lines
22 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% file: lambda.m
% main author: fjh
% This module is a pass over the HLDS to deal with lambda expressions.
%
% Lambda expressions are converted into separate predicates, so for
% example we translate
%
% :- pred p(int::in) is det.
% p(X) :-
% V__1 = lambda([Y::out] is nondet, q(Y, X))),
% solutions(V__1, List),
% ...
% :- pred q(int::out, int::in) is nondet.
%
% into
%
% p(X) :-
% V__1 = '__LambdaGoal__1'(X)
% solutions(V__1, List),
% ...
%
% :- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
% '__LambdaGoal__1'(X, Y) :- q(Y, X).
%
%
% Note that the mode checker requires that a lambda expression
% not bind any of the non-local variables such as `X' in the above
% example.
%
% Similarly, a lambda expression may not bind any of the type_infos for
% those variables; that is, none of the non-local variables
% should be existentially typed (from the perspective of the lambda goal).
% Now that we run the polymorphism.m pass before mode checking, this is
% also checked by mode analysis.
%
% It might be OK to allow the parameters of the lambda goal to be
% existentially typed, but currently that is not supported.
% One difficulty is that it's hard to determine here which type variables
% should be existentially quantified. The information is readily
% available during type inference, and really type inference should save
% that information in a field in the lambda_goal struct, but currently it
% doesn't; it saves the head_type_params field in the pred_info, which
% tells us which type variables where produced by the body, but for
% any given lambda goal we don't know whether the type variable was
% produced by something outside the lambda goal or by something inside
% the lambda goal (only in the latter case should it be existentially
% quantified).
% The other difficulty is that taking the address of a predicate with an
% existential type would require second-order polymorphism: for a predicate
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
% type `some [T] pred(int, T)', which is quite a different thing to saying
% that there is some type `T' for which `p' has type `pred(int, T)' --
% we don't know what `T' is until the predicate is called, and it might
% be different for each call.
% Currently we don't support second-order polymorphism, so we
% don't support existentially typed lambda expressions either.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds__lambda.
:- interface.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- pred lambda__process_module(module_info::in, module_info::out) is det.
:- pred lambda__process_pred(pred_id::in, module_info::in, module_info::out)
is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
% Parse tree modules
:- import_module parse_tree__prog_data.
:- import_module parse_tree__prog_mode.
:- import_module parse_tree__prog_util.
:- import_module parse_tree__prog_type.
% HLDS modules
:- import_module check_hlds__inst_match.
:- import_module check_hlds__mode_util.
:- import_module check_hlds__type_util.
:- import_module hlds__code_model.
:- import_module hlds__goal_util.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module hlds__quantification.
% Misc
:- import_module libs__globals.
:- import_module libs__options.
:- import_module mdbcomp__prim_data.
% Standard library modules
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module require.
:- import_module set.
:- import_module std_util.
:- import_module string.
:- import_module term.
:- import_module varset.
:- type lambda_info --->
lambda_info(
prog_varset, % from the proc_info
map(prog_var, type), % from the proc_info
prog_constraints, % from the pred_info
tvarset, % from the proc_info
inst_varset, % from the proc_info
rtti_varmaps, % from the proc_info
pred_markers, % from the pred_info
pred_or_func,
string, % pred/func name
aditi_owner,
module_info,
bool % true iff we need to recompute the nonlocals
).
%-----------------------------------------------------------------------------%
% This whole section just traverses the module structure.
lambda__process_module(ModuleInfo0, ModuleInfo) :-
module_info_predids(ModuleInfo0, PredIds),
lambda__process_preds(PredIds, ModuleInfo0, ModuleInfo1),
% Need update the dependency graph to include the lambda predicates.
module_info_clobber_dependency_info(ModuleInfo1, ModuleInfo).
:- pred lambda__process_preds(list(pred_id)::in,
module_info::in, module_info::out) is det.
lambda__process_preds([], ModuleInfo, ModuleInfo).
lambda__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo1),
lambda__process_preds(PredIds, ModuleInfo1, ModuleInfo).
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
ProcIds = pred_info_procids(PredInfo),
lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
:- pred lambda__process_procs(pred_id::in, list(proc_id)::in,
module_info::in, module_info::out) is det.
lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).
