mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-21 00:39:37 +00:00
Estimated hours taken: 40
(to do this merge... 100s of hours on the HAL branch
itself by myself and Warwick Harvey though).
Merge the changes from the HAL branch onto the main branch. With the recent
changes made to the HAL implementation, this means adding just one grade,
`.rt' or --reserve-tag, which reserves one tag (zero) in each type for
use by HAL's Herbrand constraint solver. This disables no-tag types and
enumerations.
This grade will now bootstrap, and passes all tests, except for a few failing
cases in the debugger and tabling directories.
compiler/options.m:
compiler/handle_options.m:
Add the `.rt' or --reserve-tag grade option.
runtime/mercury_conf_param.h:
Document the macro MR_RESERVE_TAG
doc/user_guide.texi:
Document the `.rt' grade.
compiler/make_hlds.m:
Don't record any types as no-tag types if we are in a .rt grade.
compiler/make_tags.m:
compiler/type_ctor_info.m:
Allocate tags starting from `1' in .rt grades.
compiler/rtti_out.m:
In .rt grades, output a dummy ptag definition for tag `0'.
compiler/type_util.m:
Add predicates `type_util__constructors_are_dummy_argument_type' and
`type_constructors_are_type_info' for use when allocating tags to
ensure that type infos and dummy types (io__state/0 and store__store/1)
are still treated as no-tag types in .rt grades.
library/sparse_bitset.m:
When allocating a sparse bitset element, use tag `1' if we are in a
.rt grade.
runtime/mercury_tags.h:
Define a macro `MR_UNIV_TAG' which is `1' is we in a .rt grade and
`0' otherwise. (Now that univ is a user defined type, it is a also
assigned a `var' tag).
Also make the definitions of MR_RAW_TAG_NIL and MR_RAW_TAG_CONS take the
.rt grade into account.
runtime/mercury_type_info.h:
Define `MR_unravel_univ' and
`MR_initialise_univ' for taking apart and putting together univs.
Add a new secondary tag alternative: MR_SECTAG_VARIABLE, used to
represent Herbrand variables.
library/std_util.m:
Use MR_UNIV_TAG, MR_unravel_univ and MR_initialise_univ when
manipulating univs.
Handle the new MR_SECTAG_VARIABLE secondary tag by aborting.
runtime/mercury_deep_copy_body.h:
runtime/mercury_tabling.c:
runtime/mercury_unify_compare_body.h:
Handle the new MR_SECTAG_VARIABLE secondary tag by aborting.
library/std_util.m:
Add a constant for MR_SECTAG_VARIABLE in the MC++ back end.
scripts/canonical_grade.sh-subr:
scripts/init_grade_options.sh-subr:
scripts/mgnuc.in:
scripts/parse_grade_options.sh-subr:
Process the new grade.
scripts/mmake.in:
Add an option `--include-makefile', which includes a Makefile given
as a command line argument into the Makefile generated by mmake.
This is used to implement `halmake', a make program for HAL which
just passes a bunch of extra rules and variable definitions onto
mmake.
tests/debugger/existential_type_classes.m:
tests/hard_coded/existential_types_test.m:
trace/mercury_trace_declarative.c:
trace/mercury_trace_external.c:
trace/mercury_trace_internal.c:
Use MR_UNIV_TAG.
TODO:
- The declarative debugger falls over in .rt grades. This is possibly
because compiler/static_term.m assumes that the generated code uses
the same data representation as the compiler itself. This should be
fixed, although it is not critical; the declarative debugger won't
work with trailing as is, and the .rt grade is only ever used in
conjunction with trailing (.tr) at this stage.
1703 lines
58 KiB
Mathematica
1703 lines
58 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-2001 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% unify_proc.m:
|
|
%
|
|
% This module encapsulates access to the proc_requests table,
|
|
% and constructs the clauses for out-of-line complicated
|
|
% unification procedures.
|
|
% It also generates the code for other compiler-generated type-specific
|
|
% predicates such as compare/3.
|
|
%
|
|
% During mode analysis, we notice each different complicated unification
|
|
% that occurs. For each one we add a new mode to the out-of-line
|
|
% unification predicate for that type, and we record in the `proc_requests'
|
|
% table that we need to eventually modecheck that mode of the unification
|
|
% procedure.
|
|
%
|
|
% After we've done mode analysis for all the ordinary predicates, we then
|
|
% do mode analysis for the out-of-line unification procedures. Note that
|
|
% unification procedures may call other unification procedures which have
|
|
% not yet been encountered, causing new entries to be added to the
|
|
% proc_requests table. We store the entries in a queue and continue the
|
|
% process until the queue is empty.
|
|
%
|
|
% The same queuing mechanism is also used for procedures created by
|
|
% mode inference during mode analysis and unique mode analysis.
|
|
%
|
|
% Currently if the same complicated unification procedure is called by
|
|
% different modules, each module will end up with a copy of the code for
|
|
% that procedure. In the long run it would be desireable to either delay
|
|
% generation of complicated unification procedures until link time (like
|
|
% Cfront does with C++ templates) or to have a smart linker which could
|
|
% merge duplicate definitions (like Borland C++). However the amount of
|
|
% code duplication involved is probably very small, so it's definitely not
|
|
% worth worrying about right now.
|
|
|
|
% XXX What about complicated unification of an abstract type in a partially
|
|
% instantiated mode? Currently we don't implement it correctly. Probably
|
|
% it should be disallowed, but we should issue a proper error message.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module unify_proc.
|
|
|
|
:- interface.
|
|
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data.
|
|
:- import_module mode_info, prog_data, special_pred.
|
|
:- import_module bool, std_util, io, list.
|
|
|
|
:- type proc_requests.
|
|
|
|
:- type unify_proc_id == pair(type_id, uni_mode).
