Files
mercury/compiler/prog_util.m
Fergus Henderson d8cfbaf07a Fix the remaining bugs with the handling of partial qualifiers
Estimated hours taken: 10

Fix the remaining bugs with the handling of partial qualifiers
for nested modules.

compiler/module_qual.m:
	Define a new abstract type partial_qualifier_info, and a predicate
	mq_info_get_partial_qualifier_info to get this type from the mq_info.
	Define a new predicate get_partial_qualifiers/3 in module_qual.m
	which is like the old get_partial_qualifiers/2 predicate from
	modules.m except that it takes a partial_qualifier_info and
	uses the information in this to return only the partial qualifiers
	for modules which are visible, rather than returning all partial
	qualifier regardless of whether the modules that they refer to
	are in scope or not.

compiler/prog_util.m:
	Export the `insert_module_qualifier' predicate, for use in the
	definition of get_partial_qualifiers/3.

compiler/hlds_module.m:
compiler/make_hlds.m:
	Change the code for make_hlds__ctors_add and
	hlds_module__pred_table_insert/5 so that they handles partial
	qualifiers properly, computing the partial qualifiers by
	calling get_partial_qualifiers/3 rather than by checking the
	NeedQual variable and calling get_partial_qualifiers/2.

compiler/modules.m:
	Delete the old get_partial_qualifiers/2 predicate.

compiler/hlds_module.m:
	Add a new field to the HLDS containing the partial_qualifier_info.
	Add a partial_qualifier_info parameter to pred_table_insert/5.

compiler/check_typeclass.m:
compiler/make_hlds.m:
	When calling pred_table_insert/5, get the partial_qualifier_info
	from the HLDS and pass it as an extra argument.

tests/hard_coded/sub-modules/nested.m:
tests/hard_coded/sub-modules/nested3.m:
tests/hard_coded/sub-modules/parent.m:
tests/hard_coded/sub-modules/nested.exp:
tests/hard_coded/sub-modules/nested3.exp:
tests/hard_coded/sub-modules/parent.exp:
	Uncomment parts of these test cases which were previously
	commented out because they were not yet supported.

doc/reference_manual.texi:
	Delete the description of this bug.
1999-07-14 14:57:13 +00:00