:- pred lambda__process_proc(pred_id::in, proc_id::in,
module_info::in, module_info::out) is det.
lambda__process_proc(PredId, ProcId, !ModuleInfo) :-
module_info_preds(!.ModuleInfo, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
lambda__process_proc_2(ProcInfo0, ProcInfo, PredInfo0, PredInfo1,
!ModuleInfo),
pred_info_procedures(PredInfo1, ProcTable1),
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, PredInfo1, PredInfo),
module_info_preds(!.ModuleInfo, PredTable1),
map__det_update(PredTable1, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, !ModuleInfo).
:- pred lambda__process_proc_2(proc_info::in, proc_info::out,
pred_info::in, pred_info::out, module_info::in, module_info::out)
is det.
lambda__process_proc_2(!ProcInfo, !PredInfo, !ModuleInfo) :-
% grab the appropriate fields from the pred_info and proc_info
PredName = pred_info_name(!.PredInfo),
PredOrFunc = pred_info_is_pred_or_func(!.PredInfo),
pred_info_typevarset(!.PredInfo, TypeVarSet0),
pred_info_get_markers(!.PredInfo, Markers),
pred_info_get_class_context(!.PredInfo, Constraints0),
pred_info_get_aditi_owner(!.PredInfo, Owner),
proc_info_headvars(!.ProcInfo, HeadVars),
proc_info_varset(!.ProcInfo, VarSet0),
proc_info_vartypes(!.ProcInfo, VarTypes0),
proc_info_goal(!.ProcInfo, Goal0),
proc_info_rtti_varmaps(!.ProcInfo, RttiVarMaps0),
proc_info_inst_varset(!.ProcInfo, InstVarSet0),
MustRecomputeNonLocals0 = no,
% process the goal
Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
InstVarSet0, RttiVarMaps0, Markers, PredOrFunc,
PredName, Owner, !.ModuleInfo, MustRecomputeNonLocals0),
lambda__process_goal(Goal0, Goal1, Info0, Info1),
Info1 = lambda_info(VarSet1, VarTypes1, Constraints, TypeVarSet,
_, RttiVarMaps, _, _, _, _, !:ModuleInfo,
MustRecomputeNonLocals),
% check if we need to requantify
( MustRecomputeNonLocals = yes ->
implicitly_quantify_clause_body(HeadVars, _Warnings,
Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes)
;
Goal = Goal1,
VarSet = VarSet1,
VarTypes = VarTypes1
),
% set the new values of the fields in proc_info and pred_info
proc_info_set_goal(Goal, !ProcInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_rtti_varmaps(RttiVarMaps, !ProcInfo),
pred_info_set_typevarset(TypeVarSet, !PredInfo),
pred_info_set_class_context(Constraints, !PredInfo).
:- pred lambda__process_goal(hlds_goal::in, hlds_goal::out,
lambda_info::in, lambda_info::out) is det.
lambda__process_goal(Goal0 - GoalInfo0, Goal, !Info) :-
lambda__process_goal_2(Goal0, GoalInfo0, Goal, !Info).
:- pred lambda__process_goal_2(hlds_goal_expr::in, hlds_goal_info::in,
hlds_goal::out, lambda_info::in, lambda_info::out) is det.
lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
Unify - GoalInfo, !Info) :-
(
Y = lambda_goal(Purity, PredOrFunc, EvalMethod, _,
NonLocalVars, Vars, Modes, Det, LambdaGoal0)
->
% first, process the lambda goal recursively, in case it
% contains some nested lambda expressions.
lambda__process_goal(LambdaGoal0, LambdaGoal1, !Info),
% then, convert the lambda expression into a new predicate
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars,
Modes, Det, NonLocalVars, LambdaGoal1,
Unification, Y1, Unification1, !Info),
Unify = unify(XVar, Y1, Mode, Unification1, Context)
;
% ordinary unifications are left unchanged
Unify = unify(XVar, Y, Mode, Unification, Context)
).
% the rest of the clauses just process goals recursively
lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo,
!Info) :-
lambda__process_goal_list(Goals0, Goals, !Info).
lambda__process_goal_2(par_conj(Goals0), GoalInfo,
par_conj(Goals) - GoalInfo, !Info) :-
lambda__process_goal_list(Goals0, Goals, !Info).
lambda__process_goal_2(disj(Goals0), GoalInfo, disj(Goals) - GoalInfo,
!Info) :-
lambda__process_goal_list(Goals0, Goals, !Info).