|
|
|
|
% Initialize the proc_requests table.
|
|
|
|
:- pred unify_proc__init_requests(proc_requests::out) is det.
|
|
|
|
% Add a new request for a unification procedure to the
|
|
% proc_requests table.
|
|
|
|
:- pred unify_proc__request_unify(unify_proc_id::in, inst_varset::in,
|
|
determinism::in, prog_context::in, module_info::in, module_info::out)
|
|
is det.
|
|
|
|
% Add a new request for a procedure (not necessarily a unification)
|
|
% to the request queue. Return the procedure's newly allocated
|
|
% proc_id. (This is used by unique_modes.m.)
|
|
|
|
:- pred unify_proc__request_proc(pred_id::in, list(mode)::in, inst_varset::in,
|
|
maybe(list(is_live))::in, maybe(determinism)::in, prog_context::in,
|
|
module_info::in, proc_id::out, module_info::out) is det.
|
|
|
|
% unify_proc__add_lazily_generated_unify_pred(TypeId,
|
|
% UnifyPredId_for_Type, ModuleInfo0, ModuleInfo).
|
|
%
|
|
% For most imported unification procedures, we delay
|
|
% generating declarations and clauses until we know
|
|
% whether they are actually needed because there
|
|
% is a complicated unification involving the type.
|
|
% This predicate is exported for use by higher_order.m
|
|
% when it is specializing calls to unify/2.
|
|
:- pred unify_proc__add_lazily_generated_unify_pred(type_id::in,
|
|
pred_id::out, module_info::in, module_info::out) is det.
|
|
|
|
% unify_proc__add_lazily_generated_compare_pred_decl(TypeId,
|
|
% ComparePredId_for_Type, ModuleInfo0, ModuleInfo).
|
|
%
|
|
% Add declarations, but not clauses, for a compare or index predicate.
|
|
:- pred unify_proc__add_lazily_generated_compare_pred_decl(type_id::in,
|
|
pred_id::out, module_info::in, module_info::out) is det.
|
|
|
|
% Do mode analysis of the queued procedures.
|
|
% If the first argument is `unique_mode_check',
|
|
% then also go on and do full determinism analysis and unique mode
|
|
% analysis on them as well.
|
|
% The pred_table arguments are used to store copies of the
|
|
% procedure bodies before unique mode analysis, so that
|
|
% we can restore them before doing the next analysis pass.
|
|
|
|
:- pred modecheck_queued_procs(how_to_check_goal::in,
|
|
pred_table::in, module_info::in, pred_table::out, module_info::out,
|
|
bool::out, io__state::di, io__state::uo) is det.
|
|
|
|
% Given the type and mode of a unification, look up the
|
|
% mode number for the unification proc.
|
|
|
|
:- pred unify_proc__lookup_mode_num(module_info::in, type_id::in, uni_mode::in,
|
|
determinism::in, proc_id::out) is det.
|
|
|
|
% Generate the clauses for one of the compiler-generated
|
|
% special predicates (compare/3, index/3, unify, etc.)
|
|
|
|
:- pred unify_proc__generate_clause_info(special_pred_id::in, (type)::in,
|
|
hlds_type_body::in, prog_context::in, module_info::in,
|
|
clauses_info::out) is det.
|
|
|
|
% This number gives the maximum number of constructors in a type
|
|
% whose compare procedure can be specialized, and whose compare
|
|
% procedure therefore does need an index procedure on that type.
|
|
|
|
:- func unify_proc__max_exploited_compare_spec_value = int.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module globals, options.
|
|
:- import_module code_util, code_info, type_util.
|
|
:- import_module mercury_to_mercury, hlds_out.
|
|
:- import_module make_hlds, polymorphism, post_typecheck, prog_util, prog_out.
|
|
:- import_module quantification, clause_to_proc, term, varset.
|
|
:- import_module modes, mode_util, inst_match, instmap, (inst).
|
|
:- import_module switch_detection, cse_detection, det_analysis, unique_modes.
|
|
|
|
:- import_module tree, map, set, queue, int, string, require, assoc_list.
|
|
|
|
% We keep track of all the complicated unification procs we need
|
|
% by storing them in the proc_requests structure.
|
|
% For each unify_proc_id (i.e. type & mode), we store the proc_id
|
|
% (mode number) of the unification procedure which corresponds to
|
|
% that mode.
|
|
|
|
:- type unify_req_map == map(unify_proc_id, proc_id).
|
|
|
|
:- type req_queue == queue(pred_proc_id).
|
|
|
|
:- type proc_requests --->
|
|
proc_requests(
|
|
unify_req_map, % the assignment of proc_id
|
|
% numbers to unify_proc_ids
|
|
req_queue % queue of procs we still need
|
|
% to generate code for
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
unify_proc__init_requests(Requests) :-
|
|
map__init(UnifyReqMap),
|
|
queue__init(ReqQueue),
|
|
Requests = proc_requests(UnifyReqMap, ReqQueue).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Boring access predicates
|
|
|
|
:- pred unify_proc__get_unify_req_map(proc_requests, unify_req_map).
|
|
:- mode unify_proc__get_unify_req_map(in, out) is det.
|
|
|
|
:- pred unify_proc__get_req_queue(proc_requests, req_queue).
|
|
:- mode unify_proc__get_req_queue(in, out) is det.
|
|
|
|
:- pred unify_proc__set_unify_req_map(proc_requests, unify_req_map,
|
|
proc_requests).
|
|
:- mode unify_proc__set_unify_req_map(in, in, out) is det.
|
|
|
|
:- pred unify_proc__set_req_queue(proc_requests, req_queue, proc_requests).
|
|
:- mode unify_proc__set_req_queue(in, in, out) is det.
