Files
mercury/compiler/bytecode_gen.m
Julien Fischer 459847a064 Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18
Branches: main

Move the univ, maybe, pair and unit types from std_util into their own
modules.  std_util still contains the general purpose higher-order programming
constructs.

library/std_util.m:
	Move univ, maybe, pair and unit (plus any other related types
	and procedures) into their own modules.

library/maybe.m:
	New module.  This contains the maybe and maybe_error types and
	the associated procedures.

library/pair.m:
	New module.  This contains the pair type and associated procedures.

library/unit.m:
	New module. This contains the types unit/0 and unit/1.

library/univ.m:
	New module. This contains the univ type and associated procedures.

library/library.m:
	Add the new modules.

library/private_builtin.m:
	Update the declaration of the type_ctor_info struct for univ.

runtime/mercury.h:
	Update the declaration for the type_ctor_info struct for univ.

runtime/mercury_mcpp.h:
runtime/mercury_hlc_types.h:
	Update the definition of MR_Univ.

runtime/mercury_init.h:
	Fix a comment: ML_type_name is now exported from type_desc.m.

compiler/mlds_to_il.m:
	Update the the name of the module that defines univs (which are
	handled specially by the il code generator.)

library/*.m:
compiler/*.m:
browser/*.m:
mdbcomp/*.m:
profiler/*.m:
deep_profiler/*.m:
	Conform to the above changes.  Import the new modules where they
	are needed; don't import std_util where it isn't needed.

	Fix formatting in lots of modules.  Delete duplicate module
	imports.

tests/*:
	Update the test suite to confrom to the above changes.
2006-03-29 08:09:58 +00:00

