Files
mercury/compiler/ml_elim_nested.m
Julien Fischer 459847a064 Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18
Branches: main

Move the univ, maybe, pair and unit types from std_util into their own
modules.  std_util still contains the general purpose higher-order programming
constructs.

library/std_util.m:
	Move univ, maybe, pair and unit (plus any other related types
	and procedures) into their own modules.

library/maybe.m:
	New module.  This contains the maybe and maybe_error types and
	the associated procedures.

library/pair.m:
	New module.  This contains the pair type and associated procedures.

library/unit.m:
	New module. This contains the types unit/0 and unit/1.

library/univ.m:
	New module. This contains the univ type and associated procedures.

library/library.m:
	Add the new modules.

library/private_builtin.m:
	Update the declaration of the type_ctor_info struct for univ.

runtime/mercury.h:
	Update the declaration for the type_ctor_info struct for univ.

runtime/mercury_mcpp.h:
runtime/mercury_hlc_types.h:
	Update the definition of MR_Univ.

runtime/mercury_init.h:
	Fix a comment: ML_type_name is now exported from type_desc.m.

compiler/mlds_to_il.m:
	Update the the name of the module that defines univs (which are
	handled specially by the il code generator.)

library/*.m:
compiler/*.m:
browser/*.m:
mdbcomp/*.m:
profiler/*.m:
deep_profiler/*.m:
	Conform to the above changes.  Import the new modules where they
	are needed; don't import std_util where it isn't needed.

	Fix formatting in lots of modules.  Delete duplicate module
	imports.

tests/*:
	Update the test suite to confrom to the above changes.
2006-03-29 08:09:58 +00:00