|
|
|
|
unify_proc__get_unify_req_map(proc_requests(UnifyReqMap, _), UnifyReqMap).
|
|
|
|
unify_proc__get_req_queue(proc_requests(_, ReqQueue), ReqQueue).
|
|
|
|
unify_proc__set_unify_req_map(proc_requests(_, B), UnifyReqMap,
|
|
proc_requests(UnifyReqMap, B)).
|
|
|
|
unify_proc__set_req_queue(proc_requests(A, _), ReqQueue,
|
|
proc_requests(A, ReqQueue)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
unify_proc__lookup_mode_num(ModuleInfo, TypeId, UniMode, Det, Num) :-
|
|
( unify_proc__search_mode_num(ModuleInfo, TypeId, UniMode, Det, Num1) ->
|
|
Num = Num1
|
|
;
|
|
error("unify_proc.m: unify_proc__search_num failed")
|
|
).
|
|
|
|
:- pred unify_proc__search_mode_num(module_info, type_id, uni_mode, determinism,
|
|
proc_id).
|
|
:- mode unify_proc__search_mode_num(in, in, in, in, out) is semidet.
|
|
|
|
% Given the type, mode, and determinism of a unification, look up the
|
|
% mode number for the unification proc.
|
|
% We handle semidet unifications with mode (in, in) specially - they
|
|
% are always mode zero. Similarly for unifications of `any' insts.
|
|
% (It should be safe to use the `in, in' mode for any insts, since
|
|
% we assume that `ground' and `any' have the same representation.)
|
|
% For unreachable unifications, we also use mode zero.
|
|
|
|
unify_proc__search_mode_num(ModuleInfo, TypeId, UniMode, Determinism, ProcId) :-
|
|
UniMode = (XInitial - YInitial -> _Final),
|
|
(
|
|
Determinism = semidet,
|
|
inst_is_ground_or_any(ModuleInfo, XInitial),
|
|
inst_is_ground_or_any(ModuleInfo, YInitial)
|
|
->
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
;
|
|
XInitial = not_reached
|
|
->
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
;
|
|
YInitial = not_reached
|
|
->
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
;
|
|
module_info_get_proc_requests(ModuleInfo, Requests),
|
|
unify_proc__get_unify_req_map(Requests, UnifyReqMap),
|
|
map__search(UnifyReqMap, TypeId - UniMode, ProcId)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
unify_proc__request_unify(UnifyId, InstVarSet, Determinism, Context,
|
|
ModuleInfo0, ModuleInfo) :-
|
|
%
|
|
% check if this unification has already been requested, or
|
|
% if the proc is hand defined.
|
|
%
|
|
UnifyId = TypeId - UnifyMode,
|
|
(
|
|
(
|
|
unify_proc__search_mode_num(ModuleInfo0, TypeId,
|
|
UnifyMode, Determinism, _)
|
|
;
|
|
TypeId = TypeName - _TypeArity,
|
|
TypeName = qualified(TypeModuleName, _),
|
|
module_info_name(ModuleInfo0, ModuleName),
|
|
ModuleName = TypeModuleName,
|
|
module_info_types(ModuleInfo0, TypeTable),
|
|
map__search(TypeTable, TypeId, TypeDefn),
|
|
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
|
|
TypeBody = abstract_type
|
|
;
|
|
type_id_has_hand_defined_rtti(TypeId)
|
|
)
|
|
->
|
|
ModuleInfo = ModuleInfo0
|
|
;
|
|
%
|
|
% lookup the pred_id for the unification procedure
|
|
% that we are going to generate
|
|
%
|
|
module_info_get_special_pred_map(ModuleInfo0, SpecialPredMap),
|
|
( map__search(SpecialPredMap, unify - TypeId, PredId0) ->
|
|
PredId = PredId0,
|
|
ModuleInfo1 = ModuleInfo0
|
|
;
|
|
% We generate unification predicates for most
|
|
% imported types lazily, so add the declarations
|
|
% and clauses now.
|
|
unify_proc__add_lazily_generated_unify_pred(TypeId,
|
|
PredId, ModuleInfo0, ModuleInfo1)
|
|
),
|
|
|
|
% convert from `uni_mode' to `list(mode)'
|
|
UnifyMode = ((X_Initial - Y_Initial) -> (X_Final - Y_Final)),
|
|
ArgModes0 = [(X_Initial -> X_Final), (Y_Initial -> Y_Final)],
|
|
|
|
% for polymorphic types, add extra modes for the type_infos
|
|
in_mode(InMode),
|
|
TypeId = _ - TypeArity,
|
|
list__duplicate(TypeArity, InMode, TypeInfoModes),
|
|
list__append(TypeInfoModes, ArgModes0, ArgModes),
|
|
|
|
ArgLives = no, % XXX ArgLives should be part of the UnifyId
|
|
|
|
unify_proc__request_proc(PredId, ArgModes, InstVarSet, ArgLives,
|
|
yes(Determinism), Context, ModuleInfo1,
|
|
ProcId, ModuleInfo2),
|
|
|
|
%
|
|
% save the proc_id for this unify_proc_id
|
|
%
|
|
module_info_get_proc_requests(ModuleInfo2, Requests0),
|
|
unify_proc__get_unify_req_map(Requests0, UnifyReqMap0),
|
|
map__set(UnifyReqMap0, UnifyId, ProcId, UnifyReqMap),
|
|
unify_proc__set_unify_req_map(Requests0, UnifyReqMap, Requests),
|
|
module_info_set_proc_requests(ModuleInfo2, Requests,
|
|
ModuleInfo)
|
|
).