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo, !Info) :-
lambda__process_goal(Goal0, Goal, !Info).
lambda__process_goal_2(switch(Var, CanFail, Cases0), GoalInfo,
switch(Var, CanFail, Cases) - GoalInfo, !Info) :-
lambda__process_cases(Cases0, Cases, !Info).
lambda__process_goal_2(scope(Reason, Goal0), GoalInfo,
scope(Reason, Goal) - GoalInfo, !Info) :-
lambda__process_goal(Goal0, Goal, !Info).
lambda__process_goal_2(if_then_else(Vars, Cond0, Then0, Else0), GoalInfo,
if_then_else(Vars, Cond, Then, Else) - GoalInfo, !Info) :-
lambda__process_goal(Cond0, Cond, !Info),
lambda__process_goal(Then0, Then, !Info),
lambda__process_goal(Else0, Else, !Info).
lambda__process_goal_2(Goal @ generic_call(_, _, _, _), GoalInfo,
Goal - GoalInfo, !Info).
lambda__process_goal_2(Goal @ call(_, _, _, _, _, _), GoalInfo,
Goal - GoalInfo, !Info).
lambda__process_goal_2(Goal @ foreign_proc(_, _, _, _, _, _), GoalInfo,
Goal - GoalInfo, !Info).
lambda__process_goal_2(shorthand(_), _, _, !Info) :-
% these should have been expanded out by now
error("lambda__process_goal_2: unexpected shorthand").
:- pred lambda__process_goal_list(list(hlds_goal)::in, list(hlds_goal)::out,
lambda_info::in, lambda_info::out) is det.
lambda__process_goal_list([], [], !Info).
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals], !Info) :-
lambda__process_goal(Goal0, Goal, !Info),
lambda__process_goal_list(Goals0, Goals, !Info).
:- pred lambda__process_cases(list(case)::in, list(case)::out,
lambda_info::in, lambda_info::out) is det.
lambda__process_cases([], [], !Info).
lambda__process_cases([case(ConsId, Goal0) | Cases0],
[case(ConsId, Goal) | Cases], !Info) :-
lambda__process_goal(Goal0, Goal, !Info),
lambda__process_cases(Cases0, Cases, !Info).
:- pred lambda__process_lambda(purity::in, pred_or_func::in,
lambda_eval_method::in, list(prog_var)::in, list(mode)::in,
determinism::in, list(prog_var)::in, hlds_goal::in, unification::in,
unify_rhs::out, unification::out, lambda_info::in, lambda_info::out)
is det.
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars, Modes, Detism,
OrigNonLocals0, LambdaGoal, Unification0, Functor,
Unification, LambdaInfo0, LambdaInfo) :-
LambdaInfo0 = lambda_info(VarSet, VarTypes, _PredConstraints, TVarSet,
InstVarSet, RttiVarMaps, Markers, POF, OrigPredName,
Owner, ModuleInfo0, MustRecomputeNonLocals0),
% Calculate the constraints which apply to this lambda
% expression.
% Note currently we only allow lambda expressions
% to have universally quantified constraints.
rtti_varmaps_reusable_constraints(RttiVarMaps, AllConstraints),
map__apply_to_list(Vars, VarTypes, LambdaVarTypes),
list__map(prog_type__vars, LambdaVarTypes, LambdaTypeVarsList),
list__condense(LambdaTypeVarsList, LambdaTypeVars),
list__filter(lambda__constraint_contains_vars(LambdaTypeVars),
AllConstraints, UnivConstraints),
Constraints = constraints(UnivConstraints, []),
% existentially typed lambda expressions are not yet supported
% (see the documentation at top of this file)
ExistQVars = [],
LambdaGoal = _ - LambdaGoalInfo,
goal_info_get_nonlocals(LambdaGoalInfo, LambdaGoalNonLocals),
set__insert_list(LambdaGoalNonLocals, Vars, LambdaNonLocals),
goal_util__extra_nonlocal_typeinfos(RttiVarMaps, VarTypes, ExistQVars,
LambdaNonLocals, ExtraTypeInfos),
OrigVars = OrigNonLocals0,
(
Unification0 = construct(Var0, _, _, UniModes0, _, _, _)
->
Var = Var0,
UniModes1 = UniModes0
;
error("lambda__transform_lambda: weird unification")
),
set__delete_list(LambdaGoalNonLocals, Vars, NonLocals1),
% We need all the typeinfos, including the ones that are not used,
% for the layout structure describing the closure.
NewTypeInfos = ExtraTypeInfos `set__difference` NonLocals1,
NonLocals = NonLocals1 `set__union` NewTypeInfos,
% If we added variables to the nonlocals of the lambda goal,
% then we need to recompute the nonlocals for the procedure
% that contains it.