2454 lines
94 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_elim_nested.m
% Main author: fjh
% This module is an MLDS-to-MLDS transformation
% that has two functions:
% (1) eliminating nested functions
% (2) putting local variables that might contain pointers into
% structs, and chaining these structs together,
% for use with accurate garbage collection.
%
% The two transformations are quite similar,
% so they're both handled by the same code;
% a flag is passed to say which transformation
% should be done.
%
% The word "environment" (as in "environment struct" or "environment pointer")
% is used to refer to both the environment structs used when eliminating
% nested functions and also to the frame structs used for accurate GC.
% XXX Would it be possible to do both in a single pass?
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% (1) eliminating nested functions
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Note that this module does not attempt to handle arbitrary MLDS as input;
% it will only work with the output of the current MLDS code generator.
% In particular, it assumes that local variables in nested functions can be
% hoisted into the outermost function's environment. That's not true
% in general (e.g. if the nested functions are recursive), but it's true
% for the code that ml_code_gen generates.
% As well as eliminating nested functions, this transformation also has
% the effect of fixing up the dangling `env_ptr' references that ml_code_gen.m
% leaves in the code.
%-----------------------------------------------------------------------------%
% TRANSFORMATION SUMMARY
%-----------------------------------------------------------------------------%
%
% We transform code of the form e.g.
%
% <OuterRet> outer(<OuterArgs>) {
% <OuterLocals>
%
% <Inner1Ret> inner(<Inner1Args>, void *env_ptr_arg) {
% <Inner1Locals>
%
% <NestedInnerRet> nested_inner(<NestedInnerArgs>,
% void *env_ptr_arg)
% {
% <NestedInnerLocals>
%
% <NestedInnerCode>
% }
%
% <Inner1Code>
% }
%
% <Inner2Ret> inner(<Inner2Args>, void *env_ptr_arg) {
% <Inner2Locals>
%
% <Inner2Code>
% }
%
% <OuterCode>
% }
%
% into
%
% struct OuterLocals_struct {
% <OuterArgs>
% <OuterLocals>
% <Inner1Locals>
% };
%
% <NestedInnerRet> nested_inner(<NestedInnerArgs>, void *env_ptr_arg) {
% OuterLocals *env_ptr = env_ptr_arg;
% <NestedInnerLocals>
%
% <NestedInnerCode'>
% }
%
% <Inner1Ret> inner(<Inner1Args>, void *env_ptr_arg) {
% OuterLocals *env_ptr = env_ptr_arg;
%
% <Inner1Code'>
% }
%
% <Inner2Ret> inner(<Inner2Args>, void *env_ptr_arg) {
% OuterLocals *env_ptr = env_ptr_arg;
% <Inner2Locals>
%
% <Inner2Code'>
% }
%
% <OuterRet> outer(<OuterArgs>) {
% OuterLocals env;
% OuterLocals *env_ptr = &env;
%
% env_ptr-><OuterArgs> = <OuterArgs>;
% <OuterCode'>
% }
%
% where <Inner1Code'>, <Inner2Code'> and <NestedInnerCode'> are the
% same as <Inner1Code>, <Inner2Code> and <NestedInnerCode> (respectively)
% except that any references to a local variable <Var> declared in
% outer() are replaced with `env_ptr -> <Var>',
% and likewise <OuterCode'> is the same as <OuterCode> with references to
% local variables replaced with `env_ptr->foo'. In the latter
% case it could (depending on how smart the C compiler is) potentially
% be more efficient to generate `env.foo', but currently we don't do that.
%
% Actually the description above is slightly over-simplified: not all local
% variables need to be put in the environment struct. Only those local
% variables which are referenced by nested functions need to be
% put in the environment struct. Also, if none of the nested functions
% refer to the locals in the outer function, we don't need to create
% an environment struct at all, we just need to hoist the definitions
% of the nested functions out to the top level.
%
% The `env_ptr' variables generated here serve as definitions for
% the (previously dangling) references to such variables that
% ml_code_gen puts in calls to the nested functions.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% (2) accurate GC
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% SUMMARY
%
% This is an MLDS-to-MLDS transformation that transforms the MLDS code
% to add the information needed to do accurate GC when compiling to C
% (or to assembler).
%
% Basically what we do is to put all local variables that might contain
% pointers in structs, with one struct for each stack frame, and chain
% these structs together. At GC time, we traverse the chain of structs.
% This allows us to accurately scan the C stack.
%
% This is described in more detail in the following paper:
%
% Fergus Henderson <fjh@cs.mu.oz.au>,
% "Accurate garbage collection in an uncooperative environment".
% International Symposium on Memory Management, Berlin, Germany, 2002.
%
% In theory accurate GC is now fully implemented, i.e. it should support
% the whole Mercury language, modulo the caveats below.
%
% TODO:
% - XXX Need to test the GC tracing code for type class methods.
% This code in theory ought to work, I think, but it has not really been
% tested.
%
% - XXX The garbage collector should resize the heap if/when it fills up.
% We should allocate a large amount of virtual memory for each heap,
% but we should collect when we've allocated a small part of it.
%
% - Heap reclamation on failure is not yet supported.
% One difficulty is that when resetting the heap, we need to also reset
% all the local variables which might point to reclaimed garbage, otherwise
% the collector might try to trace through them, which can result in an error
% since the data pointed to isn't of the right type because it has been
% overwritten.
%
% - The garbage collector should collect the solutions heap and the global heap
% as well as the ordinary heap.
%
% Note that this is currently not an issue, since currently we don't use
% these heaps, because we don't support heap reclamation on failure or
% tabling (respectively).
%
% Actually I think GC of these heaps should almost work already, or would
% once we start using these heaps, because we never allocate on the
% solutions heap or the global heap directly, instead we swap heaps to make
% the heap that we want to allocate on the main heap. Then if that heap
% runs out of space, we will invoke a garbage collection, and everything
% should work fine. However, there are a couple of problems.
%
% First, GC will swap the to-space heap and the from-space heap. So if the
% different heaps are different sizes, we may end up with the to-space heap
% being too small (e.g. because it was originally the solutions heap).
% To fix that, we can just allocate large total sizes for all the heaps;
% see the point above about heap resizing.
%
% Second, for GC of the global heap to work, the runtime routines which
% allocate stuff on that heap need to be modified to support GC.
% In particular, MR_deep_copy() and MR_make_long_lived() and its callers
% need be modified so that they are safe for GC (i.e. they must record
% all parameters and locals that point to the heap on the GC's shadow stack),
% and MR_deep_copy() needs to call MR_GC_check() before each heap allocation.
%
% - XXX We need to handle `pragma export'.
%
% The C interface in general is a bit problematic for GC. But for code which
% does not call back to Mercury, the way we currently handle it is fairly
% safe even if the C code uses pointers to the Mercury heap or allocates
% on the Mercury heap, because such code will not invoke the GC. So the worst
% that can go wrong is a heap overflow. Provided that the C code does not
% allocate too much (more than MR_heap_margin_size), it won't overflow the
% heap, and the heap will get GC'd next time you call some Mercury code
% which does a heap allocation. Of course you may run into problems if
% there is a loop that calls C code which allocates on the Mercury heap,
% and the loop contains no intervening calls to Mercury code that allocates
% heap space (and hence calls MR_GC_check()).
%
% But if Mercury code calls C code which calls back to Mercury code,
% and the C code uses pointers to the Mercury heap, then there could be
% serious problems (i.e. dangling pointers). Even if you just use
% `pragma export' to export a procedure and `pragma import' to import it back
% again, there may be trouble. The code generated for the exported functions
% can include calls to MR_MAYBE_BOX_FOREIGN_TYPE, which may allocate heap;
% we ought to register the frame and call MR_GC_check() before each call
% to MR_MAYBE_BOX_FOREIGN_TYPE, but currently we don't.
%
% Even if that was solved, there is still the issue of what to do about
% any heap pointers held by user-written C code; we need to provide an API
% for registering pointers on the stack. (MR_agc_add_root() only works
% for globals, really, since there's no MR_agc_remove_root()).
% Various optional features of Mercury are not yet supported, e.g.
%
% - `--high-level-data' (fixup_newobj_in_atomic_statement
% gets the types wrong; see comment in ml_code_util.m)
%
% - trailing
%
% - tabling
%
% - multithreading
%
% There are also some things that could be done to improve efficiency, e.g.
%
% - optimize away temporary variables
%
% - put stack_chain and/or heap pointer in global register variables
%
% - move termination conditions (check for base case) outside of stack frame
% setup & GC check where possible
%
%-----------------------------------------------------------------------------%
%
% DETAILED DESCRIPTION
%
% For each function, we generate a struct for that function.
% Each such struct starts with a sub-struct containing a couple of
% fixed fields, which allow the GC to traverse the chain:
%
% struct <function_name>_frame {
% struct MR_StackChain fixed_fields;
% ...
% };
%
% The fixed fields are as follows:
%
% struct MR_StackChain {
% struct MR_StackChain *prev;
% void (*trace)(void *this_frame);
% };
%
% Actually, rather than using a nested structure, we just put these fields
% directly in the <function_name>_frame struct. (This turned out to be
% a little easier.)
%
% The prev field holds a link to the entry for this function's caller.
% The trace field is the address of a function to trace everything pointed
% to by this stack frame.
%
% To ensure that we don't try to traverse uninitialized fields,
% we zero-initialize each struct before inserting it into the chain.
%
% We need to keep a link to the topmost frame on the stack. There are two
% possible ways that we could handle this. One way is to pass it down
% as an parameter. Each function would get an extra parameter `stack_chain'
% which points to the caller's struct. An alternative approach is to just
% have a global variable `stack_chain' that points to the top of the stack.
% We need extra code to set this pointer when entering and returning from
% functions. To make this approach thread-safe, the variable would actually
% need to be thread-local rather than global. This approach would probably
% work best if the variable is a GNU C global register variable, which would
% make it both efficient and thread-safe.
% XXX Currently, for simplicity, we're using a global variable.
%
% At each allocation, we do a call to MR_GC_check(), which checks for heap
% exhaustion, and if necessary calls MR_garbage_collect() in
% runtime/mercury_accurate_gc.c to do the collection. The calls to
% MR_GC_check() are inserted by compiler/mlds_to_c.m.
%
% As an optimization, we ought to not bother allocating a struct for functions
% that don't have any variables that might contain pointers. We also ought
% to not bother allocating a struct for leaf functions that don't contain
% any functions calls or memory allocations.
% XXX These optimizations are not yet implemented!
%
%-----------------------------------------------------------------------------%
%
% EXAMPLE
%
% If we have a function
%
% RetType