|
|
|
|
unify_proc__request_proc(PredId, ArgModes, InstVarSet, ArgLives, MaybeDet,
|
|
Context, ModuleInfo0, ProcId, ModuleInfo) :-
|
|
%
|
|
% create a new proc_info for this procedure
|
|
%
|
|
module_info_preds(ModuleInfo0, Preds0),
|
|
map__lookup(Preds0, PredId, PredInfo0),
|
|
list__length(ArgModes, Arity),
|
|
DeclaredArgModes = no,
|
|
add_new_proc(PredInfo0, InstVarSet, Arity, ArgModes, DeclaredArgModes,
|
|
ArgLives, MaybeDet, Context, address_is_not_taken,
|
|
PredInfo1, ProcId),
|
|
|
|
%
|
|
% copy the clauses for the procedure from the pred_info to the
|
|
% proc_info, and mark the procedure as one that cannot
|
|
% be processed yet
|
|
%
|
|
pred_info_procedures(PredInfo1, Procs1),
|
|
pred_info_clauses_info(PredInfo1, ClausesInfo),
|
|
map__lookup(Procs1, ProcId, ProcInfo0),
|
|
proc_info_set_can_process(ProcInfo0, no, ProcInfo1),
|
|
|
|
copy_clauses_to_proc(ProcId, ClausesInfo, ProcInfo1, ProcInfo2),
|
|
|
|
proc_info_goal(ProcInfo2, Goal0),
|
|
set_goal_contexts(Context, Goal0, Goal),
|
|
proc_info_set_goal(ProcInfo2, Goal, ProcInfo),
|
|
map__det_update(Procs1, ProcId, ProcInfo, Procs2),
|
|
pred_info_set_procedures(PredInfo1, Procs2, PredInfo2),
|
|
map__det_update(Preds0, PredId, PredInfo2, Preds2),
|
|
module_info_set_preds(ModuleInfo0, Preds2, ModuleInfo2),
|
|
|
|
%
|
|
% insert the pred_proc_id into the request queue
|
|
%
|
|
module_info_get_proc_requests(ModuleInfo2, Requests0),
|
|
unify_proc__get_req_queue(Requests0, ReqQueue0),
|
|
queue__put(ReqQueue0, proc(PredId, ProcId), ReqQueue),
|
|
unify_proc__set_req_queue(Requests0, ReqQueue, Requests),
|
|
module_info_set_proc_requests(ModuleInfo2, Requests, ModuleInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% XXX these belong in modes.m
|
|
|
|
modecheck_queued_procs(HowToCheckGoal, OldPredTable0, ModuleInfo0,
|
|
OldPredTable, ModuleInfo, Changed) -->
|
|
{ module_info_get_proc_requests(ModuleInfo0, Requests0) },
|
|
{ unify_proc__get_req_queue(Requests0, RequestQueue0) },
|
|
(
|
|
{ queue__get(RequestQueue0, PredProcId, RequestQueue1) }
|
|
->
|
|
{ unify_proc__set_req_queue(Requests0, RequestQueue1,
|
|
Requests1) },
|
|
{ module_info_set_proc_requests(ModuleInfo0, Requests1,
|
|
ModuleInfo1) },
|
|
%
|
|
% Check that the procedure is valid (i.e. type-correct),
|
|
% before we attempt to do mode analysis on it.
|
|
% This check is necessary to avoid internal errors
|
|
% caused by doing mode analysis on type-incorrect code.
|
|
% XXX inefficient! This is O(N*M).
|
|
%
|
|
{ PredProcId = proc(PredId, _ProcId) },
|
|
{ module_info_predids(ModuleInfo1, ValidPredIds) },
|
|
( { list__member(PredId, ValidPredIds) } ->
|
|
queued_proc_progress_message(PredProcId,
|
|
HowToCheckGoal, ModuleInfo1),
|
|
modecheck_queued_proc(HowToCheckGoal, PredProcId,
|
|
OldPredTable0, ModuleInfo1,
|
|
OldPredTable2, ModuleInfo2, Changed1)
|
|
;
|
|
{ OldPredTable2 = OldPredTable0 },
|
|
{ ModuleInfo2 = ModuleInfo1 },
|
|
{ Changed1 = no }
|
|
),
|
|
modecheck_queued_procs(HowToCheckGoal, OldPredTable2,
|
|
ModuleInfo2, OldPredTable, ModuleInfo, Changed2),
|
|
{ bool__or(Changed1, Changed2, Changed) }
|
|
;
|
|
{ OldPredTable = OldPredTable0 },
|
|
{ ModuleInfo = ModuleInfo0 },
|
|
{ Changed = no }
|
|
).
|
|
|
|
:- pred queued_proc_progress_message(pred_proc_id, how_to_check_goal,
|
|
module_info, io__state, io__state).
|
|
:- mode queued_proc_progress_message(in, in, in, di, uo) is det.
|
|
|
|
queued_proc_progress_message(PredProcId, HowToCheckGoal, ModuleInfo) -->
|
|
globals__io_lookup_bool_option(very_verbose, VeryVerbose),
|
|
( { VeryVerbose = yes } ->
|
|
%
|
|
% print progress message
|
|
%
|
|
( { HowToCheckGoal = check_unique_modes } ->
|
|
io__write_string(
|
|
"% Analyzing modes, determinism, and unique-modes for\n% ")
|
|
;
|
|
io__write_string("% Mode-analyzing ")
|
|
),
|
|
{ PredProcId = proc(PredId, ProcId) },
|
|
hlds_out__write_pred_proc_id(ModuleInfo, PredId, ProcId),
|
|
io__write_string("\n")
|
|
/*****
|
|
{ mode_list_get_initial_insts(Modes, ModuleInfo1,
|
|
InitialInsts) },
|
|
io__write_string("% Initial insts: `"),
|
|
{ varset__init(InstVarSet) },
|
|
mercury_output_inst_list(InitialInsts, InstVarSet),
|
|
io__write_string("'\n")
|
|
*****/
|
|
;
|
|
[]
|
|
).