907 lines
33 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1996-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
% File: bytecode_gen.m.
% Author: zs.
% This module generates bytecode, which is intended to be used by a
% (not yet implemented) bytecode interpreter/debugger.
%---------------------------------------------------------------------------%
:- module bytecode_backend.bytecode_gen.
:- interface.
:- import_module bytecode_backend.bytecode.
:- import_module hlds.hlds_module.
:- import_module io.
:- import_module list.
%---------------------------------------------------------------------------%
:- pred gen_module(module_info::in, list(byte_code)::out,
io::di, io::uo) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
% We make use of some stuff from the LLDS back-end, in particular the stuff
% relating to the argument passing convention in arg_info.m and call_gen.m.
% The intent here is to use the same argument passing convention as for
% the LLDS, to allow interoperability between code compiled to bytecode
% and code compiled to machine code.
%
% XXX It might be nice to move the argument passing related stuff
% in call_gen.m that we use here into arg_info.m, and to then rework
% arg_info.m so that it didn't depend on the LLDS.
:- import_module backend_libs.builtin_ops.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.arg_info.
:- import_module hlds.code_model.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_code_util.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module hlds.passes_aux.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.tree.
:- import_module ll_backend.call_gen. % XXX for arg passing convention
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_type.
:- import_module assoc_list.
:- import_module bool.
:- import_module counter.
:- import_module deconstruct.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%---------------------------------------------------------------------------%
gen_module(ModuleInfo, Code, !IO) :-
module_info_predids(ModuleInfo, PredIds),
gen_preds(PredIds, ModuleInfo, CodeTree, !IO),
tree.flatten(CodeTree, CodeList),
list.condense(CodeList, Code).
:- pred gen_preds(list(pred_id)::in, module_info::in,
byte_tree::out, io::di, io::uo) is det.
gen_preds([], _ModuleInfo, empty, !IO).
gen_preds([PredId | PredIds], ModuleInfo, Code, !IO) :-
module_info_preds(ModuleInfo, PredTable),
map.lookup(PredTable, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
(
ProcIds = [],
PredCode = empty
;
ProcIds = [_ | _],
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
PredName = predicate_name(ModuleInfo, PredId),
list.length(ProcIds, ProcsCount),
Arity = pred_info_orig_arity(PredInfo),
get_is_func(PredInfo, IsFunc),
EnterCode = node([enter_pred(PredName, Arity, IsFunc,
ProcsCount)]),
EndofCode = node([endof_pred]),
PredCode = tree(EnterCode, tree(ProcsCode, EndofCode))
),
gen_preds(PredIds, ModuleInfo, OtherCode, !IO),
Code = tree(PredCode, OtherCode).
:- pred gen_pred(pred_id::in, list(proc_id)::in, pred_info::in,
module_info::in, byte_tree::out, io::di, io::uo) is det.
gen_pred(_PredId, [], _PredInfo, _ModuleInfo, empty, !IO).
gen_pred(PredId, [ProcId | ProcIds], PredInfo, ModuleInfo, Code, !IO) :-
write_proc_progress_message("% Generating bytecode for ",
PredId, ProcId, ModuleInfo, !IO),
gen_proc(ProcId, PredInfo, ModuleInfo, ProcCode),
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
Code = tree(ProcCode, ProcsCode).
:- pred gen_proc(proc_id::in, pred_info::in,
module_info::in, byte_tree::out) is det.
gen_proc(ProcId, PredInfo, ModuleInfo, Code) :-
pred_info_get_procedures(PredInfo, ProcTable),
map.lookup(ProcTable, ProcId, ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
proc_info_get_vartypes(ProcInfo, VarTypes),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_interface_determinism(ProcInfo, Detism),