% foo(Arg1Type arg1, Arg2Type arg2, ...)
% {
% Local1Type local1;
% Local2Type local2;
% ...
% local1 = MR_new_object(...);
% ...
% bar(arg1, arg2, local1, &local2);
% ...
% }
%
% where say Arg1Type and Local1Type might contain pointers,
% but Arg2Type and Local2Type don't, then we would transform it as follows:
%
% struct foo_frame {
% MR_StackChain fixed_fields;
% Arg1Type arg1;
% Local1Type local1;
% ...
% };
%
% static void
% foo_trace(void *this_frame) {
% struct foo_frame *frame = (struct foo_frame *)this_frame;
%
% ... code to construct TypeInfo for type of arg1 ...
% mercury__private_builtin__gc_trace_1_p_0(
% <TypeInfo for type of arg1>, &frame->arg1);
%
% ... code to construct TypeInfo for type of local1 ...
% mercury__private_builtin__gc_trace_1_p_0(
% <TypeInfo for type of local1>, &frame->local1);
%
% ...
% }
%
% RetType
% foo(Arg1Type arg1, Arg2Type arg2, ...)
% {
% struct foo_frame this_frame;
% Local2Type local2;
%
% this_frame.fixed_fields.prev = stack_chain;
% this_frame.fixed_fields.trace = foo_trace;
% this_frame.arg1 = arg1;
% this_frame.local1 = NULL;
% stack_chain = &this_frame;
%
% ...
% this_frame.local1 = MR_new_object(...);
% ...
% bar(this_frame.arg1, arg2, this_frame.local1, &local2);
% ...
% stack_chain = stack_chain->prev;
% }
%
% Alternatively, if we were passing stack_chain as an argument,
% rather than treating it as a global variable, then the generated
% code for foo() would look like this:
%
% RetType
% foo(struct MR_StackChain *stack_chain,
% Arg1Type arg1, Arg2Type arg2, ...)
% {
% struct foo_frame this_frame;
% Local2Type local2;
%
% this_frame.fixed_fields.prev = stack_chain;
% this_frame.fixed_fields.trace = foo_trace;
% this_frame.arg1 = arg1;
% this_frame.local1 = NULL;
%
% ...
% this_frame.local1 = MR_new_object(&this_frame, ...);
% ...
% bar(&this_frame, this_frame.arg1, arg2,
% this_frame.local1, &local2);
% ...
% /* no need to explicitly unchain the stack frame here */
% }
%
% Currently, rather than initializing the fields of `this_frame'
% using a sequence of assignment statements, we actually just use
% an initializer:
% struct foo_frame this_frame = { stack_chain };
% This implicitly zeros out the remaining fields.
% Only the non-null fields, i.e. the arguments and the trace
% field, need to be explicitly assigned using assignment statements.
%
% The code in the Mercury runtime to traverse the stack frames would
% look something like this:
%
% void
% MR_traverse_stack(struct MR_StackChain *stack_chain)
% {
% while (stack_chain != NULL) {
% (*stack_chain->trace)(stack_chain);
% stack_chain = stack_chain->prev;
% }
% }
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module ml_backend.ml_elim_nested.
:- interface.
:- import_module ml_backend.mlds.
:- import_module io.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- type action
---> hoist_nested_funcs % Eliminate nested functions
; chain_gc_stack_frames. % Add shadow stack for supporting
% accurate GC.
% Process the whole MLDS, performing the indicated action.
%
:- pred ml_elim_nested(action::in, mlds::in, mlds::out, io::di, io::uo) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.type_util.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module ml_backend.ml_code_util.
:- import_module ml_backend.ml_util.
:- import_module parse_tree.prog_util.
% The following imports are needed for mangling pred names.
:- import_module hlds.hlds_pred.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_out.
:- import_module bool.
:- import_module counter.
:- import_module int.
:- import_module list.
:- import_module pair.
:- import_module maybe.
:- import_module solutions.
:- import_module string.
%-----------------------------------------------------------------------------%
% Perform the specified action on the whole MLDS.
%
ml_elim_nested(Action, MLDS0, MLDS, !IO) :-
globals.io_get_globals(Globals, !IO),
MLDS0 = mlds(ModuleName, ForeignCode, Imports, Defns0, InitPreds,
FinalPreds),
MLDS_ModuleName = mercury_module_name_to_mlds(ModuleName),
OuterVars = [],
DefnsList = list.map(
ml_elim_nested_defns(Action, MLDS_ModuleName, Globals, OuterVars),
Defns0),
Defns1 = list.condense(DefnsList),
% The MLDS code generator sometimes generates two definitions of the
% same RTTI constant as local constants in two different functions.
% When we hoist them out, that leads to duplicate definitions here.
% So we need to check for and eliminate any duplicate definitions
% of constants.
Defns = list.remove_dups(Defns1),
MLDS = mlds(ModuleName, ForeignCode, Imports, Defns, InitPreds,
FinalPreds).
% Either eliminated nested functions:
% Hoist out any nested function occurring in a single mlds_defn.
% Return a list of mlds_defns that contains no nested functions.
%
% Or handle accurate GC: put all variables that might contain pointers
% in structs and chain these structs together into a "shadow stack".
% Extract out the code to trace these variables, putting it in a function
% whose address is stored in the shadow stack frame.
%
:- func ml_elim_nested_defns(action, mlds_module_name, globals, outervars,
mlds_defn) = list(mlds_defn).
ml_elim_nested_defns(Action, ModuleName, Globals, OuterVars, Defn0) = Defns :-
Defn0 = mlds_defn(Name, Context, Flags, DefnBody0),
(
DefnBody0 = mlds_function(PredProcId, Params0,
defined_here(FuncBody0), Attributes),
% Don't add GC tracing code to the gc_trace/1 primitive!
% (Doing so would just slow things down unnecessarily.)
\+ (
Name = function(PredLabel, _, _, _),
PredLabel = pred(_, _, "gc_trace", 1, _, _),
mercury_private_builtin_module(PrivateBuiltin),
ModuleName = mercury_module_name_to_mlds(PrivateBuiltin)
)
->
EnvName = ml_env_name(Name, Action),
EnvTypeName = ml_create_env_type_name(EnvName, ModuleName, Globals),
EnvPtrTypeName = ml_make_env_ptr_type(Globals, EnvTypeName),
% Traverse the function body, finding (and removing) any nested
% functions, and fixing up any references to the arguments or to local
% variables or local static constants that need to be put in the
% environment structure (e.g. because they occur in nested functions,
% or to make them visible to the garbage collector)
%
% Also, for accurate GC, add code to save and restore the stack chain
% pointer at any `try_commit' statements.
%
ElimInfo0 = elim_info_init(Action, ModuleName, OuterVars,
EnvTypeName, EnvPtrTypeName, Globals),
Params0 = mlds_func_params(Arguments0, RetValues),
ml_maybe_add_args(Arguments0, FuncBody0, ModuleName,
Context, ElimInfo0, ElimInfo1),
flatten_arguments(Arguments0, Arguments1, ElimInfo1, ElimInfo2),
flatten_statement(FuncBody0, FuncBody1, ElimInfo2, ElimInfo),
elim_info_finish(ElimInfo, NestedFuncs0, Locals),
% Split the locals that we need to process into local variables
% and local static constants.
list.filter(ml_decl_is_static_const, Locals, LocalStatics, LocalVars),
% Fix up access flags on the statics that we're going to hoist:
% convert "local" to "private".
HoistedStatics = list.map(convert_local_to_global, LocalStatics),
(
% When hoisting nested functions, if there were no nested
% functions, then we just hoist the local static constants.
Action = hoist_nested_funcs,
NestedFuncs0 = []
->
FuncBody = FuncBody1,
HoistedDefns = HoistedStatics
;
% Likewise, when doing accurate GC, if there were no local
% variables (or arguments) that contained pointers, then we don't
% need to chain a stack frame for this function.
Action = chain_gc_stack_frames,
Locals = []
->
FuncBody = FuncBody1,
HoistedDefns = HoistedStatics
;
% Create a struct to hold the local variables, and initialize
% the environment pointers for both the containing function
% and the nested functions. Also generate the GC tracing function,
% if Action = chain_gc_stack_frames.
%
ml_create_env(Action, EnvName, EnvTypeName, LocalVars, Context,
ModuleName, Name, Globals, EnvTypeDefn, EnvDecls, InitEnv,
GCTraceFuncDefns),
list.map_foldl(
ml_insert_init_env(Action, EnvTypeName, ModuleName, Globals),
NestedFuncs0, NestedFuncs, no, InsertedEnv),
% Hoist out the local statics and the nested functions.
HoistedDefns0 = HoistedStatics ++ GCTraceFuncDefns ++ NestedFuncs,
% When hoisting nested functions, it's possible that none of the
% nested functions reference the arguments or locals of the parent
% function. In that case, there's no need to create an environment,
% we just need to flatten the functions.
%
% Note that we don't generate the env_ptr_args in this module
% (instead they are generated when the nested functions are
% generated). This means that we don't avoid generating these
% arguments. This is not really a big problem, since the code
% that generates these arguments needs them.
%
(
Action = hoist_nested_funcs,
InsertedEnv = no
->
FuncBody = FuncBody1,
HoistedDefns = HoistedDefns0
;
% If the function's arguments are referenced by nested
% functions, or (for accurate GC) may contain pointers,
% then we need to copy them to local variables in the
% environment structure.
ml_maybe_copy_args(Arguments1, FuncBody0, ElimInfo,
EnvTypeName, EnvPtrTypeName, Context,
_ArgsToCopy, CodeToCopyArgs),
% Insert code to unlink this stack frame before doing any tail
% calls or returning from the function, either explicitly
% or implicitly.
%
% Add unlink statements before any explicit returns or tail
% calls.
( Action = chain_gc_stack_frames ->
add_unchain_stack_to_statement(FuncBody1, FuncBody2,
ElimInfo, _ElimInfo)
;
FuncBody2 = FuncBody1
),
% Add a final unlink statement at the end of the function,
% if needed. This is only needed if the function has no
% return values -- if there is a return value, then the
% function must exit with an explicit return statement.
(
Action = chain_gc_stack_frames,
RetValues = []
->
UnchainFrame = [ml_gen_unchain_frame(Context, ElimInfo)]
;
UnchainFrame = []
),
% Insert the definition and initialization of the environment
% struct variable at the start of the top-level function's
% body, and append the final unlink statement (if any)
% at the end.
FuncBody = ml_block(EnvDecls,
InitEnv ++ CodeToCopyArgs ++ [FuncBody2] ++ UnchainFrame,
Context),
% Insert the environment struct type at the start of the list
% of hoisted definitions (preceding the previously nested
% functions and static constants in HoistedDefns0),
%
HoistedDefns = [EnvTypeDefn | HoistedDefns0]
)
),
(
Action = chain_gc_stack_frames,
% This pass will have put the GC tracing code for the arguments
% in the GC tracing function. So we don't need the GC tracing code
% annotation on the arguments anymore. We delete them here, because
% otherwise the `#if 0 ... #endif' blocks output for the
% annotations clutter up the generated C files.
Arguments = list.map(strip_gc_trace_code, Arguments1)
;
Action = hoist_nested_funcs,
Arguments = Arguments1
),
Params = mlds_func_params(Arguments, RetValues),
DefnBody = mlds_function(PredProcId, Params,
defined_here(FuncBody), Attributes),
Defn = mlds_defn(Name, Context, Flags, DefnBody),
Defns = list.append(HoistedDefns, [Defn])
;
% Leave definitions of things other than functions unchanged.
Defns = [Defn0]
).
:- func strip_gc_trace_code(mlds_argument) = mlds_argument.
strip_gc_trace_code(Argument0) = Argument :-
Argument0 = mlds_argument(Name, Type, _MaybeGCTraceCode),
Argument = mlds_argument(Name, Type, no).
% Add any arguments which are used in nested functions
% to the local_data field in the elim_info.
%
:- pred ml_maybe_add_args(mlds_arguments::in, statement::in,
mlds_module_name::in, mlds_context::in,
elim_info::in, elim_info::out) is det.
ml_maybe_add_args([], _, _, _, !Info).
ml_maybe_add_args([Arg|Args], FuncBody, ModuleName, Context, !Info) :-
(
Arg = mlds_argument(data(var(VarName)), _Type, GC_TraceCode),
ml_should_add_local_data(!.Info, var(VarName), GC_TraceCode,
[], [FuncBody])
->
ml_conv_arg_to_var(Context, Arg, ArgToCopy),
elim_info_add_and_flatten_local_data(ArgToCopy, !Info)
;
true
),
ml_maybe_add_args(Args, FuncBody, ModuleName, Context, !Info).