|
|
|
|
:- pred modecheck_queued_proc(how_to_check_goal, pred_proc_id, pred_table,
|
|
module_info, pred_table, module_info, bool,
|
|
io__state, io__state).
|
|
:- mode modecheck_queued_proc(in, in, in, in, out, out, out, di, uo) is det.
|
|
|
|
modecheck_queued_proc(HowToCheckGoal, PredProcId, OldPredTable0, ModuleInfo0,
|
|
OldPredTable, ModuleInfo, Changed) -->
|
|
{
|
|
%
|
|
% mark the procedure as ready to be processed
|
|
%
|
|
PredProcId = proc(PredId, ProcId),
|
|
module_info_preds(ModuleInfo0, Preds0),
|
|
map__lookup(Preds0, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, Procs0),
|
|
map__lookup(Procs0, ProcId, ProcInfo0),
|
|
proc_info_set_can_process(ProcInfo0, yes, ProcInfo1),
|
|
map__det_update(Procs0, ProcId, ProcInfo1, Procs1),
|
|
pred_info_set_procedures(PredInfo0, Procs1, PredInfo1),
|
|
map__det_update(Preds0, PredId, PredInfo1, Preds1),
|
|
module_info_set_preds(ModuleInfo0, Preds1, ModuleInfo1)
|
|
},
|
|
|
|
%
|
|
% modecheck the procedure
|
|
%
|
|
modecheck_proc(ProcId, PredId, ModuleInfo1, ModuleInfo2, NumErrors,
|
|
Changed1),
|
|
(
|
|
{ NumErrors \= 0 }
|
|
->
|
|
io__set_exit_status(1),
|
|
{ OldPredTable = OldPredTable0 },
|
|
{ module_info_remove_predid(ModuleInfo2, PredId, ModuleInfo) },
|
|
{ Changed = Changed1 }
|
|
;
|
|
( { HowToCheckGoal = check_unique_modes } ->
|
|
{ detect_switches_in_proc(ProcId, PredId,
|
|
ModuleInfo2, ModuleInfo3) },
|
|
detect_cse_in_proc(ProcId, PredId,
|
|
ModuleInfo3, ModuleInfo4),
|
|
determinism_check_proc(ProcId, PredId,
|
|
ModuleInfo4, ModuleInfo5),
|
|
{ save_proc_info(ProcId, PredId, ModuleInfo5,
|
|
OldPredTable0, OldPredTable) },
|
|
unique_modes__check_proc(ProcId, PredId,
|
|
ModuleInfo5, ModuleInfo,
|
|
Changed2),
|
|
{ bool__or(Changed1, Changed2, Changed) }
|
|
;
|
|
{ OldPredTable = OldPredTable0 },
|
|
{ ModuleInfo = ModuleInfo2 },
|
|
{ Changed = Changed1 }
|
|
)
|
|
).
|
|
|
|
%
|
|
% save a copy of the proc info for the specified procedure in OldProcTable0,
|
|
% giving OldProcTable.
|
|
%
|
|
:- pred save_proc_info(proc_id, pred_id, module_info, pred_table, pred_table).
|
|
:- mode save_proc_info(in, in, in, in, out) is det.
|
|
|
|
save_proc_info(ProcId, PredId, ModuleInfo, OldPredTable0, OldPredTable) :-
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
_PredInfo, ProcInfo),
|
|
map__lookup(OldPredTable0, PredId, OldPredInfo0),
|
|
pred_info_procedures(OldPredInfo0, OldProcTable0),
|
|
map__set(OldProcTable0, ProcId, ProcInfo, OldProcTable),
|
|
pred_info_set_procedures(OldPredInfo0, OldProcTable, OldPredInfo),
|
|
map__det_update(OldPredTable0, PredId, OldPredInfo, OldPredTable).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
unify_proc__add_lazily_generated_unify_pred(TypeId,
|
|
PredId, ModuleInfo0, ModuleInfo) :-
|
|
(
|
|
type_id_is_tuple(TypeId)
|
|
->
|
|
TypeId = _ - TupleArity,
|
|
|
|
%
|
|
% Build a hlds_type_body for the tuple constructor, which will
|
|
% be used by unify_proc__generate_clause_info.
|
|
%
|
|
|
|
varset__init(TVarSet0),
|
|
varset__new_vars(TVarSet0, TupleArity, TupleArgTVars, TVarSet),
|
|
term__var_list_to_term_list(TupleArgTVars, TupleArgTypes),
|
|
|
|
% Tuple constructors can't be existentially quantified.
|
|
ExistQVars = [],
|
|
ClassConstraints = [],
|
|
|
|
MakeUnamedField = (func(ArgType) = no - ArgType),
|
|
CtorArgs = list__map(MakeUnamedField, TupleArgTypes),
|
|
|
|
Ctor = ctor(ExistQVars, ClassConstraints,
|
|
CtorSymName, CtorArgs),
|
|
|
|
CtorSymName = unqualified("{}"),
|
|
ConsId = cons(CtorSymName, TupleArity),
|
|
map__from_assoc_list([ConsId - unshared_tag(0)],
|
|
ConsTagValues),
|
|
UnifyPred = no,
|
|
IsEnum = no,
|
|
TypeBody = du_type([Ctor], ConsTagValues, IsEnum, UnifyPred),
|
|
construct_type(TypeId, TupleArgTypes, Type),
|
|
|
|
term__context_init(Context)
|
|
;
|
|
unify_proc__collect_type_defn(ModuleInfo0, TypeId,
|
|
Type, TVarSet, TypeBody, Context)
|
|
),
|
|
|
|
% Call make_hlds.m to construct the unification predicate.