determinism_to_code_model(Detism, CodeModel),
goal_util.goal_vars(Goal, GoalVars),
proc_info_get_headvars(ProcInfo, ArgVars),
set.insert_list(GoalVars, ArgVars, Vars),
set.to_sorted_list(Vars, VarList),
map.init(VarMap0),
create_varmap(VarList, VarSet, VarTypes, 0, VarMap0, VarMap, VarInfos),
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo0),
get_next_label(ZeroLabel, ByteInfo0, ByteInfo1),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, Args),
call_gen.input_arg_locs(Args, InputArgs),
gen_pickups(InputArgs, ByteInfo, PickupCode),
call_gen.output_arg_locs(Args, OutputArgs),
gen_places(OutputArgs, ByteInfo, PlaceCode),
% If semideterministic, reserve temp slot 0 for the return value
( CodeModel = model_semi ->
get_next_temp(_FrameTemp, ByteInfo1, ByteInfo2)
;
ByteInfo2 = ByteInfo1
),
gen_goal(Goal, ByteInfo2, ByteInfo3, GoalCode),
get_next_label(EndLabel, ByteInfo3, ByteInfo),
get_counts(ByteInfo, LabelCount, TempCount),
ZeroLabelCode = node([label(ZeroLabel)]),
BodyTree = tree_list([PickupCode, ZeroLabelCode, GoalCode, PlaceCode]),
tree.flatten(BodyTree, BodyList),
list.condense(BodyList, BodyCode0),
( list.member(not_supported, BodyCode0) ->
BodyCode = node([not_supported])
;
BodyCode = node(BodyCode0)
),
proc_id_to_int(ProcId, ProcInt),
EnterCode = node([enter_proc(ProcInt, Detism, LabelCount, EndLabel,
TempCount, VarInfos)]),
( CodeModel = model_semi ->
EndofCode = node([semidet_succeed, label(EndLabel), endof_proc])
;
EndofCode = node([label(EndLabel), endof_proc])
),
Code = tree_list([EnterCode, BodyCode, EndofCode]).
%---------------------------------------------------------------------------%
:- pred gen_goal(hlds_goal::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_goal(GoalExpr - GoalInfo, !ByteInfo, Code) :-
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, GoalCode),
goal_info_get_context(GoalInfo, Context),
term.context_line(Context, Line),
Code = tree(node([context(Line)]), GoalCode).
:- pred gen_goal_expr(hlds_goal_expr::in, hlds_goal_info::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, Code) :-
(
GoalExpr = generic_call(GenericCallType,
ArgVars, ArgModes, Detism),
( GenericCallType = higher_order(PredVar, _, _, _) ->
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism,
!.ByteInfo, Code)
;
% XXX
% string.append_list([
% "bytecode for ", GenericCallFunctor, " calls"], Msg),
% sorry(this_file, Msg)
functor(GenericCallType, canonicalize, _GenericCallFunctor, _),
Code = node([not_supported])
)
;
GoalExpr = call(PredId, ProcId, ArgVars, BuiltinState, _, _),
( BuiltinState = not_builtin ->
goal_info_get_determinism(GoalInfo, Detism),
gen_call(PredId, ProcId, ArgVars, Detism, !.ByteInfo, Code)
;
gen_builtin(PredId, ProcId, ArgVars, !.ByteInfo, Code)
)
;
GoalExpr = unify(Var, RHS, _Mode, Unification, _),
gen_unify(Unification, Var, RHS, !.ByteInfo, Code)
;
GoalExpr = not(Goal),
gen_goal(Goal, !ByteInfo, SomeCode),
get_next_label(EndLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
EnterCode = node([enter_negation(FrameTemp, EndLabel)]),
EndofCode = node([endof_negation_goal(FrameTemp),
label(EndLabel), endof_negation]),
Code = tree_list([EnterCode, SomeCode, EndofCode])
;
GoalExpr = scope(_, InnerGoal),
gen_goal(InnerGoal, !ByteInfo, InnerCode),
goal_info_get_determinism(GoalInfo, OuterDetism),
InnerGoal = _ - InnerGoalInfo,
goal_info_get_determinism(InnerGoalInfo, InnerDetism),
determinism_to_code_model(OuterDetism, OuterCodeModel),
determinism_to_code_model(InnerDetism, InnerCodeModel),
( InnerCodeModel = OuterCodeModel ->
Code = InnerCode
;
get_next_temp(Temp, !ByteInfo),
EnterCode = node([enter_commit(Temp)]),
EndofCode = node([endof_commit(Temp)]),
Code = tree_list([EnterCode, InnerCode, EndofCode])
)
;
GoalExpr = conj(plain_conj, GoalList),