% Generate code to copy any arguments which are used in nested functions
% to the environment struct.
%
:- pred ml_maybe_copy_args(mlds_arguments::in, statement::in,
elim_info::in, mlds_type::in, mlds_type::in, mlds_context::in,
mlds_defns::out, statements::out) is det.
ml_maybe_copy_args([], _, _, _, _, _, [], []).
ml_maybe_copy_args([Arg|Args], FuncBody, ElimInfo, ClassType, EnvPtrTypeName,
Context, ArgsToCopy, CodeToCopyArgs) :-
ml_maybe_copy_args(Args, FuncBody, ElimInfo, ClassType,
EnvPtrTypeName, Context, ArgsToCopy0, CodeToCopyArgs0),
ModuleName = elim_info_get_module_name(ElimInfo),
(
Arg = mlds_argument(data(var(VarName)), FieldType, GC_TraceCode),
ml_should_add_local_data(ElimInfo, var(VarName), GC_TraceCode,
[], [FuncBody])
->
ml_conv_arg_to_var(Context, Arg, ArgToCopy),
% Generate code to copy this arg to the environment struct:
% env_ptr->foo = foo;
%
QualVarName = qual(ModuleName, module_qual, VarName),
EnvModuleName = ml_env_module_name(ClassType,
ElimInfo ^ elim_info_globals),
FieldNameString = ml_var_name_to_string(VarName),
FieldName = named_field(qual(EnvModuleName, type_qual,
FieldNameString), EnvPtrTypeName),
Tag = yes(0),
EnvPtrName = env_name_base(ElimInfo ^ action) ++ "_ptr",
EnvPtr = lval(var(qual(ModuleName, module_qual,
mlds_var_name(EnvPtrName, no)), EnvPtrTypeName)),
EnvArgLval = field(Tag, EnvPtr, FieldName, FieldType, EnvPtrTypeName),
ArgRval = lval(var(QualVarName, FieldType)),
AssignToEnv = assign(EnvArgLval, ArgRval),
CodeToCopyArg = statement(atomic(AssignToEnv), Context),
ArgsToCopy = [ArgToCopy | ArgsToCopy0],
CodeToCopyArgs = [CodeToCopyArg | CodeToCopyArgs0]
;
ArgsToCopy = ArgsToCopy0,
CodeToCopyArgs = CodeToCopyArgs0
).
% Create the environment struct type.
%
:- func ml_create_env_type_name(mlds_class_name, mlds_module_name, globals) =
mlds_type.
ml_create_env_type_name(EnvClassName, ModuleName, Globals) = EnvTypeName :-
% If we're allocating it on the heap, then we need to use a class type
% rather than a struct (value type). This is needed for verifiable code
% on the IL back-end.
globals.lookup_bool_option(Globals, put_nondet_env_on_heap, OnHeap),
(
OnHeap = yes,
EnvTypeKind = mlds_class
;
OnHeap = no,
EnvTypeKind = mlds_struct
),
EnvTypeName = mlds_class_type(qual(ModuleName, module_qual, EnvClassName),
0, EnvTypeKind).
% Create the environment struct type, the declaration of the environment
% variable, and the declaration and initializer for the environment
% pointer variable:
%
% struct <EnvClassName> {
% <LocalVars>
% };
% struct <EnvClassName> env;
% struct <EnvClassName> *env_ptr;
% env_ptr = &env;
%
% For accurate GC, we do something similar, but with a few differences:
%
% struct <EnvClassName> {
% /* these fixed fields match `struct MR_StackChain' */
% void *prev;
% void (*trace)(...);
% <LocalVars>
% };
% struct <EnvClassName> env = { stack_chain, foo_trace };
% struct <EnvClassName> *env_ptr;
% env_ptr = &env;
% stack_chain = env_ptr;
%
:- pred ml_create_env(action::in, mlds_class_name::in, mlds_type::in,
list(mlds_defn)::in, mlds_context::in, mlds_module_name::in,
mlds_entity_name::in, globals::in, mlds_defn::out,
list(mlds_defn)::out, list(statement)::out,
list(mlds_defn)::out) is det.
ml_create_env(Action, EnvClassName, EnvTypeName, LocalVars, Context,
ModuleName, FuncName, Globals, EnvTypeDefn, EnvDecls, InitEnv,
GCTraceFuncDefns) :-
% generate the following type:
%
% struct <EnvClassName> {
% #ifdef ACCURATE_GC
% /* these fixed fields match `struct MR_StackChain' */
% void *prev;
% void (*trace)(...);
% #endif
% <LocalVars>
% };
%
% If we're allocating it on the heap, then we need to use a class type
% rather than a struct (value type). This is needed for verifiable code
% on the IL back-end.
globals.lookup_bool_option(Globals, put_nondet_env_on_heap, OnHeap),
(
OnHeap = yes,
EnvTypeKind = mlds_class,
BaseClasses = [mlds_generic_env_ptr_type]
;
OnHeap = no,
EnvTypeKind = mlds_struct,
BaseClasses = []
),
EnvTypeEntityName = type(EnvClassName, 0),
EnvTypeFlags = env_type_decl_flags,
Fields0 = list.map(convert_local_to_field, LocalVars),
% Extract the GC tracing code from the fields.
list.map2(extract_gc_trace_code, Fields0, Fields1, GC_TraceStatements0),
GC_TraceStatements = list.condense(GC_TraceStatements0),
( Action = chain_gc_stack_frames ->
ml_chain_stack_frames(Fields1, GC_TraceStatements, EnvTypeName,
Context, FuncName, ModuleName, Globals, Fields, EnvInitializer,
LinkStackChain, GCTraceFuncDefns),
GC_TraceEnv = no
;
(
GC_TraceStatements = [],
GC_TraceEnv = no
;
GC_TraceStatements = [_ | _],
GC_TraceEnv = yes(ml_block([], GC_TraceStatements, Context))
),
Fields = Fields1,
EnvInitializer = no_initializer,
LinkStackChain = [],
GCTraceFuncDefns = []
),
Imports = [],
Ctors = [], % mlds_to_il.m will add an empty constructor if needed.
Interfaces = [],
EnvTypeDefnBody = mlds_class(mlds_class_defn(EnvTypeKind, Imports,
BaseClasses, Interfaces, Ctors, Fields)),
EnvTypeDefn = mlds_defn(EnvTypeEntityName, Context, EnvTypeFlags,
EnvTypeDefnBody),
% Generate the following variable declaration:
%
% struct <EnvClassName> env; // = { ... }
%
EnvVarName = mlds_var_name(env_name_base(Action), no),
EnvVarEntityName = data(var(EnvVarName)),
EnvVarFlags = ml_gen_local_var_decl_flags,
EnvVarDefnBody = mlds_data(EnvTypeName, EnvInitializer, GC_TraceEnv),
EnvVarDecl = mlds_defn(EnvVarEntityName, Context, EnvVarFlags,
EnvVarDefnBody),
% Declare the `env_ptr' var, and initialize the `env_ptr' with the
% address of `env'.
EnvVar = qual(ModuleName, module_qual, EnvVarName),
% Generate code to initialize the environment pointer, either by
% allocating an object on the heap, or by taking the address of
% the struct we put on the stack.
%
(
OnHeap = yes,
EnvVarAddr = lval(var(EnvVar, EnvTypeName)),
NewObj = [statement(
atomic(new_object(var(EnvVar, EnvTypeName),
no, no, EnvTypeName, no, no, [], [])),
Context)]
;
OnHeap = no,
EnvVarAddr = mem_addr(var(EnvVar, EnvTypeName)),
NewObj = []
),
ml_init_env(Action, EnvTypeName, EnvVarAddr, Context, ModuleName,
Globals, EnvPtrVarDecl, InitEnv0),
EnvDecls = [EnvVarDecl, EnvPtrVarDecl],
InitEnv = NewObj ++ [InitEnv0] ++ LinkStackChain.
:- pred ml_chain_stack_frames(mlds_defns::in, statements::in,
mlds_type::in, mlds_context::in, mlds_entity_name::in,
mlds_module_name::in, globals::in, mlds_defns::out,
mlds_initializer::out, statements::out, mlds_defns::out)
is det.
ml_chain_stack_frames(Fields0, GCTraceStatements, EnvTypeName, Context,
FuncName, ModuleName, Globals, Fields,
EnvInitializer, LinkStackChain, GCTraceFuncDefns) :-
% Generate code to declare and initialize the environment pointer
% for the GC trace function from that function's `this_frame' parameter:
%
% struct foo_frame *frame;
% frame = (struct foo_frame *) this_frame;
%
ThisFrameName = qual(ModuleName, module_qual,
mlds_var_name("this_frame", no)),
ThisFrameRval = lval(var(ThisFrameName, mlds_generic_type)),
CastThisFrameRval = unop(cast(mlds_ptr_type(EnvTypeName)), ThisFrameRval),
ml_init_env(chain_gc_stack_frames, EnvTypeName, CastThisFrameRval,
Context, ModuleName, Globals, FramePtrDecl, InitFramePtr),
% Put the environment pointer declaration and initialization
% and the GC tracing code in a function:
%
% void foo_trace(void *this_frame) {
% struct foo_frame *frame;
% frame = (struct foo_frame *) this_frame;
% <GCTraceStatements>
% }
gen_gc_trace_func(FuncName, ModuleName, FramePtrDecl,
[InitFramePtr | GCTraceStatements], Context, GCTraceFuncAddr,
GCTraceFuncParams, GCTraceFuncDefn),
GCTraceFuncDefns = [GCTraceFuncDefn],
% Insert the fixed fields in the struct <EnvClassName>:
%
% void *prev;
% void (*trace)(...);
PrevFieldName = data(var(mlds_var_name("prev", no))),
PrevFieldFlags = ml_gen_public_field_decl_flags,
PrevFieldType = ml_stack_chain_type,
PrevFieldDefnBody = mlds_data(PrevFieldType, no_initializer, no),
PrevFieldDecl = mlds_defn(PrevFieldName, Context, PrevFieldFlags,
PrevFieldDefnBody),
TraceFieldName = data(var(mlds_var_name("trace", no))),
TraceFieldFlags = ml_gen_public_field_decl_flags,
TraceFieldType = mlds_func_type(GCTraceFuncParams),
TraceFieldDefnBody = mlds_data(TraceFieldType, no_initializer, no),
TraceFieldDecl = mlds_defn(TraceFieldName, Context, TraceFieldFlags,
TraceFieldDefnBody),
Fields = [PrevFieldDecl, TraceFieldDecl | Fields0],
% Set the initializer so that the `prev' field is initialized to the global
% stack chain, and the `trace' field is initialized to the address of
% the GC tracing function:
%
% ... = { stack_chain, foo_trace };
%
% Since there no values for the remaining fields in the initializer,
% this means the remaining fields will get initialized to zero
% (C99 6.7.8 #21).
%
% XXX This uses a non-const initializer, which is a feature that is only
% supported in C99 and GNU C; it won't work in C89. We should just generate
% a bunch of assignments to all the fields, rather than relying on
% initializers like this.
%
StackChain = ml_stack_chain_var,
EnvInitializer = init_struct(EnvTypeName, [
init_obj(lval(StackChain)),
init_obj(const(code_addr_const(GCTraceFuncAddr)))
]),
% Generate code to set the global stack chain
% to point to the current environment:
%
% stack_chain = frame_ptr;
EnvPtrTypeName = ml_make_env_ptr_type(Globals, EnvTypeName),
EnvPtr = lval(var(qual(ModuleName, module_qual,
mlds_var_name("frame_ptr", no)), EnvPtrTypeName)),
AssignToStackChain = assign(StackChain, EnvPtr),
LinkStackChain = [statement(atomic(AssignToStackChain), Context)].
:- pred gen_gc_trace_func(mlds_entity_name::in, mlds_module_name::in,
mlds_defn::in, list(statement)::in, mlds_context::in,
mlds_code_addr::out, mlds_func_params::out, mlds_defn::out) is det.
gen_gc_trace_func(FuncName, PredModule, FramePointerDecl, GCTraceStatements,
Context, GCTraceFuncAddr, FuncParams, GCTraceFuncDefn) :-
% Compute the signature of the GC tracing function
ArgName = data(var(mlds_var_name("this_frame", no))),
ArgType = mlds_generic_type,
Argument = mlds_argument(ArgName, ArgType, no),
FuncParams = mlds_func_params([Argument], []),
Signature = mlds_get_func_signature(FuncParams),
% Compute the name of the GC tracing function
%
% To compute the name, we just take the name of the original function
% and add 100000 to the original function's sequence number.
% XXX This is a bit of a hack; maybe we should add
% another field to the `function' ctor for mlds_entity_name.
%
( FuncName = function(PredLabel, ProcId, MaybeSeqNum, PredId) ->
(
MaybeSeqNum = yes(SeqNum)
;
MaybeSeqNum = no,
SeqNum = 0
),
NewSeqNum = SeqNum + 100000,
GCTraceFuncName = function(PredLabel, ProcId, yes(NewSeqNum), PredId),
ProcLabel = qual(PredModule, module_qual, PredLabel - ProcId),
GCTraceFuncAddr = internal(ProcLabel, NewSeqNum, Signature)
;
unexpected(this_file, "gen_gc_trace_func: not a function")
),
% Construct the function definition.
Statement = statement(block([FramePointerDecl], GCTraceStatements),
Context),
DeclFlags = ml_gen_gc_trace_func_decl_flags,
MaybePredProcId = no,
Attributes = [],
FuncDefn = mlds_function(MaybePredProcId, FuncParams,
defined_here(Statement), Attributes),
GCTraceFuncDefn = mlds_defn(GCTraceFuncName, Context, DeclFlags,
FuncDefn).
% Return the declaration flags appropriate for a procedure definition.
%
:- func ml_gen_gc_trace_func_decl_flags = mlds_decl_flags.
ml_gen_gc_trace_func_decl_flags = MLDS_DeclFlags :-
Access = private,
PerInstance = one_copy,
Virtuality = non_virtual,
Finality = overridable,
Constness = modifiable,
Abstractness = concrete,
MLDS_DeclFlags = init_decl_flags(Access, PerInstance,
Virtuality, Finality, Constness, Abstractness).
:- pred extract_gc_trace_code(mlds_defn::in, mlds_defn::out,
statements::out) is det.
extract_gc_trace_code(mlds_defn(Name, Context, Flags, Body0),
mlds_defn(Name, Context, Flags, Body), GCTraceStmts) :-
( Body0 = mlds_data(Type, Init, yes(GCTraceStmt)) ->
Body = mlds_data(Type, Init, no),
GCTraceStmts = [GCTraceStmt]