385 lines
14 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% main author: fjh
% various utility predicates acting on the parse tree data
% structure defined in prog_data.m.
:- module prog_util.
:- interface.
:- import_module prog_data, term.
:- import_module std_util, list.
%-----------------------------------------------------------------------------%
% Returns the name of the module containing public builtins;
% originally this was "mercury_builtin", but it later became
% just "builtin", and it may eventually be renamed "std:builtin".
:- pred mercury_public_builtin_module(sym_name).
:- mode mercury_public_builtin_module(out) is det.
% Returns the name of the module containing private builtins;
% traditionally this was "mercury_builtin", but it later became
% "private_builtin", and it may eventually be renamed
% "std:private_builtin".
:- pred mercury_private_builtin_module(sym_name).
:- mode mercury_private_builtin_module(out) is det.
% Given a symbol name, return its unqualified name.
:- pred unqualify_name(sym_name, string).
:- mode unqualify_name(in, out) is det.
% sym_name_get_module_name(SymName, DefaultModName, ModName):
% Given a symbol name, return the module qualifier(s).
% If the symbol is unqualified, then return the specified default
% module name.
:- pred sym_name_get_module_name(sym_name, module_name, module_name).
:- mode sym_name_get_module_name(in, in, out) is det.
% string_to_sym_name(String, Separator, SymName):
% Convert a string, possibly prefixed with
% module qualifiers (separated by Separator),
% into a symbol name.
%
:- pred string_to_sym_name(string, string, sym_name).
:- mode string_to_sym_name(in, in, out) is det.
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
:- pred match_sym_name(sym_name, sym_name).
:- mode match_sym_name(in, in) is semidet.
% insert_module_qualifier(ModuleName, SymName0, SymName):
% prepend the specified ModuleName onto the module
% qualifiers in SymName0, giving SymName.
:- pred insert_module_qualifier(string, sym_name, sym_name).
:- mode insert_module_qualifier(in, in, out) is det.
% Given a possible module qualified sym_name and a list of
% argument types and a context, construct a term. This is
% used to construct types.
:- pred construct_qualified_term(sym_name, list(term(T)), term(T)).
:- mode construct_qualified_term(in, in, out) is det.
:- pred construct_qualified_term(sym_name, list(term(T)), prog_context, term(T)).
:- mode construct_qualified_term(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name(module_name, string, maybe(pred_or_func),
string, new_pred_id, sym_name).
:- mode make_pred_name(in, in, in, in, in, out) is det.
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name_with_context(module_name, string, pred_or_func,
string, int, int, sym_name).
:- mode make_pred_name_with_context(in, in, in, in, in, in, out) is det.
:- type new_pred_id
---> counter(int, int) % Line number, Counter
; type_subst(tvarset, type_subst)
.
%-----------------------------------------------------------------------------%
% A pred declaration may contains just types, as in
% :- pred list__append(list(T), list(T), list(T)).
% or it may contain both types and modes, as in
% :- pred list__append(list(T)::in, list(T)::in,
% list(T)::output).
%
% This predicate takes the argument list of a pred declaration,
% splits it into two separate lists for the types and (if present)
% the modes.
:- type maybe_modes == maybe(list(mode)).
:- pred split_types_and_modes(list(type_and_mode), list(type), maybe_modes).
:- mode split_types_and_modes(in, out, out) is det.
:- pred split_type_and_mode(type_and_mode, type, maybe(mode)).
:- mode split_type_and_mode(in, out, out) is det.
%-----------------------------------------------------------------------------%
% Perform a substitution on a goal.
:- pred prog_util__rename_in_goal(goal, prog_var, prog_var, goal).
:- mode prog_util__rename_in_goal(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module mercury_to_mercury, (inst).
:- import_module bool, string, int, map, varset.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% We may eventually want to put the standard library into a package "std":
% mercury_public_builtin_module(M) :-
% M = qualified(unqualified("std"), "builtin"))).
% mercury_private_builtin_module(M) :-
% M = qualified(unqualified("std"), "private_builtin"))).
mercury_public_builtin_module(unqualified("builtin")).
mercury_private_builtin_module(unqualified("private_builtin")).
unqualify_name(unqualified(PredName), PredName).
unqualify_name(qualified(_ModuleName, PredName), PredName).
sym_name_get_module_name(unqualified(_), ModuleName, ModuleName).
sym_name_get_module_name(qualified(ModuleName, _PredName), _, ModuleName).
construct_qualified_term(qualified(Module, Name), Args, Context, Term) :-
construct_qualified_term(Module, [], Context, ModuleTerm),
UnqualifiedTerm = term__functor(term__atom(Name), Args, Context),
Term = term__functor(term__atom(":"),
[ModuleTerm, UnqualifiedTerm], Context).
construct_qualified_term(unqualified(Name), Args, Context, Term) :-
Term = term__functor(term__atom(Name), Args, Context).
construct_qualified_term(SymName, Args, Term) :-
term__context_init(Context),
construct_qualified_term(SymName, Args, Context, Term).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
split_types_and_modes(TypesAndModes, Types, MaybeModes) :-
split_types_and_modes_2(TypesAndModes, yes, Types, Modes, Result),
(
Result = yes
->
MaybeModes = yes(Modes)
;
MaybeModes = no
).
:- pred split_types_and_modes_2(list(type_and_mode), bool,
list(type), list(mode), bool).
:- mode split_types_and_modes_2(in, in, out, out, out) is det.
% T = type, M = mode, TM = combined type and mode
split_types_and_modes_2([], Result, [], [], Result).
split_types_and_modes_2([TM|TMs], Result0, [T|Ts], [M|Ms], Result) :-
split_type_and_mode(TM, Result0, T, M, Result1),
split_types_and_modes_2(TMs, Result1, Ts, Ms, Result).
% if a pred declaration specifies modes for some but
% not all of the arguments, then the modes are ignored
% - should this be an error instead?
:- pred split_type_and_mode(type_and_mode, bool, type, mode, bool).