gen_conj(GoalList, !ByteInfo, Code)
;
GoalExpr = conj(parallel_conj, _GoalList),
sorry(this_file, "bytecode_gen of parallel conjunction")
;
GoalExpr = disj(GoalList),
(
GoalList = [],
Code = node([fail])
;
GoalList = [_ | _],
get_next_label(EndLabel, !ByteInfo),
gen_disj(GoalList, EndLabel, !ByteInfo, DisjCode),
EnterCode = node([enter_disjunction(EndLabel)]),
EndofCode = node([endof_disjunction, label(EndLabel)]),
Code = tree_list([EnterCode, DisjCode, EndofCode])
)
;
GoalExpr = switch(Var, _, CasesList),
get_next_label(EndLabel, !ByteInfo),
gen_switch(CasesList, Var, EndLabel, !ByteInfo, SwitchCode),
map_var(!.ByteInfo, Var, ByteVar),
EnterCode = node([enter_switch(ByteVar, EndLabel)]),
EndofCode = node([endof_switch, label(EndLabel)]),
Code = tree_list([EnterCode, SwitchCode, EndofCode])
;
GoalExpr = if_then_else(_Vars, Cond, Then, Else),
get_next_label(EndLabel, !ByteInfo),
get_next_label(ElseLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
gen_goal(Cond, !ByteInfo, CondCode),
gen_goal(Then, !ByteInfo, ThenCode),
gen_goal(Else, !ByteInfo, ElseCode),
EnterIfCode = node([enter_if(ElseLabel, EndLabel, FrameTemp)]),
EnterThenCode = node([enter_then(FrameTemp)]),
EndofThenCode = node([endof_then(EndLabel), label(ElseLabel),
enter_else(FrameTemp)]),
EndofIfCode = node([endof_if, label(EndLabel)]),
Code = tree_list([EnterIfCode, CondCode, EnterThenCode, ThenCode,
EndofThenCode, ElseCode, EndofIfCode])
;
GoalExpr = foreign_proc(_, _, _, _, _, _),
Code = node([not_supported])
;
GoalExpr = shorthand(_),
% these should have been expanded out by now
unexpected(this_file, "goal_expr: unexpected shorthand")
).
%---------------------------------------------------------------------------%
:- pred gen_places(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_places([], _, empty).
gen_places([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_places(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([place_arg(r, Loc, ByteVar)]), OtherCode).
:- pred gen_pickups(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_pickups([], _, empty).
gen_pickups([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_pickups(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([pickup_arg(r, Loc, ByteVar)]), OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for a higher order call.
%
:- pred gen_higher_order_call(prog_var::in, list(prog_var)::in,
list(mer_mode)::in, determinism::in, byte_info::in, byte_tree::out) is det.
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism, ByteInfo, Code) :-
determinism_to_code_model(Detism, CodeModel),
get_module_info(ByteInfo, ModuleInfo),
list.map(get_var_type(ByteInfo), ArgVars, ArgTypes),
make_arg_infos(ArgTypes, ArgModes, CodeModel, ModuleInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
arg_info.partition_args(ArgVarsInfos, InVars, OutVars),
list.length(InVars, NInVars),
list.length(OutVars, NOutVars),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
map_var(ByteInfo, PredVar, BytePredVar),
Call = node([higher_order_call(BytePredVar, NInVars, NOutVars, Detism)]),
( CodeModel = model_semi ->
Check = node([semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for an ordinary call.
%
:- pred gen_call(pred_id::in, proc_id::in, list(prog_var)::in,
determinism::in, byte_info::in, byte_tree::out) is det.
gen_call(PredId, ProcId, ArgVars, Detism, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
proc_id_to_int(ProcId, ProcInt),
Call = node([call(ModuleName, PredName, Arity, IsFunc, ProcInt)]),
determinism_to_code_model(Detism, CodeModel),
( CodeModel = model_semi ->
Check = node([semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for a call to a builtin.
%
:- pred gen_builtin(pred_id::in, proc_id::in, list(prog_var)::in,
byte_info::in, byte_tree::out) is det.