;
Body = Body0,
GCTraceStmts = []
).
% When converting local variables into fields of the environment struct,
% we need to change `local' access into something else, since `local'
% is only supposed to be used for entities that are local to a function
% or block, not for fields. Currently we change it to `public'.
% (Perhaps changing it to `default' might be better?)
%
:- func convert_local_to_field(mlds_defn) = mlds_defn.
convert_local_to_field(mlds_defn(Name, Context, Flags0, Body)) =
mlds_defn(Name, Context, Flags, Body) :-
( access(Flags0) = local ->
Flags = set_access(Flags0, public)
;
Flags = Flags0
).
% Similarly, when converting local statics into global statics, we need to
% change `local' access to something else -- we use `private'.
%
:- func convert_local_to_global(mlds_defn) = mlds_defn.
convert_local_to_global(mlds_defn(Name, Context, Flags0, Body)) =
mlds_defn(Name, Context, Flags, Body) :-
( access(Flags0) = local ->
Flags = set_access(Flags0, private)
;
Flags = Flags0
).
% ml_insert_init_env:
%
% If the definition is a nested function definition, and it's body makes
% use of the environment pointer (`env_ptr'), then insert code to declare
% and initialize the environment pointer.
%
% We transform code of the form
% <Ret> <Func>(<Args>) {
% <Body>
% }
% to
% <Ret> <Func>(<Args>) {
% struct <EnvClassName> *env_ptr;
% env_ptr = (<EnvClassName> *) env_ptr_arg;
% <Body>
% }
%
% If we perform this transformation, set Init to "yes",
% otherwise leave it unchanged.
%
:- pred ml_insert_init_env(action::in, mlds_type::in, mlds_module_name::in,
globals::in, mlds_defn::in, mlds_defn::out, bool::in, bool::out)
is det.
ml_insert_init_env(Action, TypeName, ModuleName, Globals, Defn0, Defn,
Init0, Init) :-
Defn0 = mlds_defn(Name, Context, Flags, DefnBody0),
(
DefnBody0 = mlds_function(PredProcId, Params,
defined_here(FuncBody0), Attributes),
statement_contains_var(FuncBody0, qual(ModuleName, module_qual,
var(mlds_var_name("env_ptr", no))))
->
EnvPtrVal = lval(var(qual(ModuleName, module_qual,
mlds_var_name("env_ptr_arg", no)),
mlds_generic_env_ptr_type)),
EnvPtrVarType = ml_make_env_ptr_type(Globals, TypeName),
% Insert a cast, to downcast from mlds_generic_env_ptr_type to the
% specific environment type for this procedure.
CastEnvPtrVal = unop(cast(EnvPtrVarType), EnvPtrVal),
ml_init_env(Action, TypeName, CastEnvPtrVal, Context,
ModuleName, Globals, EnvPtrDecl, InitEnvPtr),
FuncBody = statement(block([EnvPtrDecl],
[InitEnvPtr, FuncBody0]), Context),
DefnBody = mlds_function(PredProcId, Params,
defined_here(FuncBody), Attributes),
Defn = mlds_defn(Name, Context, Flags, DefnBody),
Init = yes
;
Defn = Defn0,
Init = Init0
).
:- func ml_make_env_ptr_type(globals, mlds_type) = mlds_type.
ml_make_env_ptr_type(Globals, EnvType) = EnvPtrType :-
globals.lookup_bool_option(Globals, put_nondet_env_on_heap, OnHeap),
globals.get_target(Globals, Target),
( Target = il, OnHeap = yes ->
% For IL, a class type is already a pointer (object reference).
EnvPtrType = EnvType
;
EnvPtrType = mlds_ptr_type(EnvType)
).
% Create the environment pointer and initialize it:
%
% struct <EnvClassName> *env_ptr;
% env_ptr = <EnvPtrVal>;
%
:- pred ml_init_env(action::in, mlds_type::in, mlds_rval::in,
mlds_context::in, mlds_module_name::in, globals::in,
mlds_defn::out, statement::out) is det.
ml_init_env(Action, EnvTypeName, EnvPtrVal, Context, ModuleName, Globals,
EnvPtrVarDecl, InitEnvPtr) :-
% Generate the following variable declaration:
%
% <EnvTypeName> *env_ptr;
%
EnvPtrVarName = mlds_var_name(env_name_base(Action) ++ "_ptr", no),
EnvPtrVarEntityName = data(var(EnvPtrVarName)),
EnvPtrVarFlags = ml_gen_local_var_decl_flags,
EnvPtrVarType = ml_make_env_ptr_type(Globals, EnvTypeName),
% The env_ptr never needs to be traced by the GC, since the environment
% that it points to will always be on the stack, not into the heap.
GC_TraceCode = no,
EnvPtrVarDefnBody = mlds_data(EnvPtrVarType, no_initializer,
GC_TraceCode),
EnvPtrVarDecl = mlds_defn(EnvPtrVarEntityName, Context,
EnvPtrVarFlags, EnvPtrVarDefnBody),
% Generate the following statement:
%
% env_ptr = <EnvPtrVal>;
%
% (note that the caller of this routine is responsible
% for inserting a cast in <EnvPtrVal> if needed).
%
EnvPtrVar = qual(ModuleName, module_qual, EnvPtrVarName),
AssignEnvPtr = assign(var(EnvPtrVar, EnvPtrVarType), EnvPtrVal),
InitEnvPtr = statement(atomic(AssignEnvPtr), Context).
% Given the declaration for a function parameter, produce a declaration
% for a corresponding local variable or environment struct field.
% We need to do this so as to include function parameter in the
% environment struct.
%
:- pred ml_conv_arg_to_var(mlds_context::in, mlds_argument::in,
mlds_defn::out) is det.
ml_conv_arg_to_var(Context, Arg, LocalVar) :-
Arg = mlds_argument(Name, Type, GC_TraceCode),
Flags = ml_gen_local_var_decl_flags,
DefnBody = mlds_data(Type, no_initializer, GC_TraceCode),
LocalVar = mlds_defn(Name, Context, Flags, DefnBody).
% Return the declaration flags appropriate for an environment struct
% type declaration.
%
:- func env_type_decl_flags = mlds_decl_flags.
env_type_decl_flags = MLDS_DeclFlags :-
Access = private,
PerInstance = one_copy,
Virtuality = non_virtual,
Finality = overridable,
Constness = modifiable,
Abstractness = concrete,
MLDS_DeclFlags = init_decl_flags(Access, PerInstance,
Virtuality, Finality, Constness, Abstractness).
% Generate a block statement, i.e. `{ <Decls>; <Statements>; }'.
% But if the block consists only of a single statement with no
% declarations, then just return that statement.
%
:- func ml_block(mlds_defns, statements, mlds_context)
= statement.
ml_block(VarDecls, Statements, Context) =
(
VarDecls = [],
Statements = [SingleStatement]
->
SingleStatement
;
statement(block(VarDecls, Statements), Context)
).
:- func ml_stack_chain_var = mlds_lval.
ml_stack_chain_var = StackChain :-
mercury_private_builtin_module(PrivateBuiltin),
MLDS_Module = mercury_module_name_to_mlds(PrivateBuiltin),
StackChain = var(qual(MLDS_Module, module_qual,
mlds_var_name("stack_chain", no)), ml_stack_chain_type).
% The type of the `stack_chain' pointer, i.e. `void *'.
%
:- func ml_stack_chain_type = mlds_type.
ml_stack_chain_type = mlds_generic_env_ptr_type.
%-----------------------------------------------------------------------------%
%
% This code does some name mangling.
% It essentially duplicates the functionality in mlds_output_name.
%
% Doing name mangling here is probably a bad idea; it might be better
% to change the MLDS data structure to allow structured type names, so that
% we don't have to do any name mangling at this point.
% Compute the name to use for the environment struct
% for the specified function.
%
:- func ml_env_name(mlds_entity_name, action) = mlds_class_name.
ml_env_name(type(_, _), _) = _ :-
unexpected(this_file, "ml_env_name: expected function, got type").
ml_env_name(data(_), _) = _ :-
unexpected(this_file, "ml_env_name: expected function, got data").
ml_env_name(function(PredLabel, ProcId, MaybeSeqNum, _PredId), Action)
= ClassName :-
Base = env_name_base(Action),
PredLabelString = ml_pred_label_name(PredLabel),
proc_id_to_int(ProcId, ModeNum),
(
MaybeSeqNum = yes(SeqNum),
string.format("%s_%d_%d_%s",
[s(PredLabelString), i(ModeNum), i(SeqNum), s(Base)], ClassName)
;
MaybeSeqNum = no,
string.format("%s_%d_%s",
[s(PredLabelString), i(ModeNum), s(Base)], ClassName)
).
ml_env_name(export(_), _) = _ :-
unexpected(this_file, "ml_env_name: expected function, got export").
:- func env_name_base(action) = string.
env_name_base(chain_gc_stack_frames) = "frame".
env_name_base(hoist_nested_funcs) = "env".
:- func ml_pred_label_name(mlds_pred_label) = string.
ml_pred_label_name(pred(PredOrFunc, MaybeDefiningModule, Name, Arity,
_CodeModel, _NonOutputFunc)) = LabelName :-
( PredOrFunc = predicate, Suffix = "p"
; PredOrFunc = function, Suffix = "f"
),
(
MaybeDefiningModule = yes(DefiningModule),
ModuleNameString = ml_module_name_string(DefiningModule),
string.format("%s_%d_%s_in__%s",
[s(Name), i(Arity), s(Suffix), s(ModuleNameString)], LabelName)
;
MaybeDefiningModule = no,
string.format("%s_%d_%s",
[s(Name), i(Arity), s(Suffix)], LabelName)
).
ml_pred_label_name(special_pred(PredName, MaybeTypeModule,
TypeName, TypeArity)) = LabelName :-
(
MaybeTypeModule = yes(TypeModule),
TypeModuleString = ml_module_name_string(TypeModule),
string.format("%s__%s__%s_%d",
[s(PredName), s(TypeModuleString), s(TypeName), i(TypeArity)],
LabelName)
;
MaybeTypeModule = no,
string.format("%s__%s_%d",
[s(PredName), s(TypeName), i(TypeArity)], LabelName)
).
:- func ml_module_name_string(mercury_module_name) = string.
ml_module_name_string(ModuleName) = ModuleNameString :-
Separator = "__",
sym_name_to_string(ModuleName, Separator, ModuleNameString).
%-----------------------------------------------------------------------------%
% flatten_arguments:
% flatten_argument:
% flatten_function_body:
% flatten_maybe_statement:
% flatten_statements:
% flatten_statement:
% Recursively process the statement(s), calling fixup_var on every
% use of a variable inside them, and calling flatten_nested_defns
% for every definition they contain (e.g. definitions of local
% variables and nested functions).
%
% Also, for Action = chain_gc_stack_frames, add code to save and
% restore the stack chain pointer at any `try_commit' statements.
:- pred flatten_arguments(mlds_arguments::in, mlds_arguments::out,
elim_info::in, elim_info::out) is det.
flatten_arguments(!Arguments, !Info) :-
list.map_foldl(flatten_argument, !Arguments, !Info).
:- pred flatten_argument(mlds_argument::in, mlds_argument::out,
elim_info::in, elim_info::out) is det.
flatten_argument(Argument0, Argument, !Info) :-
Argument0 = mlds_argument(Name, Type, MaybeGCTraceCode0),
flatten_maybe_statement(MaybeGCTraceCode0, MaybeGCTraceCode, !Info),
Argument = mlds_argument(Name, Type, MaybeGCTraceCode).
:- pred flatten_function_body(mlds_function_body::in, mlds_function_body::out,
elim_info::in, elim_info::out) is det.
flatten_function_body(external, external, !Info).
flatten_function_body(defined_here(Statement0), defined_here(Statement),
!Info) :-
flatten_statement(Statement0, Statement, !Info).
:- pred flatten_maybe_statement(maybe(statement)::in,
maybe(statement)::out,
elim_info::in, elim_info::out) is det.
flatten_maybe_statement(no, no, !Info).
flatten_maybe_statement(yes(Statement0), yes(Statement), !Info) :-
flatten_statement(Statement0, Statement, !Info).
:- pred flatten_statements(statements::in, statements::out,
elim_info::in, elim_info::out) is det.
flatten_statements(!Statements, !Info) :-
list.map_foldl(flatten_statement, !Statements, !Info).
:- pred flatten_statement(statement::in, statement::out,
elim_info::in, elim_info::out) is det.
flatten_statement(Statement0, Statement, !Info) :-
Statement0 = statement(Stmt0, Context),
flatten_stmt(Stmt0, Stmt, !Info),
Statement = statement(Stmt, Context).
:- pred flatten_stmt(mlds_stmt::in, mlds_stmt::out,
elim_info::in, elim_info::out) is det.
flatten_stmt(Stmt0, Stmt, !Info) :-
(
Stmt0 = block(Defns0, Statements0),
flatten_nested_defns(Defns0, Statements0, Defns, InitStatements,
!Info),
flatten_statements(InitStatements ++ Statements0, Statements, !Info),
Stmt = block(Defns, Statements)
;
Stmt0 = while(Rval0, Statement0, Once),
fixup_rval(Rval0, Rval, !Info),
flatten_statement(Statement0, Statement, !Info),
Stmt = while(Rval, Statement, Once)
;
Stmt0 = if_then_else(Cond0, Then0, MaybeElse0),
fixup_rval(Cond0, Cond, !Info),
flatten_statement(Then0, Then, !Info),
flatten_maybe_statement(MaybeElse0, MaybeElse, !Info),
Stmt = if_then_else(Cond, Then, MaybeElse)
;
Stmt0 = switch(Type, Val0, Range, Cases0, Default0),
fixup_rval(Val0, Val, !Info),
list.map_foldl(flatten_case, Cases0, Cases, !Info),
flatten_default(Default0, Default, !Info),
Stmt = switch(Type, Val, Range, Cases, Default)