:- mode split_type_and_mode(in, in, out, out, out) is det.
split_type_and_mode(type_only(T), _, T, (free -> free), no).
split_type_and_mode(type_and_mode(T,M), R, T, M, R).
split_type_and_mode(type_only(T), T, no).
split_type_and_mode(type_and_mode(T,M), T, yes(M)).
%-----------------------------------------------------------------------------%
prog_util__rename_in_goal(Goal0 - Context, OldVar, NewVar, Goal - Context) :-
prog_util__rename_in_goal_expr(Goal0, OldVar, NewVar, Goal).
:- pred prog_util__rename_in_goal_expr(goal_expr, prog_var, prog_var,
goal_expr).
:- mode prog_util__rename_in_goal_expr(in, in, in, out) is det.
prog_util__rename_in_goal_expr((GoalA0, GoalB0), OldVar, NewVar,
(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr((GoalA0 & GoalB0), OldVar, NewVar,
(GoalA & GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(true, _Var, _NewVar, true).
prog_util__rename_in_goal_expr((GoalA0; GoalB0), OldVar, NewVar,
(GoalA; GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(fail, _Var, _NewVar, fail).
prog_util__rename_in_goal_expr(not(Goal0), OldVar, NewVar, not(Goal)) :-
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(some(Vars0, Goal0), OldVar, NewVar,
some(Vars, Goal)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(all(Vars0, Goal0), OldVar, NewVar,
all(Vars, Goal)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(implies(GoalA0, GoalB0), OldVar, NewVar,
implies(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(equivalent(GoalA0, GoalB0), OldVar, NewVar,
equivalent(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(if_then(Vars0, Cond0, Then0), OldVar, NewVar,
if_then(Vars, Cond, Then)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Cond0, OldVar, NewVar, Cond),
prog_util__rename_in_goal(Then0, OldVar, NewVar, Then).
prog_util__rename_in_goal_expr(if_then_else(Vars0, Cond0, Then0, Else0),
OldVar, NewVar, if_then_else(Vars, Cond, Then, Else)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Cond0, OldVar, NewVar, Cond),
prog_util__rename_in_goal(Then0, OldVar, NewVar, Then),
prog_util__rename_in_goal(Else0, OldVar, NewVar, Else).
prog_util__rename_in_goal_expr(call(SymName, Terms0, Purity), OldVar, NewVar,
call(SymName, Terms, Purity)) :-
term__substitute_list(Terms0, OldVar, term__variable(NewVar),
Terms).
prog_util__rename_in_goal_expr(unify(TermA0, TermB0), OldVar, NewVar,
unify(TermA, TermB)) :-
term__substitute(TermA0, OldVar, term__variable(NewVar),
TermA),
term__substitute(TermB0, OldVar, term__variable(NewVar),
TermB).
:- pred prog_util__rename_in_vars(list(prog_var), prog_var, prog_var,
list(prog_var)).
:- mode prog_util__rename_in_vars(in, in, in, out) is det.
prog_util__rename_in_vars([], _, _, []).
prog_util__rename_in_vars([Var0 | Vars0], OldVar, NewVar, [Var | Vars]) :-
( Var0 = OldVar ->
Var = NewVar
;
Var = Var0
),
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars).
%-----------------------------------------------------------------------------%
% This would be simpler if we had a string__rev_sub_string_search/3 pred.
% With that, we could search for underscores right-to-left,
% and construct the resulting symbol directly.
% Instead, we search for them left-to-right, and then call
% insert_module_qualifier to fix things up.
string_to_sym_name(String, ModuleSeparator, Result) :-
(
string__sub_string_search(String, ModuleSeparator, LeftLength),
LeftLength > 0
->
string__left(String, LeftLength, ModuleName),
string__length(String, StringLength),
string__length(ModuleSeparator, SeparatorLength),
RightLength is StringLength - LeftLength - SeparatorLength,
string__right(String, RightLength, Name),
string_to_sym_name(Name, ModuleSeparator, NameSym),
insert_module_qualifier(ModuleName, NameSym, Result)
;
Result = unqualified(String)
).
insert_module_qualifier(ModuleName, unqualified(PlainName),
qualified(unqualified(ModuleName), PlainName)).
insert_module_qualifier(ModuleName, qualified(ModuleQual0, PlainName),
qualified(ModuleQual, PlainName)) :-
insert_module_qualifier(ModuleName, ModuleQual0, ModuleQual).
%-----------------------------------------------------------------------------%
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
match_sym_name(qualified(Module1, Name), qualified(Module2, Name)) :-
match_sym_name(Module1, Module2).
match_sym_name(unqualified(Name), unqualified(Name)).
match_sym_name(unqualified(Name), qualified(_, Name)).
%-----------------------------------------------------------------------------%
make_pred_name_with_context(ModuleName, Prefix,
PredOrFunc, PredName, Line, Counter, SymName) :-
make_pred_name(ModuleName, Prefix, yes(PredOrFunc), PredName,
counter(Line, Counter), SymName).
make_pred_name(ModuleName, Prefix, MaybePredOrFunc, PredName,
NewPredId, SymName) :-
(
MaybePredOrFunc = yes(PredOrFunc),
(
PredOrFunc = predicate,
PFS = "pred"
;
PredOrFunc = function,
PFS = "func"
)
;
MaybePredOrFunc = no,
PFS = "pred_or_func"
),
(
NewPredId = counter(Line, Counter),
string__format("%d__%d", [i(Line), i(Counter)], PredIdStr)
;
NewPredId = type_subst(VarSet, TypeSubst),
SubstToString = lambda([SubstElem::in, SubstStr::out] is det, (
SubstElem = Var - Type,
varset__lookup_name(VarSet, Var, VarName),
mercury_type_to_string(VarSet, Type, TypeString),
string__append_list([VarName, " = ", TypeString],
SubstStr)
)),
list_to_string(SubstToString, TypeSubst, PredIdStr)
),
string__format("%s__%s__%s__%s",
[s(Prefix), s(PFS), s(PredName), s(PredIdStr)], Name),
SymName = qualified(ModuleName, Name).
:- pred list_to_string(pred(T, string), list(T), string).
:- mode list_to_string(pred(in, out) is det, in, out) is det.
list_to_string(Pred, List, String) :-
list_to_string_2(Pred, List, Strings, ["]"]),
string__append_list(["[" | Strings], String).
:- pred list_to_string_2(pred(T, string), list(T), list(string), list(string)).
:- mode list_to_string_2(pred(in, out) is det, in, out, in) is det.
list_to_string_2(_, []) --> [].
list_to_string_2(Pred, [T | Ts]) -->
{ call(Pred, T, String) },
[String],
( { Ts = [] } ->
[]
;
[", "],
list_to_string_2(Pred, Ts)
).
%-----------------------------------------------------------------------------%