|
|
( can_generate_special_pred_clauses_for_type(TypeId, TypeBody) ->
|
|
% If the unification predicate has another status it should
|
|
% already have been generated.
|
|
UnifyPredStatus = pseudo_imported,
|
|
Item = clauses
|
|
;
|
|
UnifyPredStatus = imported(implementation),
|
|
Item = declaration
|
|
),
|
|
|
|
unify_proc__add_lazily_generated_special_pred(unify, Item,
|
|
TVarSet, Type, TypeId, TypeBody, Context, UnifyPredStatus,
|
|
PredId, ModuleInfo0, ModuleInfo).
|
|
|
|
unify_proc__add_lazily_generated_compare_pred_decl(TypeId,
|
|
PredId, ModuleInfo0, ModuleInfo) :-
|
|
unify_proc__collect_type_defn(ModuleInfo0, TypeId, Type,
|
|
TVarSet, TypeBody, Context),
|
|
|
|
% If the compare predicate has another status it should
|
|
% already have been generated.
|
|
ImportStatus = imported(implementation),
|
|
|
|
unify_proc__add_lazily_generated_special_pred(compare, declaration,
|
|
TVarSet, Type, TypeId, TypeBody, Context, ImportStatus,
|
|
PredId, ModuleInfo0, ModuleInfo).
|
|
|
|
:- pred unify_proc__add_lazily_generated_special_pred(special_pred_id,
|
|
unify_pred_item, tvarset, type, type_id, hlds_type_body,
|
|
context, import_status, pred_id, module_info, module_info).
|
|
:- mode unify_proc__add_lazily_generated_special_pred(in, in, in, in, in, in,
|
|
in, in, out, in, out) is det.
|
|
|
|
unify_proc__add_lazily_generated_special_pred(SpecialId, Item,
|
|
TVarSet, Type, TypeId, TypeBody, Context, PredStatus,
|
|
PredId, ModuleInfo0, ModuleInfo) :-
|
|
%
|
|
% Add the declaration and maybe clauses.
|
|
%
|
|
(
|
|
Item = clauses,
|
|
make_hlds__add_special_pred_for_real(SpecialId, ModuleInfo0,
|
|
TVarSet, Type, TypeId, TypeBody, Context,
|
|
PredStatus, ModuleInfo1)
|
|
;
|
|
Item = declaration,
|
|
make_hlds__add_special_pred_decl_for_real(SpecialId,
|
|
ModuleInfo0, TVarSet, Type, TypeId,
|
|
Context, PredStatus, ModuleInfo1)
|
|
),
|
|
|
|
module_info_get_special_pred_map(ModuleInfo1, SpecialPredMap),
|
|
map__lookup(SpecialPredMap, SpecialId - TypeId, PredId),
|
|
module_info_pred_info(ModuleInfo1, PredId, PredInfo0),
|
|
|
|
%
|
|
% The clauses are generated with all type information computed,
|
|
% so just go on to post_typecheck.
|
|
%
|
|
(
|
|
Item = clauses,
|
|
post_typecheck__finish_pred_no_io(ModuleInfo1,
|
|
ErrorProcs, PredInfo0, PredInfo)
|
|
;
|
|
Item = declaration,
|
|
post_typecheck__finish_imported_pred_no_io(ModuleInfo1,
|
|
ErrorProcs, PredInfo0, PredInfo)
|
|
),
|
|
require(unify(ErrorProcs, []),
|
|
"unify_proc__add_lazily_generated_special_pred: error in post_typecheck"),
|
|
|
|
%
|
|
% Call polymorphism to introduce type_info arguments
|
|
% for polymorphic types.
|
|
%
|
|
module_info_set_pred_info(ModuleInfo1, PredId, PredInfo, ModuleInfo2),
|
|
|
|
%
|
|
% Note that this will not work if the generated clauses call
|
|
% a polymorphic predicate which requires type_infos to be added.
|
|
% Such calls can be generated by unify_proc__generate_clause_info,
|
|
% but unification predicates which contain such calls are never
|
|
% generated lazily.
|
|
%
|
|
polymorphism__process_generated_pred(PredId, ModuleInfo2, ModuleInfo).
|
|
|
|
:- type unify_pred_item
|
|
---> declaration
|
|
; clauses
|
|
.
|
|
|
|
:- pred unify_proc__collect_type_defn(module_info,
|
|
type_id, type, tvarset, hlds_type_body, prog_context).
|
|
:- mode unify_proc__collect_type_defn(in, in, out, out, out, out) is det.