;
Stmt0 = label(_),
Stmt = Stmt0
;
Stmt0 = goto(_),
Stmt = Stmt0
;
Stmt0 = computed_goto(Rval0, Labels),
fixup_rval(Rval0, Rval, !Info),
Stmt = computed_goto(Rval, Labels)
;
Stmt0 = call(Sig, Func0, Obj0, Args0, RetLvals0, TailCall),
fixup_rval(Func0, Func, !Info),
fixup_maybe_rval(Obj0, Obj, !Info),
fixup_rvals(Args0, Args, !Info),
fixup_lvals(RetLvals0, RetLvals, !Info),
Stmt = call(Sig, Func, Obj, Args, RetLvals, TailCall)
;
Stmt0 = return(Rvals0),
fixup_rvals(Rvals0, Rvals, !Info),
Stmt = return(Rvals)
;
Stmt0 = do_commit(Ref0),
fixup_rval(Ref0, Ref, !Info),
Stmt = do_commit(Ref)
;
Stmt0 = try_commit(Ref0, Statement0, Handler0),
fixup_lval(Ref0, Ref, !Info),
flatten_statement(Statement0, Statement1, !Info),
flatten_statement(Handler0, Handler1, !Info),
Stmt1 = try_commit(Ref, Statement1, Handler1),
Action = !.Info ^ action,
( Action = chain_gc_stack_frames ->
save_and_restore_stack_chain(Stmt1, Stmt, !Info)
;
Stmt = Stmt1
)
;
Stmt0 = atomic(AtomicStmt0),
fixup_atomic_stmt(AtomicStmt0, AtomicStmt, !Info),
Stmt = atomic(AtomicStmt)
).
:- pred flatten_case(mlds_switch_case::in, mlds_switch_case::out,
elim_info::in, elim_info::out) is det.
flatten_case(Conds0 - Statement0, Conds - Statement, !Info) :-
list.map_foldl(fixup_case_cond, Conds0, Conds, !Info),
flatten_statement(Statement0, Statement, !Info).
:- pred flatten_default(mlds_switch_default::in, mlds_switch_default::out,
elim_info::in, elim_info::out) is det.
flatten_default(default_is_unreachable, default_is_unreachable, !Info).
flatten_default(default_do_nothing, default_do_nothing, !Info).
flatten_default(default_case(Statement0), default_case(Statement), !Info) :-
flatten_statement(Statement0, Statement, !Info).
%-----------------------------------------------------------------------------%
% add code to save/restore the stack chain pointer:
% convert
% try {
% Statement
% } commit {
% Handler
% }
% into
% {
% void *saved_stack_chain;
% try {
% saved_stack_chain = stack_chain;
% Statement
% } commit {
% stack_chain = saved_stack_chain;
% Handler
% }
% }
%
:- inst try_commit ---> try_commit(ground, ground, ground).
:- pred save_and_restore_stack_chain(mlds_stmt::in(try_commit),
mlds_stmt::out,
elim_info::in, elim_info::out) is det.
save_and_restore_stack_chain(Stmt0, Stmt, ElimInfo0, ElimInfo) :-
ModuleName = ElimInfo0 ^ module_name,
counter.allocate(Id, ElimInfo0 ^ saved_stack_chain_counter, NextId),
ElimInfo = (ElimInfo0 ^ saved_stack_chain_counter := NextId),
Stmt0 = try_commit(Ref, Statement0, Handler0),
Statement0 = statement(_, StatementContext),
Handler0 = statement(_, HandlerContext),
SavedVarDecl = gen_saved_stack_chain_var(Id, StatementContext),
SaveStatement = gen_save_stack_chain_var(ModuleName, Id, StatementContext),
RestoreStatement = gen_restore_stack_chain_var(ModuleName, Id,
HandlerContext),
Statement = statement(block([], [SaveStatement, Statement0]),
HandlerContext),
Handler = statement(block([], [RestoreStatement, Handler0]),
HandlerContext),
TryCommit = try_commit(Ref, Statement, Handler),
Stmt = block(
[SavedVarDecl],
[statement(TryCommit, StatementContext)]
).
%-----------------------------------------------------------------------------%
% flatten_nested_defns:
% flatten_nested_defn:
% Hoist out nested function definitions, and any local variables
% that need to go in the environment struct (e.g. because they are
% referenced by nested functions), storing them both in the elim_info.
% Convert initializers for local variables that need to go in the
% environment struct into assignment statements.
% Return the remaining (non-hoisted) definitions,
% the list of assignment statements, and the updated elim_info.
:- pred flatten_nested_defns(mlds_defns::in, statements::in,
mlds_defns::out, statements::out,
elim_info::in, elim_info::out) is det.
flatten_nested_defns([], _, [], [], !Info).
flatten_nested_defns([Defn0 | Defns0], FollowingStatements, Defns,
InitStatements, !Info) :-
flatten_nested_defn(Defn0, Defns0, FollowingStatements,
Defns1, InitStatements1, !Info),
flatten_nested_defns(Defns0, FollowingStatements,
Defns2, InitStatements2, !Info),
Defns = Defns1 ++ Defns2,
InitStatements = InitStatements1 ++ InitStatements2.
:- pred flatten_nested_defn(mlds_defn::in, mlds_defns::in,
statements::in, mlds_defns::out, statements::out,
elim_info::in, elim_info::out) is det.
flatten_nested_defn(Defn0, FollowingDefns, FollowingStatements,
Defns, InitStatements, !Info) :-
Defn0 = mlds_defn(Name, Context, Flags0, DefnBody0),
(
DefnBody0 = mlds_function(PredProcId, Params, FuncBody0, Attributes),
% Recursively flatten the nested function.
flatten_function_body(FuncBody0, FuncBody, !Info),
% Mark the function as private / one_copy,
% rather than as local / per_instance,
% if we're about to hoist it out to the top level.
Action = !.Info ^ action,
( Action = hoist_nested_funcs ->
Flags1 = set_access(Flags0, private),
Flags = set_per_instance(Flags1, one_copy)
;
Flags = Flags0
),
DefnBody = mlds_function(PredProcId, Params, FuncBody, Attributes),
Defn = mlds_defn(Name, Context, Flags, DefnBody),
( Action = hoist_nested_funcs ->
% Note that we assume that we can safely hoist stuff inside nested
% functions into the containing function. If that wasn't the case,
% we'd need code something like this:
% LocalVars = elim_info_get_local_data(ElimInfo),
% OuterVars0 = elim_info_get_outer_vars(ElimInfo),
% OuterVars = [LocalVars | OuterVars0],
% FlattenedDefns = ml_elim_nested_defns(ModuleName,
% OuterVars, Defn0),
% list.foldl(elim_info_add_nested_func, FlattenedDefns),
% Strip out the now flattened nested function, and store it
% in the elim_info.
elim_info_add_nested_func(Defn, !Info),
Defns = []
;
Defns = [Defn]
),
InitStatements = []
;
DefnBody0 = mlds_data(Type, Init0, MaybeGCTraceCode0),
% For local variable definitions, if they are referenced by any nested
% functions, then strip them out and store them in the elim_info.
(
% For IL and Java, we need to hoist all static constants out
% to the top level, so that they can be initialized in the
% class constructor. To keep things consistent (and reduce
% the testing burden), we do the same for the other back-ends too.
ml_decl_is_static_const(Defn0)
->
elim_info_add_and_flatten_local_data(Defn0, !Info),
Defns = [],
InitStatements = []
;
% Hoist ordinary local variables.
Name = data(DataName),
DataName = var(VarName),
ml_should_add_local_data(!.Info,
DataName, MaybeGCTraceCode0,
FollowingDefns, FollowingStatements)
->
% We need to strip out the initializer (if any) and convert it
% into an assignment statement, since this local variable
% is going to become a field, and fields can't have initializers.
( Init0 = init_obj(Rval) ->
% XXX Bug! Converting the initializer to an assignment doesn't
% work, because it doesn't handle the case when initializers in
% FollowingDefns reference this variable
Init1 = no_initializer,
DefnBody1 = mlds_data(Type, Init1, MaybeGCTraceCode0),
Defn1 = mlds_defn(Name, Context, Flags0, DefnBody1),
VarLval = var(qual(!.Info ^ module_name, module_qual, VarName),
Type),
InitStatements = [statement(
atomic(assign(VarLval, Rval)), Context)]
;
Defn1 = Defn0,
InitStatements = []
),
elim_info_add_and_flatten_local_data(Defn1, !Info),
Defns = []
;
fixup_initializer(Init0, Init, !Info),
flatten_maybe_statement(MaybeGCTraceCode0, MaybeGCTraceCode,
!Info),
DefnBody = mlds_data(Type, Init, MaybeGCTraceCode),
Defn = mlds_defn(Name, Context, Flags0, DefnBody),
Defns = [Defn],
InitStatements = []
)
;
DefnBody0 = mlds_class(_),
% Leave nested class declarations alone.
%
% XXX That might not be the right thing to do, but currently
% ml_code_gen.m doesn't generate any of these, so it doesn't matter
% what we do.
%
Defns = [Defn0],
InitStatements = []
).
% Succeed iff we should add the definition of this variable to the
% local_data field of the elim_info, meaning that it should be added
% to the environment struct (if it's a variable) or hoisted out to the
% top level (if it's a static const).
%
:- pred ml_should_add_local_data(elim_info::in, mlds_data_name::in,
mlds_maybe_gc_trace_code::in, mlds_defns::in, statements::in)
is semidet.
ml_should_add_local_data(Info, DataName, MaybeGCTraceCode,
FollowingDefns, FollowingStatements) :-
Action = Info ^ action,
(
Action = chain_gc_stack_frames,
MaybeGCTraceCode = yes(_)
;
Action = hoist_nested_funcs,
ml_need_to_hoist(Info ^ module_name, DataName,
FollowingDefns, FollowingStatements)
).
% This checks for a nested function definition or static initializer
% that references the variable. This is conservative; for the MLDS->C
% and MLDS->GCC back-ends, we only need to hoist out static variables
% if they are referenced by static initializers which themselves need to be
% hoisted because they are referenced from a nested function. But checking
% the last part of that is tricky, and for the Java and IL back-ends we
% need to hoist out all static constants anyway, so to keep things simple
% we do the same for the C back-end to, i.e. we always hoist all static
% %constants.
%
% XXX Do we need to check for references from the GC_TraceCode
% fields here?
%
:- pred ml_need_to_hoist(mlds_module_name::in, mlds_data_name::in,
mlds_defns::in, statements::in) is semidet.
ml_need_to_hoist(ModuleName, DataName,
FollowingDefns, FollowingStatements) :-
QualDataName = qual(ModuleName, module_qual, DataName),
(
list.member(FollowingDefn, FollowingDefns)
;
statements_contains_defn(FollowingStatements, FollowingDefn)
),
(
FollowingDefn = mlds_defn(_, _, _, mlds_function(_, _, _, _)),
defn_contains_var(FollowingDefn, QualDataName)
;
FollowingDefn = mlds_defn(_, _, _, mlds_data(_, Initializer, _)),
ml_decl_is_static_const(FollowingDefn),
initializer_contains_var(Initializer, QualDataName)
).
% Add the variable definition to the local_data field of the elim_info,
% fix up any references inside the GC tracing code, and then update
% the GC tracing code in the local_data.
%
% Note that we need to add the variable definition to the local_data
% *before* we fix up the GC tracing code, otherwise references to the
% variable itself in the GC tracing code won't get fixed.
%
:- pred elim_info_add_and_flatten_local_data(mlds_defn::in,
elim_info::in, elim_info::out) is det.
elim_info_add_and_flatten_local_data(Defn0, !Info) :-
(
Defn0 = mlds_defn(Name, Context, Flags, DefnBody0),
DefnBody0 = mlds_data(Type, Init, MaybeGCTraceCode0)
->
elim_info_add_local_data(Defn0, !Info),
flatten_maybe_statement(MaybeGCTraceCode0, MaybeGCTraceCode, !Info),
DefnBody = mlds_data(Type, Init, MaybeGCTraceCode),
Defn = mlds_defn(Name, Context, Flags, DefnBody),
elim_info_remove_local_data(Defn0, !Info),
elim_info_add_local_data(Defn, !Info)
;
elim_info_add_local_data(Defn0, !Info)
).
%-----------------------------------------------------------------------------%
% fixup_initializer:
% fixup_atomic_stmt:
% fixup_case_cond:
% fixup_trail_op:
% fixup_rvals:
% fixup_maybe_rval:
% fixup_rval:
% fixup_lvals:
% fixup_lval:
% Recursively process the specified construct, calling fixup_var on
% every variable inside it.
:- pred fixup_initializer(mlds_initializer::in, mlds_initializer::out,
elim_info::in, elim_info::out) is det.
fixup_initializer(no_initializer, no_initializer, !Info).
fixup_initializer(init_obj(Rval0), init_obj(Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_initializer(init_struct(Type, Members0), init_struct(Type, Members),
!Info) :-
list.map_foldl(fixup_initializer, Members0, Members, !Info).
fixup_initializer(init_array(Elements0), init_array(Elements), !Info) :-
list.map_foldl(fixup_initializer, Elements0, Elements, !Info).
:- pred fixup_atomic_stmt(mlds_atomic_statement::in,
mlds_atomic_statement::out, elim_info::in, elim_info::out) is det.
fixup_atomic_stmt(comment(C), comment(C), !Info).
fixup_atomic_stmt(assign(Lval0, Rval0), assign(Lval, Rval), !Info) :-
fixup_lval(Lval0, Lval, !Info),