gen_builtin(PredId, ProcId, Args, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
ModuleName = predicate_module(ModuleInfo, PredId),
PredName = predicate_name(ModuleInfo, PredId),
(
builtin_ops.translate_builtin(ModuleName, PredName, ProcId,
Args, SimpleCode)
->
(
SimpleCode = test(Test),
map_test(ByteInfo, Test, Code)
;
SimpleCode = assign(Var, Expr),
map_assign(ByteInfo, Var, Expr, Code)
;
SimpleCode = ref_assign(_Var, _Expr),
unexpected(this_file, "ref_assign")
)
;
string.append("unknown builtin predicate ", PredName, Msg),
unexpected(this_file, Msg)
).
:- pred map_test(byte_info::in, simple_expr(prog_var)::in(simple_test_expr),
byte_tree::out) is det.
map_test(ByteInfo, TestExpr, Code) :-
(
TestExpr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
Code = node([builtin_bintest(Binop, ByteX, ByteY)])
;
TestExpr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
Code = node([builtin_untest(Unop, ByteX)])
).
:- pred map_assign(byte_info::in, prog_var::in,
simple_expr(prog_var)::in(simple_assign_expr), byte_tree::out) is det.
map_assign(ByteInfo, Var, Expr, Code) :-
(
Expr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
map_var(ByteInfo, Var, ByteVar),
Code = node([builtin_binop(Binop, ByteX, ByteY, ByteVar)])
;
Expr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([builtin_unop(Unop, ByteX, ByteVar)])
;
Expr = leaf(X),
map_var(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([assign(ByteVar, ByteX)])
).
:- pred map_arg(byte_info::in, simple_expr(prog_var)::in(simple_arg_expr),
byte_arg::out) is det.
map_arg(ByteInfo, Expr, ByteArg) :-
(
Expr = leaf(Var),
map_var(ByteInfo, Var, ByteVar),
ByteArg = var(ByteVar)
;
Expr = int_const(IntVal),
ByteArg = int_const(IntVal)
;
Expr = float_const(FloatVal),
ByteArg = float_const(FloatVal)
).
%---------------------------------------------------------------------------%
% Generate bytecode for a unification.
%
:- pred gen_unify(unification::in, prog_var::in, unify_rhs::in,
byte_info::in, byte_tree::out) is det.
gen_unify(construct(Var, ConsId, Args, UniModes, _, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
( ByteConsId = pred_const(_, _, _, _, _) ->
Code = node([construct(ByteVar, ByteConsId, ByteArgs)])
;
% Don't call map_uni_modes until after
% the pred_const test fails, since the arg-modes on
% unifications that create closures aren't like other arg-modes.
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_var) ->
Code = node([construct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([complex_construct(ByteVar, ByteConsId, Pairs)])
)
).
gen_unify(deconstruct(Var, ConsId, Args, UniModes, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_arg) ->
Code = node([deconstruct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([complex_deconstruct(ByteVar, ByteConsId, Pairs)])
).
gen_unify(assign(Target, Source), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Target, ByteTarget),
map_var(ByteInfo, Source, ByteSource),
Code = node([assign(ByteTarget, ByteSource)]).
gen_unify(simple_test(Var1, Var2), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Var1, ByteVar1),
map_var(ByteInfo, Var2, ByteVar2),
get_var_type(ByteInfo, Var1, Var1Type),
get_var_type(ByteInfo, Var2, Var2Type),
(
type_to_ctor_and_args(Var1Type, TypeCtor1, _),
type_to_ctor_and_args(Var2Type, TypeCtor2, _)
->
( TypeCtor2 = TypeCtor1 ->
TypeCtor = TypeCtor1
; unexpected(this_file,
"simple_test between different types")
)
;
unexpected(this_file, "failed lookup of type id")
),
ByteInfo = byte_info(_, _, ModuleInfo, _, _),
TypeCategory = classify_type_ctor(ModuleInfo, TypeCtor),
(
TypeCategory = type_cat_int,
TestId = int_test
;
TypeCategory = type_cat_char,
TestId = char_test
;
TypeCategory = type_cat_string,
TestId = string_test
;
TypeCategory = type_cat_float,
TestId = float_test
;
TypeCategory = type_cat_dummy,