|
|
|
|
unify_proc__collect_type_defn(ModuleInfo0, TypeId, Type,
|
|
TVarSet, TypeBody, Context) :-
|
|
module_info_types(ModuleInfo0, Types),
|
|
map__lookup(Types, TypeId, TypeDefn),
|
|
hlds_data__get_type_defn_tvarset(TypeDefn, TVarSet),
|
|
hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
|
|
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
|
|
hlds_data__get_type_defn_status(TypeDefn, TypeStatus),
|
|
hlds_data__get_type_defn_context(TypeDefn, Context),
|
|
|
|
require(special_pred_is_generated_lazily(ModuleInfo0,
|
|
TypeId, TypeBody, TypeStatus),
|
|
"unify_proc__add_lazily_generated_unify_pred"),
|
|
|
|
construct_type(TypeId, TypeParams, Type).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
unify_proc__generate_clause_info(SpecialPredId, Type, TypeBody, Context,
|
|
ModuleInfo, ClauseInfo) :-
|
|
( TypeBody = eqv_type(EqvType) ->
|
|
HeadVarType = EqvType
|
|
;
|
|
HeadVarType = Type
|
|
),
|
|
special_pred_info(SpecialPredId, HeadVarType,
|
|
_PredName, ArgTypes, _Modes, _Det),
|
|
unify_proc__info_init(ModuleInfo, VarTypeInfo0),
|
|
unify_proc__make_fresh_named_vars_from_types(ArgTypes, "HeadVar__", 1,
|
|
Args, VarTypeInfo0, VarTypeInfo1),
|
|
( SpecialPredId = unify, Args = [H1, H2] ->
|
|
unify_proc__generate_unify_clauses(TypeBody, H1, H2,
|
|
Context, Clauses, VarTypeInfo1, VarTypeInfo)
|
|
; SpecialPredId = index, Args = [X, Index] ->
|
|
unify_proc__generate_index_clauses(TypeBody,
|
|
X, Index, Context, Clauses, VarTypeInfo1, VarTypeInfo)
|
|
; SpecialPredId = compare, Args = [Res, X, Y] ->
|
|
unify_proc__generate_compare_clauses(Type, TypeBody,
|
|
Res, X, Y, Context, Clauses, VarTypeInfo1, VarTypeInfo)
|
|
;
|
|
error("unknown special pred")
|
|
),
|
|
unify_proc__info_extract(VarTypeInfo, VarSet, Types),
|
|
map__init(TVarNameMap),
|
|
map__init(TI_VarMap),
|
|
map__init(TCI_VarMap),
|
|
ClauseInfo = clauses_info(VarSet, Types, TVarNameMap,
|
|
Types, Args, Clauses, TI_VarMap, TCI_VarMap).
|
|
|
|
:- pred unify_proc__generate_unify_clauses(hlds_type_body, prog_var, prog_var,
|
|
prog_context, list(clause), unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__generate_unify_clauses(in, in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_proc__generate_unify_clauses(TypeBody, H1, H2, Context, Clauses) -->
|
|
(
|
|
{ TypeBody = du_type(Ctors, _, IsEnum, MaybeEqPred) },
|
|
( { MaybeEqPred = yes(PredName) } ->
|
|
%
|
|
% Just generate a call to the specified predicate,
|
|
% which is the user-defined equality pred for this
|
|
% type.
|
|
% (The pred_id and proc_id will be figured
|
|
% out by type checking and mode analysis.)
|
|
%
|
|
{ invalid_pred_id(PredId) },
|
|
{ invalid_proc_id(ModeId) },
|
|
{ Call = call(PredId, ModeId, [H1, H2], not_builtin,
|
|
no, PredName) },
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context,
|
|
GoalInfo) },
|
|
{ Goal = Call - GoalInfo },
|
|
unify_proc__quantify_clauses_body([H1, H2], Goal,
|
|
Context, Clauses)
|
|
; { IsEnum = yes } ->
|
|
%
|
|
% Enumerations are atomic types, so modecheck_unify.m
|
|
% will treat this unification as a simple_test, not
|
|
% a complicated_unify.
|
|
%
|
|
{ create_atomic_unification(H1, var(H2),
|
|
Context, explicit, [], Goal) },
|
|
unify_proc__quantify_clauses_body([H1, H2], Goal,
|
|
Context, Clauses)
|
|
;
|
|
unify_proc__generate_du_unify_clauses(Ctors, H1, H2,
|
|
Context, Clauses)
|
|
)
|
|
;
|
|
{ TypeBody = eqv_type(_Type) },
|
|
% We should check whether _Type is a type variable,
|
|
% an abstract type or a concrete type.
|
|
% If it is type variable, then we should generate the same code
|
|
% we generate now. If it is an abstract type, we should call
|
|
% its unification procedure directly; if it is a concrete type,
|
|
% we should generate the body of its unification procedure
|
|
% inline here.
|
|
%
|
|
% XXX Somebody should document here what the later stages
|
|
% of the compiler do to prevent an infinite recursion here.
|
|
{ create_atomic_unification(H1, var(H2), Context, explicit, [],
|
|
Goal) },
|
|
unify_proc__quantify_clauses_body([H1, H2], Goal, Context,
|
|
Clauses)
|
|
;
|
|
{ TypeBody = uu_type(_) },
|
|
{ error("trying to create unify proc for uu type") }
|
|
;
|
|
{ TypeBody = abstract_type },
|
|
{ error("trying to create unify proc for abstract type") }
|
|
).
|
|
|
|
% This predicate generates the bodies of index predicates for the
|
|
% types that need index predicates.
|
|
%
|
|
% add_special_preds in make_hlds.m should include index in the list
|
|
% of special preds to define only for the kinds of types which do not
|
|
% lead this predicate to abort.
|
|
|
|
:- pred unify_proc__generate_index_clauses(hlds_type_body, prog_var, prog_var,
|
|
prog_context, list(clause), unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__generate_index_clauses(in, in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_proc__generate_index_clauses(TypeBody, X, Index, Context, Clauses) -->
|
|
(
|
|
{ TypeBody = du_type(Ctors, _, IsEnum, MaybeEqPred) },
|
|
( { MaybeEqPred = yes(_) } ->
|
|
%
|
|
% For non-canonical types, the generated comparison
|
|
% predicate returns an error, and does not call the
|
|
% type's index predicate, so do not generate an index
|
|
% predicate for such types.
|
|
%
|
|
{ error("trying to create index proc for non-canonical type") }
|
|
; { IsEnum = yes } ->
|
|
%
|
|
% For enum types, the generated comparison predicate
|
|
% performs an integer comparison, and does not call the
|
|
% type's index predicate, so do not generate an index
|
|
% predicate for such types.