fixup_rval(Rval0, Rval, !Info).
fixup_atomic_stmt(delete_object(Lval0), delete_object(Lval), !Info) :-
fixup_lval(Lval0, Lval, !Info).
fixup_atomic_stmt(new_object(Target0, MaybeTag, HasSecTag, Type, MaybeSize,
MaybeCtorName, Args0, ArgTypes),
new_object(Target, MaybeTag, HasSecTag, Type, MaybeSize,
MaybeCtorName, Args, ArgTypes), !Info) :-
fixup_lval(Target0, Target, !Info),
fixup_rvals(Args0, Args, !Info).
fixup_atomic_stmt(gc_check, gc_check, !Info).
fixup_atomic_stmt(mark_hp(Lval0), mark_hp(Lval), !Info) :-
fixup_lval(Lval0, Lval, !Info).
fixup_atomic_stmt(restore_hp(Rval0), restore_hp(Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_atomic_stmt(trail_op(TrailOp0), trail_op(TrailOp), !Info) :-
fixup_trail_op(TrailOp0, TrailOp, !Info).
fixup_atomic_stmt(inline_target_code(Lang, Components0),
inline_target_code(Lang, Components), !Info) :-
list.map_foldl(fixup_target_code_component,
Components0, Components, !Info).
fixup_atomic_stmt(outline_foreign_proc(Lang, Vs, Lvals0, Code),
outline_foreign_proc(Lang, Vs, Lvals, Code), !Info) :-
list.map_foldl(fixup_lval, Lvals0, Lvals, !Info).
:- pred fixup_case_cond(mlds_case_match_cond::in, mlds_case_match_cond::out,
elim_info::in, elim_info::out) is det.
fixup_case_cond(match_value(Rval0), match_value(Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_case_cond(match_range(Low0, High0), match_range(Low, High), !Info) :-
fixup_rval(Low0, Low, !Info),
fixup_rval(High0, High, !Info).
:- pred fixup_target_code_component(target_code_component::in,
target_code_component::out, elim_info::in, elim_info::out) is det.
fixup_target_code_component(raw_target_code(Code, Attrs),
raw_target_code(Code, Attrs), !Info).
fixup_target_code_component(user_target_code(Code, Context, Attrs),
user_target_code(Code, Context, Attrs), !Info).
fixup_target_code_component(target_code_input(Rval0),
target_code_input(Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_target_code_component(target_code_output(Lval0),
target_code_output(Lval), !Info) :-
fixup_lval(Lval0, Lval, !Info).
fixup_target_code_component(name(Name), name(Name), !Info).
:- pred fixup_trail_op(trail_op::in, trail_op::out,
elim_info::in, elim_info::out) is det.
fixup_trail_op(store_ticket(Lval0), store_ticket(Lval), !Info) :-
fixup_lval(Lval0, Lval, !Info).
fixup_trail_op(reset_ticket(Rval0, Reason), reset_ticket(Rval, Reason),
!Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_trail_op(discard_ticket, discard_ticket, !Info).
fixup_trail_op(prune_ticket, prune_ticket, !Info).
fixup_trail_op(mark_ticket_stack(Lval0), mark_ticket_stack(Lval), !Info) :-
fixup_lval(Lval0, Lval, !Info).
fixup_trail_op(prune_tickets_to(Rval0), prune_tickets_to(Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
:- pred fixup_rvals(list(mlds_rval)::in, list(mlds_rval)::out,
elim_info::in, elim_info::out) is det.
fixup_rvals([], [], !Info).
fixup_rvals([Rval0 | Rvals0], [Rval | Rvals], !Info) :-
fixup_rval(Rval0, Rval, !Info),
fixup_rvals(Rvals0, Rvals, !Info).
:- pred fixup_maybe_rval(maybe(mlds_rval)::in, maybe(mlds_rval)::out,
elim_info::in, elim_info::out) is det.
fixup_maybe_rval(no, no, !Info).
fixup_maybe_rval(yes(Rval0), yes(Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
:- pred fixup_rval(mlds_rval::in, mlds_rval::out,
elim_info::in, elim_info::out) is det.
fixup_rval(lval(Lval0), lval(Lval), !Info) :-
fixup_lval(Lval0, Lval, !Info).
fixup_rval(mkword(Tag, Rval0), mkword(Tag, Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_rval(const(Const), const(Const), !Info).
fixup_rval(unop(Op, Rval0), unop(Op, Rval), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_rval(binop(Op, X0, Y0), binop(Op, X, Y), !Info) :-
fixup_rval(X0, X, !Info),
fixup_rval(Y0, Y, !Info).
fixup_rval(mem_addr(Lval0), mem_addr(Lval), !Info) :-
fixup_lval(Lval0, Lval, !Info).
fixup_rval(self(T), self(T), !Info).
:- pred fixup_lvals(list(mlds_lval)::in, list(mlds_lval)::out,
elim_info::in, elim_info::out) is det.
fixup_lvals([], [], !Info).
fixup_lvals([X0 | Xs0], [X | Xs], !Info) :-
fixup_lval(X0, X, !Info),
fixup_lvals(Xs0, Xs, !Info).
:- pred fixup_lval(mlds_lval::in, mlds_lval::out,
elim_info::in, elim_info::out) is det.
fixup_lval(field(MaybeTag, Rval0, FieldId, FieldType, PtrType),
field(MaybeTag, Rval, FieldId, FieldType, PtrType), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_lval(mem_ref(Rval0, Type), mem_ref(Rval, Type), !Info) :-
fixup_rval(Rval0, Rval, !Info).
fixup_lval(var(Var0, VarType), VarLval, !Info) :-
fixup_var(Var0, VarType, VarLval, !Info).
%-----------------------------------------------------------------------------%
% Change up any references to local vars in the containing function
% to go via the environment pointer.
%
:- pred fixup_var(mlds_var::in, mlds_type::in, mlds_lval::out,
elim_info::in, elim_info::out) is det.
fixup_var(ThisVar, ThisVarType, Lval, !Info) :-
ThisVar = qual(ThisVarModuleName, QualKind, ThisVarName),
ModuleName = elim_info_get_module_name(!.Info),
Locals = elim_info_get_local_data(!.Info),
ClassType = elim_info_get_env_type_name(!.Info),
EnvPtrVarType = elim_info_get_env_ptr_type_name(!.Info),
Action = !.Info ^ action,
Globals = !.Info ^ elim_info_globals,
(
% Check for references to local variables that are used by
% nested functions, and replace them with `env_ptr->foo'.
ThisVarModuleName = ModuleName,
IsLocalVar = (pred(VarType::out) is nondet :-
list.member(Var, Locals),
Var = mlds_defn(data(var(ThisVarName)), _, _,
mlds_data(VarType, _, _)),
\+ ml_decl_is_static_const(Var)
),
solutions.solutions(IsLocalVar, [FieldType])
->
EnvPtr = lval(var(qual(ModuleName, QualKind,
mlds_var_name(env_name_base(Action) ++ "_ptr", no)),
EnvPtrVarType)),
EnvModuleName = ml_env_module_name(ClassType, Globals),
ThisVarFieldName = ml_var_name_to_string(ThisVarName),
FieldName = named_field(
qual(EnvModuleName, type_qual, ThisVarFieldName),
EnvPtrVarType),
Tag = yes(0),
Lval = field(Tag, EnvPtr, FieldName, FieldType, EnvPtrVarType)
;
% Check for references to the env_ptr itself.
% For those, the code generator will have left the type as
% mlds_unknown_type, and we need to fill it in here.
Action = hoist_nested_funcs,
ThisVarName = mlds_var_name("env_ptr", no),
ThisVarType = mlds_unknown_type
->
Lval = var(ThisVar, EnvPtrVarType)
;
% Leave everything else unchanged.
Lval = var(ThisVar, ThisVarType)
).
% The following code is what we would have to use if we couldn't
% just hoist all local variables out to the outermost function.
% (
% %
% % Check for references to local variables
% % that are used by nested functions,
% % and replace them with `(&env)->foo'.
% % (The MLDS doesn't have any representation
% % for `env.foo'.)
% %
% ThisVarModuleName = ModuleName,
% list.member(Var, Locals),
% Var = mlds_defn(data(var(ThisVarName)), _, _, _)
% ->
% Env = var(qual(ModuleName, module_qual, "env")),
% FieldName = named_field(ThisVar),
% Tag = yes(0),
% Lval = field(Tag, mem_addr(Env), FieldName)
% ;
% %
% % Check for references to variables in the
% % containing function(s), and replace them
% % with envptr->foo, envptr->envptr->foo, etc.
% % depending on the depth of nesting.
% %
% ThisVarModuleName = ModuleName,
% outervar_member(ThisVarName, OuterVars, 1, Depth)
% ->
% EnvPtrName = qual(ModuleName, module_qual, "env_ptr"),
% EnvPtr = lval(var(EnvPtrName)),
% Lval = make_envptr_ref(Depth, EnvPtr, EnvPtrName, ThisVar)
% ;
% %
% % leave everything else unchanged
% %
% Lval = var(ThisVar, ThisVarType)
% ).
%
% % check if the specified variable is contained in the
% % outervars, and if so, return the depth of nesting
% %
% :- pred outervar_member(mlds_var_name::in, outervars::in, int::in, int::out)
% is semidet.
%
% outervar_member(ThisVarName, [OuterVars | OtherOuterVars], Depth0, Depth) :-
% (
% list.member(Var, OuterVars),
% Var = mlds_defn(data(var(ThisVarName)), _, _, _)
% ->
% Depth = Depth0
% ;
% outervar_member(ThisVarName, OtherOuterVars, Depth0 + 1, Depth)
% ).
%
% % Produce a reference to a variable via `Depth' levels
% % of `envptr->' indirections.
% %
% :- func make_envptr_ref(int, mlds_rval, mlds_var, mlds_var) = lval.
%
% make_envptr_ref(Depth, CurEnvPtr, EnvPtrVar, Var) = Lval :-
% ( Depth = 1 ->
% Tag = yes(0),
% Lval = field(Tag, CurEnvPtr, named_field(Var))
% ;
% Tag = yes(0),
% NewEnvPtr = lval(field(Tag, CurEnvPtr, named_field(EnvPtrVar))),
% Lval = make_envptr_ref(Depth - 1, NewEnvPtr, EnvPtrVar, Var)
% ).
:- func ml_env_module_name(mlds_type, globals) = mlds_module_name.
ml_env_module_name(ClassType, Globals) = EnvModuleName :-
( ClassType = mlds_class_type(ClassModuleName, Arity, _Kind) ->
ClassModuleName = qual(ClassModule, QualKind, ClassName),
EnvModuleName = mlds_append_class_qualifier(ClassModule,
QualKind, Globals, ClassName, Arity)
;
unexpected(this_file, "ml_env_module_name: ClassType is not a class")
).
%-----------------------------------------------------------------------------%
%
% defns_contains_defn:
% defn_contains_defn:
% defn_body_contains_defn:
% maybe_statement_contains_defn:
% function_body_contains_defn:
% statements_contains_defn:
% statement_contains_defn:
% Nondeterministically return all the definitions contained
% in the specified construct.
:- pred defns_contains_defn(mlds_defns::in, mlds_defn::out) is nondet.
defns_contains_defn(Defns, Name) :-
list.member(Defn, Defns),
defn_contains_defn(Defn, Name).
:- pred defn_contains_defn(mlds_defn::in, mlds_defn::out) is multi.
defn_contains_defn(Defn, Defn). /* this is where we succeed! */
defn_contains_defn(mlds_defn(_Name, _Context, _Flags, DefnBody), Defn) :-
defn_body_contains_defn(DefnBody, Defn).
:- pred defn_body_contains_defn(mlds_entity_defn::in, mlds_defn::out)
is nondet.
% defn_body_contains_defn(mlds_data(_Type, _Initializer, _), _Defn) :- fail.
defn_body_contains_defn(mlds_function(_PredProcId, _Params, FunctionBody,
_Attrs), Name) :-
function_body_contains_defn(FunctionBody, Name).
defn_body_contains_defn(mlds_class(ClassDefn), Name) :-
ClassDefn = mlds_class_defn(_Kind, _Imports, _Inherits, _Implements,
CtorDefns, FieldDefns),
( defns_contains_defn(FieldDefns, Name)
; defns_contains_defn(CtorDefns, Name)
).
:- pred statements_contains_defn(statements::in, mlds_defn::out)
is nondet.
statements_contains_defn(Statements, Defn) :-
list.member(Statement, Statements),
statement_contains_defn(Statement, Defn).
:- pred maybe_statement_contains_defn(maybe(statement)::in,
mlds_defn::out) is nondet.
% maybe_statement_contains_defn(no, _Defn) :- fail.
maybe_statement_contains_defn(yes(Statement), Defn) :-
statement_contains_defn(Statement, Defn).
:- pred function_body_contains_defn(mlds_function_body::in, mlds_defn::out)
is nondet.
% function_body_contains_defn(external, _Defn) :- fail.
function_body_contains_defn(defined_here(Statement), Defn) :-
statement_contains_defn(Statement, Defn).
:- pred statement_contains_defn(statement::in, mlds_defn::out)
is nondet.
statement_contains_defn(Statement, Defn) :-
Statement = statement(Stmt, _Context),
stmt_contains_defn(Stmt, Defn).
:- pred stmt_contains_defn(mlds_stmt::in, mlds_defn::out) is nondet.
stmt_contains_defn(Stmt, Defn) :-
(
Stmt = block(Defns, Statements),
( defns_contains_defn(Defns, Defn)
; statements_contains_defn(Statements, Defn)
)
;
Stmt = while(_Rval, Statement, _Once),
statement_contains_defn(Statement, Defn)
;
Stmt = if_then_else(_Cond, Then, MaybeElse),
( statement_contains_defn(Then, Defn)
; maybe_statement_contains_defn(MaybeElse, Defn)
)
;
Stmt = switch(_Type, _Val, _Range, Cases, Default),
( cases_contains_defn(Cases, Defn)
; default_contains_defn(Default, Defn)
)
;
Stmt = label(_Label),
fail
;
Stmt = goto(_),
fail
;
Stmt = computed_goto(_Rval, _Labels),
fail
;
Stmt = call(_Sig, _Func, _Obj, _Args, _RetLvals, _TailCall),
fail
;
Stmt = return(_Rvals),
fail
;
Stmt = do_commit(_Ref),
fail
;
Stmt = try_commit(_Ref, Statement, Handler),
( statement_contains_defn(Statement, Defn)