( \+ set__empty(NewTypeInfos) ->
MustRecomputeNonLocals = yes
;
MustRecomputeNonLocals = MustRecomputeNonLocals0
),
set__to_sorted_list(NonLocals, ArgVars1),
(
% Optimize a special case: replace
% `lambda([Y1, Y2, ...] is Detism,
% p(X1, X2, ..., Y1, Y2, ...))'
% where `p' has determinism `Detism' with
% `p(X1, X2, ...)'
%
% This optimization is only valid if the modes of the Xi are
% input, since only input arguments can be curried.
% It's also only valid if all the inputs in the Yi precede the
% outputs. It's also not valid if any of the Xi are in the Yi.
LambdaGoal = call(PredId0, ProcId0, CallVars, _, _, _) - _,
module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0,
Call_PredInfo, Call_ProcInfo),
(
EvalMethod = (aditi_bottom_up),
pred_info_get_markers(Call_PredInfo, Call_Markers),
check_marker(Call_Markers, aditi)
;
EvalMethod = normal
),
list__remove_suffix(CallVars, Vars, InitialVars),
% check that none of the variables that we're trying to
% use as curried arguments are lambda-bound variables
\+ (
list__member(InitialVar, InitialVars),
list__member(InitialVar, Vars)
),
% Check that the code models are compatible.
% Note that det is not compatible with semidet,
% and semidet is not compatible with nondet,
% since the calling conventions are different.
% If we're using the LLDS back-end
% (i.e. not --high-level-code),
% det is compatible with nondet.
% If we're using the MLDS back-end,
% then predicates and functions have different
% calling conventions.
proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
determinism_to_code_model(Detism, CodeModel),
module_info_globals(ModuleInfo0, Globals),
globals__lookup_bool_option(Globals, highlevel_code,
HighLevelCode),
(
HighLevelCode = no,
( CodeModel = Call_CodeModel
; CodeModel = model_non, Call_CodeModel = model_det
)
;
HighLevelCode = yes,
Call_PredOrFunc =
pred_info_is_pred_or_func(Call_PredInfo),
PredOrFunc = Call_PredOrFunc,
CodeModel = Call_CodeModel
),
% check that the curried arguments are all input
proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
list__length(InitialVars, NumInitialVars),
list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
\+ ( list__member(Mode, CurriedArgModes),
\+ mode_is_input(ModuleInfo0, Mode)
)
->
ArgVars = InitialVars,
PredId = PredId0,
ProcId = ProcId0,
mode_util__modes_to_uni_modes(ModuleInfo0,
CurriedArgModes, CurriedArgModes, UniModes),
%
% we need to mark the procedure as having had its
% address taken
%
proc_info_set_address_taken(address_is_taken,
Call_ProcInfo, Call_NewProcInfo),
module_info_set_pred_proc_info(PredId, ProcId,
Call_PredInfo, Call_NewProcInfo,
ModuleInfo0, ModuleInfo)
;
% Prepare to create a new predicate for the lambda
% expression: work out the arguments, module name, predicate
% name, arity, arg types, determinism,
% context, status, etc. for the new predicate.
ArgVars = put_typeinfo_vars_first(ArgVars1, VarTypes),
list__append(ArgVars, Vars, AllArgVars),
module_info_name(ModuleInfo0, ModuleName),
goal_info_get_context(LambdaGoalInfo, OrigContext),
term__context_file(OrigContext, OrigFile),
term__context_line(OrigContext, OrigLine),
module_info_next_lambda_count(OrigContext, LambdaCount,
ModuleInfo0, ModuleInfo1),
make_pred_name_with_context(ModuleName, "IntroducedFrom",
PredOrFunc, OrigPredName, OrigLine,
LambdaCount, PredName),
goal_info_get_context(LambdaGoalInfo, LambdaContext),
% The TVarSet is a superset of what it really ought be,
% but that shouldn't matter.
% Existentially typed lambda expressions are not
% yet supported (see the documentation at top of this file)
ExistQVars = [],
lambda__uni_modes_to_modes(UniModes1, OrigArgModes),
% We have to jump through hoops to work out the mode
% of the lambda predicate. For introduced
% type_info arguments, we use the mode "in". For the original
% non-local vars, we use the modes from `UniModes1'.