TestId = dummy_test
;
TypeCategory = type_cat_enum,
TestId = enum_test
;
TypeCategory = type_cat_higher_order,
unexpected(this_file, "higher_order_type in simple_test")
;
TypeCategory = type_cat_tuple,
unexpected(this_file, "tuple_type in simple_test")
;
TypeCategory = type_cat_user_ctor,
unexpected(this_file, "user_ctor_type in simple_test")
;
TypeCategory = type_cat_variable,
unexpected(this_file, "variable_type in simple_test")
;
TypeCategory = type_cat_void,
unexpected(this_file, "void_type in simple_test")
;
TypeCategory = type_cat_type_info,
unexpected(this_file, "type_info_type in simple_test")
;
TypeCategory = type_cat_type_ctor_info,
unexpected(this_file, "type_ctor_info_type in simple_test")
;
TypeCategory = type_cat_typeclass_info,
unexpected(this_file, "typeclass_info_type in simple_test")
;
TypeCategory = type_cat_base_typeclass_info,
unexpected(this_file, "base_typeclass_info_type in simple_test")
),
Code = node([test(ByteVar1, ByteVar2, TestId)]).
gen_unify(complicated_unify(_,_,_), _Var, _RHS, _ByteInfo, _Code) :-
unexpected(this_file, "complicated unifications " ++
"should have been handled by polymorphism.m").
:- pred map_uni_modes(list(uni_mode)::in, list(prog_var)::in,
byte_info::in, list(byte_dir)::out) is det.
map_uni_modes([], [], _, []).
map_uni_modes([UniMode | UniModes], [Arg | Args], ByteInfo, [Dir | Dirs]) :-
UniMode = ((VarInitial - ArgInitial) -> (VarFinal - ArgFinal)),
get_module_info(ByteInfo, ModuleInfo),
get_var_type(ByteInfo, Arg, Type),
mode_to_arg_mode(ModuleInfo, (VarInitial -> VarFinal), Type, VarMode),
mode_to_arg_mode(ModuleInfo, (ArgInitial -> ArgFinal), Type, ArgMode),
(
VarMode = top_in,
ArgMode = top_out
->
Dir = to_arg
;
VarMode = top_out,
ArgMode = top_in
->
Dir = to_var
;
VarMode = top_unused,
ArgMode = top_unused
->
Dir = to_none
;
unexpected(this_file,
"invalid mode for (de)construct unification")
),
map_uni_modes(UniModes, Args, ByteInfo, Dirs).
map_uni_modes([], [_|_], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
map_uni_modes([_|_], [], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
:- pred all_dirs_same(list(byte_dir)::in, byte_dir::in)
is semidet.
all_dirs_same([], _).
all_dirs_same([Dir | Dirs], Dir) :-
all_dirs_same(Dirs, Dir).
%---------------------------------------------------------------------------%
% Generate bytecode for a conjunction
%
:- pred gen_conj(list(hlds_goal)::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_conj([], !ByteInfo, empty).
gen_conj([Goal | Goals], !ByteInfo, Code) :-
gen_goal(Goal, !ByteInfo, ThisCode),
gen_conj(Goals, !ByteInfo, OtherCode),
Code = tree(ThisCode, OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for each disjunct of a disjunction.
%
:- pred gen_disj(list(hlds_goal)::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_disj([], _, _, _, _) :-
unexpected(this_file, "empty disjunction in disj").
gen_disj([Disjunct | Disjuncts], EndLabel, !ByteInfo, Code) :-
gen_goal(Disjunct, !ByteInfo, ThisCode),
(
Disjuncts = [],
EnterCode = node([enter_disjunct(-1)]),
EndofCode = node([endof_disjunct(EndLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode])
;
Disjuncts = [_ | _],
gen_disj(Disjuncts, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([enter_disjunct(NextLabel)]),
EndofCode = node([endof_disjunct(EndLabel), label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode])
).
%---------------------------------------------------------------------------%
% Generate bytecode for each arm of a switch.
%
:- pred gen_switch(list(case)::in, prog_var::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_switch([], _, _, !ByteInfo, empty).
gen_switch([case(ConsId, Goal) | Cases], Var, EndLabel,
!ByteInfo, Code) :-
map_cons_id(!.ByteInfo, Var, ConsId, ByteConsId),
gen_goal(Goal, !ByteInfo, ThisCode),