; statement_contains_defn(Handler, Defn)
)
;
Stmt = atomic(_AtomicStmt),
fail
).
:- pred cases_contains_defn(list(mlds_switch_case)::in, mlds_defn::out)
is nondet.
cases_contains_defn(Cases, Defn) :-
list.member(Case, Cases),
Case = _MatchConds - Statement,
statement_contains_defn(Statement, Defn).
:- pred default_contains_defn(mlds_switch_default::in, mlds_defn::out)
is nondet.
% default_contains_defn(default_do_nothing, _) :- fail.
% default_contains_defn(default_is_unreachable, _) :- fail.
default_contains_defn(default_case(Statement), Defn) :-
statement_contains_defn(Statement, Defn).
%-----------------------------------------------------------------------------%
% Add code to unlink the stack chain before any explicit returns or
% tail calls.
%
:- pred add_unchain_stack_to_maybe_statement(maybe(statement)::in,
maybe(statement)::out,
elim_info::in, elim_info::out) is det.
add_unchain_stack_to_maybe_statement(no, no, !Info).
add_unchain_stack_to_maybe_statement(yes(Statement0), yes(Statement), !Info) :-
add_unchain_stack_to_statement(Statement0, Statement, !Info).
:- pred add_unchain_stack_to_statements(statements::in,
statements::out,
elim_info::in, elim_info::out) is det.
add_unchain_stack_to_statements(!Statements, !Info) :-
list.map_foldl(add_unchain_stack_to_statement, !Statements, !Info).
:- pred add_unchain_stack_to_statement(statement::in,
statement::out,
elim_info::in, elim_info::out) is det.
add_unchain_stack_to_statement(Statement0, Statement, !Info) :-
Statement0 = statement(Stmt0, Context),
add_unchain_stack_to_stmt(Stmt0, Context, Stmt, !Info),
Statement = statement(Stmt, Context).
:- pred add_unchain_stack_to_stmt(mlds_stmt::in, mlds_context::in,
mlds_stmt::out, elim_info::in, elim_info::out) is det.
add_unchain_stack_to_stmt(Stmt0, Context, Stmt, !Info) :-
(
Stmt0 = block(Defns, Statements0),
add_unchain_stack_to_statements(Statements0, Statements, !Info),
Stmt = block(Defns, Statements)
;
Stmt0 = while(Rval, Statement0, Once),
add_unchain_stack_to_statement(Statement0, Statement, !Info),
Stmt = while(Rval, Statement, Once)
;
Stmt0 = if_then_else(Cond, Then0, MaybeElse0),
add_unchain_stack_to_statement(Then0, Then, !Info),
add_unchain_stack_to_maybe_statement(MaybeElse0, MaybeElse, !Info),
Stmt = if_then_else(Cond, Then, MaybeElse)
;
Stmt0 = switch(Type, Val, Range, Cases0, Default0),
list.map_foldl(add_unchain_stack_to_case, Cases0, Cases,
!Info),
add_unchain_stack_to_default(Default0, Default, !Info),
Stmt = switch(Type, Val, Range, Cases, Default)
;
Stmt0 = label(_),
Stmt = Stmt0
;
Stmt0 = goto(_),
Stmt = Stmt0
;
Stmt0 = computed_goto(_Rval, _Labels),
Stmt = Stmt0
;
Stmt0 = call(_Sig, _Func, _Obj, _Args, RetLvals, CallKind),
add_unchain_stack_to_call(Stmt0, RetLvals, CallKind, Context,
Stmt, !Info)
;
Stmt0 = return(_Rvals),
Stmt = prepend_unchain_frame(Stmt0, Context, !.Info)
;
Stmt0 = do_commit(_Ref),
Stmt = Stmt0
;
Stmt0 = try_commit(Ref, Statement0, Handler0),
add_unchain_stack_to_statement(Statement0, Statement, !Info),
add_unchain_stack_to_statement(Handler0, Handler, !Info),
Stmt = try_commit(Ref, Statement, Handler)
;
Stmt0 = atomic(_AtomicStmt0),
Stmt = Stmt0
).
:- pred add_unchain_stack_to_call(mlds_stmt::in, list(mlds_lval)::in,
call_kind::in, mlds_context::in, mlds_stmt::out,
elim_info::in, elim_info::out) is det.
add_unchain_stack_to_call(Stmt0, RetLvals, CallKind, Context, Stmt, !Info) :-
(
CallKind = no_return_call,
% For no-return calls, we just unchain the stack
% frame before the call.
Stmt = prepend_unchain_frame(Stmt0, Context, !.Info)
;
CallKind = tail_call,
% For tail calls, we unchain the stack frame before the call,
% and then we insert a return statement after the call.
% The return statement is needed ensure that the code doesn't
% fall through (past the tail call) and then try to unchain
% the already-unchained stack frame.
UnchainFrame = ml_gen_unchain_frame(Context, !.Info),
Statement0 = statement(Stmt0, Context),
RetRvals = list.map(func(Rval) = lval(Rval), RetLvals),
RetStmt = return(RetRvals),
RetStatement = statement(RetStmt, Context),
Stmt = block([], [UnchainFrame, Statement0, RetStatement])
;
CallKind = ordinary_call,
Stmt = Stmt0
).
:- pred add_unchain_stack_to_case(mlds_switch_case::in,
mlds_switch_case::out, elim_info::in, elim_info::out) is det.
add_unchain_stack_to_case(Conds0 - Statement0, Conds - Statement, !Info) :-
list.map_foldl(fixup_case_cond, Conds0, Conds, !Info),
add_unchain_stack_to_statement(Statement0, Statement, !Info).
:- pred add_unchain_stack_to_default(mlds_switch_default::in,
mlds_switch_default::out, elim_info::in, elim_info::out) is det.
add_unchain_stack_to_default(default_is_unreachable, default_is_unreachable,
!Info).
add_unchain_stack_to_default(default_do_nothing, default_do_nothing, !Info).
add_unchain_stack_to_default(default_case(Statement0), default_case(Statement),
!Info) :-
add_unchain_stack_to_statement(Statement0, Statement, !Info).
:- func prepend_unchain_frame(mlds_stmt, mlds_context, elim_info) =
mlds_stmt.
prepend_unchain_frame(Stmt0, Context, ElimInfo) = Stmt :-
UnchainFrame = ml_gen_unchain_frame(Context, ElimInfo),
Statement0 = statement(Stmt0, Context),
Stmt = block([], [UnchainFrame, Statement0]).
:- func append_unchain_frame(mlds_stmt, mlds_context, elim_info) =
mlds_stmt.
append_unchain_frame(Stmt0, Context, ElimInfo) = Stmt :-
UnchainFrame = ml_gen_unchain_frame(Context, ElimInfo),
Statement0 = statement(Stmt0, Context),
Stmt = block([], [Statement0, UnchainFrame]).
:- func ml_gen_unchain_frame(mlds_context, elim_info) = statement.
ml_gen_unchain_frame(Context, ElimInfo) = UnchainFrame :-
EnvPtrTypeName = ElimInfo ^ env_ptr_type_name,
% Generate code to remove this frame from the stack chain:
%
% stack_chain = stack_chain->prev;
%
% Actually, it's not quite as simple as that. The global
% `stack_chain' has type `void *', rather than `MR_StackChain *', and
% the MLDS has no way of representing the `struct MR_StackChain' type
% (which we'd need to cast it to) or of accessing an unqualified
% field name like `prev' (rather than `modulename__prev').
%
% So we do this in a slightly lower-level fashion, using
% a field offset rather than a field name:
%
% stack_chain = MR_hl_field(stack_chain, 0);
StackChain = ml_stack_chain_var,
Tag = yes(0),
PrevFieldId = offset(const(int_const(0))),
PrevFieldType = mlds_generic_type,
PrevFieldRval = lval(field(Tag, lval(StackChain), PrevFieldId,
PrevFieldType, EnvPtrTypeName)),
Assignment = assign(StackChain, PrevFieldRval),
UnchainFrame = statement(atomic(Assignment), Context).
% Generate a local variable declaration to hold the saved stack chain
% pointer:
%
% void *saved_stack_chain;
%
:- func gen_saved_stack_chain_var(int, mlds_context) = mlds_defn.
gen_saved_stack_chain_var(Id, Context) = Defn :-
Name = data(var(ml_saved_stack_chain_name(Id))),
Flags = ml_gen_local_var_decl_flags,
Type = ml_stack_chain_type,
Initializer = no_initializer,
% The saved stack chain never needs to be traced by the GC,
% since it will always point to the stack, not into the heap.
GCTraceCode = no,
DefnBody = mlds_data(Type, Initializer, GCTraceCode),
Defn = mlds_defn(Name, Context, Flags, DefnBody).
% Generate a statement to save the stack chain pointer:
%
% saved_stack_chain = stack_chain;
%
:- func gen_save_stack_chain_var(mlds_module_name, int, mlds_context) =
statement.
gen_save_stack_chain_var(MLDS_Module, Id, Context) = SaveStatement :-
SavedStackChain = var(qual(MLDS_Module, module_qual,
ml_saved_stack_chain_name(Id)), ml_stack_chain_type),
Assignment = assign(SavedStackChain, lval(ml_stack_chain_var)),
SaveStatement = statement(atomic(Assignment), Context).
% Generate a statement to restore the stack chain pointer:
%
% stack_chain = saved_stack_chain;
%
:- func gen_restore_stack_chain_var(mlds_module_name, int, mlds_context) =
statement.
gen_restore_stack_chain_var(MLDS_Module, Id, Context) = RestoreStatement :-
SavedStackChain = var(qual(MLDS_Module, module_qual,
ml_saved_stack_chain_name(Id)), ml_stack_chain_type),
Assignment = assign(ml_stack_chain_var, lval(SavedStackChain)),
RestoreStatement = statement(atomic(Assignment), Context).
:- func ml_saved_stack_chain_name(int) = mlds_var_name.
ml_saved_stack_chain_name(Id) = mlds_var_name("saved_stack_chain", yes(Id)).
%-----------------------------------------------------------------------------%
%
% The elim_info type holds information that we use or accumulate
% as we traverse through the function body.
%
:- type elim_info
---> elim_info(
% Specify whether we're eliminating nested functions, or doing
% the transformation needed for accurate GC.
action :: action,
% The name of the current module.
module_name :: mlds_module_name,
% The lists of local variables for each of the containing
% functions, innermost first.
% XXX this is not used.
% It would be needed if we want to handle arbitrary nesting.
% Currently we assume that any variables can safely be hoisted
% to the outermost function, so this field is not needed.
outer_vars :: outervars,
% The list of nested function definitions that we must hoist
% out. This list is stored in reverse order.
nested_funcs :: list(mlds_defn),
% The list of local variables that we must put in the
% environment structure This list is stored in reverse order.
local_data :: list(mlds_defn),
% Type of the introduced environment struct.
env_type_name :: mlds_type,
% Type of the introduced environment struct pointer.
% This might not just be just a pointer to the env_type_name
% (in the IL backend we don't necessarily use a pointer).
env_ptr_type_name :: mlds_type,
% A counter used to number the local variables
% used to save the stack chain
saved_stack_chain_counter :: counter,
elim_info_globals :: globals
).
% The lists of local variables for each of the containing functions,
% innermost first.
:- type outervars == list(list(mlds_defn)).
:- func elim_info_init(action, mlds_module_name, outervars,
mlds_type, mlds_type, globals) = elim_info.
elim_info_init(Action, ModuleName, OuterVars, EnvTypeName, EnvPtrTypeName,
Globals) =
elim_info(Action, ModuleName, OuterVars, [], [],
EnvTypeName, EnvPtrTypeName, counter.init(0), Globals).
:- func elim_info_get_module_name(elim_info) = mlds_module_name.
:- func elim_info_get_outer_vars(elim_info) = outervars.
:- func elim_info_get_local_data(elim_info) = list(mlds_defn).
:- func elim_info_get_env_type_name(elim_info) = mlds_type.
:- func elim_info_get_env_ptr_type_name(elim_info) = mlds_type.
elim_info_get_module_name(ElimInfo) = ElimInfo ^ module_name.
elim_info_get_outer_vars(ElimInfo) = ElimInfo ^ outer_vars.
elim_info_get_local_data(ElimInfo) = ElimInfo ^ local_data.
elim_info_get_env_type_name(ElimInfo) = ElimInfo ^ env_type_name.
elim_info_get_env_ptr_type_name(ElimInfo) = ElimInfo ^ env_ptr_type_name.
:- pred elim_info_add_nested_func(mlds_defn::in,
elim_info::in, elim_info::out) is det.
elim_info_add_nested_func(NestedFunc, ElimInfo,
ElimInfo ^ nested_funcs := [NestedFunc | ElimInfo ^ nested_funcs]).
:- pred elim_info_add_local_data(mlds_defn::in,
elim_info::in, elim_info::out) is det.
elim_info_add_local_data(LocalVar, ElimInfo,
ElimInfo ^ local_data := [LocalVar | ElimInfo ^ local_data]).
:- pred elim_info_remove_local_data(mlds_defn::in,
elim_info::in, elim_info::out) is det.
elim_info_remove_local_data(LocalVar, ElimInfo0, ElimInfo) :-
( list.delete_first(ElimInfo0 ^ local_data, LocalVar, LocalData) ->
ElimInfo = ElimInfo0 ^ local_data := LocalData
;
unexpected(this_file, "elim_info_remove_local_data: not found")
).
:- pred elim_info_finish(elim_info::in,
list(mlds_defn)::out, list(mlds_defn)::out) is det.
elim_info_finish(ElimInfo, Funcs, Locals) :-
Funcs = list.reverse(ElimInfo ^ nested_funcs),
Locals = list.reverse(ElimInfo ^ local_data).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "ml_elim_nested.m".
%-----------------------------------------------------------------------------%