% For the lambda var arguments at the end,
% we use the mode in the lambda expression.
list__length(ArgVars, NumArgVars),
in_mode(In),
list__duplicate(NumArgVars, In, InModes),
map__from_corresponding_lists(ArgVars, InModes,
ArgModesMap),
map__from_corresponding_lists(OrigVars, OrigArgModes,
OrigArgModesMap),
map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),
% Recompute the uni_modes.
mode_util__modes_to_uni_modes(ModuleInfo1,
ArgModes1, ArgModes1, UniModes),
list__append(ArgModes1, Modes, AllArgModes),
map__apply_to_list(AllArgVars, VarTypes, ArgTypes),
purity_to_markers(Purity, LambdaMarkers0),
(
% Pass through the aditi markers for
% aggregate query closures.
% XXX we should differentiate between normal
% top-down closures and aggregate query closures,
% possibly by using a different type for aggregate
% queries. Currently all nondet lambda expressions
% within Aditi predicates are treated as aggregate
% inputs.
% EvalMethod = (aditi_bottom_up),
determinism_components(Detism, _, at_most_many),
check_marker(Markers, aditi)
->
markers_to_marker_list(Markers, MarkerList0),
list__filter(
(pred(Marker::in) is semidet :-
% Pass through only Aditi markers.
% Don't pass through `context' markers, since
% they are useless for non-recursive predicates
% such as the created predicate.
( Marker = aditi
; Marker = dnf
; Marker = psn
; Marker = naive
; Marker = supp_magic
; Marker = aditi_memo
; Marker = aditi_no_memo
)),
MarkerList0, MarkerList),
list__foldl(add_marker, MarkerList,
LambdaMarkers0, LambdaMarkers)
;
EvalMethod = (aditi_bottom_up)
->
add_marker(aditi, LambdaMarkers0, LambdaMarkers)
;
LambdaMarkers = LambdaMarkers0
),
% Now construct the proc_info and pred_info for the new
% single-mode predicate, using the information computed above
proc_info_create(LambdaContext, VarSet, VarTypes,
AllArgVars, InstVarSet, AllArgModes, Detism,
LambdaGoal, RttiVarMaps, address_is_taken, ProcInfo0),
% The debugger ignores unnamed variables.
ensure_all_headvars_are_named(ProcInfo0, ProcInfo1),
% If we previously already needed to recompute the nonlocals,
% then we'd better to that recomputation for the procedure
% that we just created.
(
MustRecomputeNonLocals0 = yes,
requantify_proc(ProcInfo1, ProcInfo)
;
MustRecomputeNonLocals0 = no,
ProcInfo = ProcInfo1
),
set__init(Assertions),
pred_info_create(ModuleName, PredName, PredOrFunc,
LambdaContext, lambda(OrigFile, OrigLine, LambdaCount),
local, LambdaMarkers, ArgTypes, TVarSet, ExistQVars,
Constraints, Assertions, Owner, ProcInfo, ProcId,
PredInfo),
% save the new predicate in the predicate table
module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
predicate_table_insert(PredInfo, PredId,
PredicateTable0, PredicateTable),
module_info_set_predicate_table(PredicateTable,
ModuleInfo1, ModuleInfo)
),
ShroudedPredProcId = shroud_pred_proc_id(proc(PredId, ProcId)),
ConsId = pred_const(ShroudedPredProcId, EvalMethod),
Functor = functor(ConsId, no, ArgVars),
Unification = construct(Var, ConsId, ArgVars, UniModes,
construct_dynamically, cell_is_unique, no_construct_sub_info),
LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
InstVarSet, RttiVarMaps, Markers, POF, OrigPredName, Owner,
ModuleInfo, MustRecomputeNonLocals).
:- pred lambda__constraint_contains_vars(list(tvar)::in, prog_constraint::in)
is semidet.
lambda__constraint_contains_vars(LambdaVars, ClassConstraint) :-
ClassConstraint = constraint(_, ConstraintTypes),
list__map(prog_type__vars, ConstraintTypes, ConstraintVarsList),
list__condense(ConstraintVarsList, ConstraintVars),
% Probably not the most efficient way of doing it, but I
% wouldn't think that it matters.
set__list_to_set(LambdaVars, LambdaVarsSet),
set__list_to_set(ConstraintVars, ConstraintVarsSet),
set__subset(ConstraintVarsSet, LambdaVarsSet).
:- pred lambda__uni_modes_to_modes(list(uni_mode)::in, list(mode)::out)
is det.
% This predicate works out the modes of the original non-local
% variables of a lambda expression based on the list of uni_mode
% in the unify_info for the lambda unification.
lambda__uni_modes_to_modes([], []).
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
Mode = (Initial1 -> Initial1),
lambda__uni_modes_to_modes(UniModes, Modes).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%