gen_switch(Cases, Var, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([enter_switch_arm(ByteConsId, NextLabel)]),
EndofCode = node([endof_switch_arm(EndLabel), label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode]).
%---------------------------------------------------------------------------%
:- pred map_cons_id(byte_info::in, prog_var::in, cons_id::in,
byte_cons_id::out) is det.
map_cons_id(ByteInfo, Var, ConsId, ByteConsId) :-
get_module_info(ByteInfo, ModuleInfo),
(
ConsId = cons(Functor, Arity),
get_var_type(ByteInfo, Var, Type),
(
% Everything other than characters and tuples should
% be module qualified.
Functor = unqualified(FunctorName),
\+ type_is_tuple(Type, _)
->
string.to_char_list(FunctorName, FunctorList),
( FunctorList = [Char] ->
ByteConsId = char_const(Char)
;
unexpected(this_file, "map_cons_id: " ++
"unqualified cons_id is not a char_const")
)
;
(
Functor = unqualified(FunctorName),
ModuleName = unqualified("builtin")
;
Functor = qualified(ModuleName, FunctorName)
),
ConsTag = cons_id_to_tag(ConsId, Type, ModuleInfo),
map_cons_tag(ConsTag, ByteConsTag),
ByteConsId = cons(ModuleName, FunctorName, Arity, ByteConsTag)
)
;
ConsId = int_const(IntVal),
ByteConsId = int_const(IntVal)
;
ConsId = string_const(StringVal),
ByteConsId = string_const(StringVal)
;
ConsId = float_const(FloatVal),
ByteConsId = float_const(FloatVal)
;
ConsId = pred_const(ShroudedPredProcId, _EvalMethod),
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
proc_id_to_int(ProcId, ProcInt),
ByteConsId = pred_const(ModuleName, PredName, Arity, IsFunc, ProcInt)
;
ConsId = type_ctor_info_const(ModuleName, TypeName, TypeArity),
ByteConsId = type_ctor_info_const(ModuleName, TypeName, TypeArity)
;
ConsId = base_typeclass_info_const(ModuleName, ClassId, _, Instance),
ByteConsId = base_typeclass_info_const(ModuleName, ClassId, Instance)
;
ConsId = type_info_cell_constructor(_),
ByteConsId = type_info_cell_constructor
;
ConsId = typeclass_info_cell_constructor,
ByteConsId = typeclass_info_cell_constructor
;
ConsId = tabling_pointer_const(_),
sorry(this_file, "bytecode cannot implement tabling")
;
ConsId = table_io_decl(_),
sorry(this_file, "bytecode cannot implement table io decl")
;
ConsId = deep_profiling_proc_layout(_),
sorry(this_file, "bytecode cannot implement deep profiling")
).
:- pred map_cons_tag(cons_tag::in, byte_cons_tag::out) is det.
map_cons_tag(no_tag, no_tag).
% `single_functor' is just an optimized version of `unshared_tag(0)'
% this optimization is not important for the bytecode
map_cons_tag(single_functor, unshared_tag(0)).
map_cons_tag(unshared_tag(Primary), unshared_tag(Primary)).
map_cons_tag(shared_remote_tag(Primary, Secondary),
shared_remote_tag(Primary, Secondary)).
map_cons_tag(shared_local_tag(Primary, Secondary),
shared_local_tag(Primary, Secondary)).
map_cons_tag(string_constant(_), _) :-
unexpected(this_file, "string_constant cons tag " ++
"for non-string_constant cons id").
map_cons_tag(int_constant(IntVal), enum_tag(IntVal)).
map_cons_tag(float_constant(_), _) :-
unexpected(this_file, "float_constant cons tag " ++
"for non-float_constant cons id").
map_cons_tag(pred_closure_tag(_, _, _), _) :-
unexpected(this_file, "pred_closure_tag cons tag " ++
"for non-pred_const cons id").
map_cons_tag(type_ctor_info_constant(_, _, _), _) :-
unexpected(this_file, "type_ctor_info_constant cons tag " ++
"for non-type_ctor_info_constant cons id").
map_cons_tag(base_typeclass_info_constant(_, _, _), _) :-
unexpected(this_file, "base_typeclass_info_constant cons tag " ++
"for non-base_typeclass_info_constant cons id").
map_cons_tag(tabling_pointer_constant(_, _), _) :-
unexpected(this_file, "tabling_pointer_constant cons tag " ++
"for non-tabling_pointer_constant cons id").
map_cons_tag(deep_profiling_proc_layout_tag(_, _), _) :-
unexpected(this_file, "deep_profiling_proc_layout_tag cons tag " ++
"for non-deep_profiling_proc_static cons id").
map_cons_tag(table_io_decl_tag(_, _), _) :-
unexpected(this_file, "table_io_decl_tag cons tag " ++
"for non-table_io_decl cons id").
map_cons_tag(reserved_address(_), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
map_cons_tag(shared_with_reserved_addresses(_, _), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
%---------------------------------------------------------------------------%
:- pred create_varmap(list(prog_var)::in, prog_varset::in,
vartypes::in, int::in, map(prog_var, byte_var)::in,
map(prog_var, byte_var)::out, list(byte_var_info)::out) is det.
create_varmap([], _, _, _, !VarMap, []).
create_varmap([Var | VarList], VarSet, VarTypes, N0, !VarMap, VarInfos) :-
map.det_insert(!.VarMap, Var, N0, !:VarMap),
N1 = N0 + 1,
varset.lookup_name(VarSet, Var, VarName),
map.lookup(VarTypes, Var, VarType),
create_varmap(VarList, VarSet, VarTypes, N1, !VarMap, VarInfosTail),
VarInfos = [var_info(VarName, VarType) | VarInfosTail].
%---------------------------------------------------------------------------%(
:- type byte_info
---> byte_info(
byteinfo_varmap :: map(prog_var, byte_var),
byteinfo_vartypes :: vartypes,
byteinfo_moduleinfo :: module_info,
byteinfo_label_counter :: counter,
byteinfo_temp_counter :: counter
).
:- pred init_byte_info(module_info::in, map(prog_var, byte_var)::in,
vartypes::in, byte_info::out) is det.
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo) :-
ByteInfo = byte_info(VarMap, VarTypes, ModuleInfo,
counter.init(0), counter.init(0)).
:- pred get_module_info(byte_info::in, module_info::out) is det.
get_module_info(ByteInfo, ByteInfo ^ byteinfo_moduleinfo).
:- pred map_vars(byte_info::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars(ByteInfo, Vars, ByteVars) :-
map_vars_2(ByteInfo ^ byteinfo_varmap, Vars, ByteVars).
:- pred map_vars_2(map(prog_var, byte_var)::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars_2(_VarMap, [], []).
map_vars_2(VarMap, [Var | Vars], [ByteVar | ByteVars]) :-
map.lookup(VarMap, Var, ByteVar),
map_vars_2(VarMap, Vars, ByteVars).
:- pred map_var(byte_info::in, prog_var::in,
byte_var::out) is det.
map_var(ByteInfo, Var, ByteVar) :-
map.lookup(ByteInfo ^ byteinfo_varmap, Var, ByteVar).
:- pred get_var_type(byte_info::in, prog_var::in,
mer_type::out) is det.
get_var_type(ByteInfo, Var, Type) :-
map.lookup(ByteInfo ^ byteinfo_vartypes, Var, Type).
:- pred get_next_label(int::out, byte_info::in, byte_info::out)
is det.
get_next_label(Label, !ByteInfo) :-
LabelCounter0 = !.ByteInfo ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, LabelCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_label_counter := LabelCounter.
:- pred get_next_temp(int::out, byte_info::in, byte_info::out)
is det.
get_next_temp(Temp, !ByteInfo) :-
TempCounter0 = !.ByteInfo ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, TempCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_temp_counter := TempCounter.
:- pred get_counts(byte_info::in, int::out, int::out) is det.
get_counts(ByteInfo0, Label, Temp) :-
LabelCounter0 = ByteInfo0 ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, _LabelCounter),
TempCounter0 = ByteInfo0 ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, _TempCounter).
%---------------------------------------------------------------------------%
:- pred get_is_func(pred_info::in, byte_is_func::out) is det.
get_is_func(PredInfo, IsFunc) :-
( pred_info_is_pred_or_func(PredInfo) = predicate ->
IsFunc = 0
;
IsFunc = 1
).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "bytecode_gen.m".
%---------------------------------------------------------------------------%
:- end_module bytecode_gen.
%---------------------------------------------------------------------------%