|
|
%
|
|
{ error("trying to create index proc for enum type") }
|
|
;
|
|
unify_proc__generate_du_index_clauses(Ctors, X, Index,
|
|
Context, 0, Clauses)
|
|
)
|
|
;
|
|
{ TypeBody = eqv_type(_Type) },
|
|
% The only place that the index predicate for a type can ever
|
|
% be called from is the compare predicate for that type.
|
|
% However, the compare predicate for an equivalence type
|
|
% never calls the index predicate for that type; it calls
|
|
% the compare predicate of the expanded type instead.
|
|
%
|
|
% Therefore the clause body we are generating should never be
|
|
% invoked.
|
|
{ error("trying to create index proc for eqv type") }
|
|
;
|
|
{ TypeBody = uu_type(_) },
|
|
{ error("trying to create index proc for uu type") }
|
|
;
|
|
{ TypeBody = abstract_type },
|
|
{ error("trying to create index proc for abstract type") }
|
|
).
|
|
|
|
:- pred unify_proc__generate_compare_clauses((type)::in, hlds_type_body::in,
|
|
prog_var::in, prog_var::in, prog_var::in, prog_context::in,
|
|
list(clause)::out, unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_compare_clauses(Type, TypeBody, Res, H1, H2, Context,
|
|
Clauses) -->
|
|
(
|
|
{ TypeBody = du_type(Ctors, _, IsEnum, MaybeEqPred) },
|
|
( { MaybeEqPred = yes(_) } ->
|
|
%
|
|
% just generate code that will call error/1
|
|
%
|
|
{ ArgVars = [Res, H1, H2] },
|
|
unify_proc__build_call(
|
|
"builtin_compare_non_canonical_type",
|
|
ArgVars, Context, Goal),
|
|
unify_proc__quantify_clauses_body(ArgVars, Goal,
|
|
Context, Clauses)
|
|
; { IsEnum = yes } ->
|
|
{ IntType = int_type },
|
|
unify_proc__info_new_var(IntType, TC1),
|
|
unify_proc__info_new_var(IntType, TC2),
|
|
{ TC1ArgVars = [H1, TC1] },
|
|
unify_proc__build_call("unsafe_type_cast",
|
|
TC1ArgVars, Context, TC1Goal),
|
|
{ TC2ArgVars = [H2, TC2] },
|
|
unify_proc__build_call("unsafe_type_cast",
|
|
TC2ArgVars, Context, TC2Goal),
|
|
{ CompareArgVars = [Res, TC1, TC2] },
|
|
unify_proc__build_call("builtin_compare_int",
|
|
CompareArgVars, Context, CompareGoal),
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context,
|
|
GoalInfo) },
|
|
{ conj_list_to_goal([TC1Goal, TC2Goal, CompareGoal],
|
|
GoalInfo, Goal) },
|
|
{ ArgVars = [Res, H1, H2] },
|
|
unify_proc__quantify_clauses_body(ArgVars, Goal,
|
|
Context, Clauses)
|
|
;
|
|
unify_proc__generate_du_compare_clauses(Type, Ctors,
|
|
Res, H1, H2, Context, Clauses)
|
|
)
|
|
;
|
|
{ TypeBody = eqv_type(_) },
|
|
% We should check whether _Type is a type variable,
|
|
% an abstract type or a concrete type.
|
|
% If it is type variable, then we should generate the same code
|
|
% we generate now. If it is an abstract type, we should call
|
|
% its compare procedure directly; if it is a concrete type,
|
|
% we should generate the body of its compare procedure
|
|
% inline here.
|
|
%
|
|
% XXX Somebody should document here what the later stages
|
|
% of the compiler do to prevent an infinite recursion here.
|
|
{ ArgVars = [Res, H1, H2] },
|
|
unify_proc__build_call("compare", ArgVars, Context, Goal),
|
|
unify_proc__quantify_clauses_body(ArgVars, Goal, Context,
|
|
Clauses)
|
|
;
|
|
{ TypeBody = uu_type(_) },
|
|
{ error("trying to create compare proc for uu type") }
|
|
;
|
|
{ TypeBody = abstract_type },
|
|
{ error("trying to create compare proc for abstract type") }
|
|
).
|
|
|
|
:- pred unify_proc__quantify_clauses_body(list(prog_var)::in, hlds_goal::in,
|
|
prog_context::in, list(clause)::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__quantify_clauses_body(HeadVars, Goal, Context, Clauses) -->
|
|
unify_proc__quantify_clause_body(HeadVars, Goal, Context, Clause),
|
|
{ Clauses = [Clause] }.
|
|
|
|
:- pred unify_proc__quantify_clause_body(list(prog_var)::in, hlds_goal::in,
|
|
prog_context::in, clause::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__quantify_clause_body(HeadVars, Goal, Context, Clause) -->
|
|
unify_proc__info_get_varset(Varset0),
|
|
unify_proc__info_get_types(Types0),
|
|
{ implicitly_quantify_clause_body(HeadVars, Goal, Varset0, Types0,
|
|
Body, Varset, Types, _Warnings) },
|
|
unify_proc__info_set_varset(Varset),
|
|
unify_proc__info_set_types(Types),
|
|
{ Clause = clause([], Body, Context) }.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% For a type such as
|
|
%
|
|
% type t(X) ---> a ; b(int) ; c(X); d(int, X, t)
|
|
%
|
|
% we want to generate code
|
|
%
|
|
% eq(H1, H2) :-
|
|
% (
|
|
% H1 = a,
|
|
% H2 = a
|
|
% ;
|
|
% H1 = b(X1),
|
|
% H2 = b(X2),
|
|
% X1 = X2,
|
|
% ;
|
|
% H1 = c(Y1),
|
|
% H2 = c(Y2),
|
|
% Y1 = Y2,
|
|
% ;
|
|
% H1 = d(A1, B1, C1),
|
|
% H2 = c(A2, B2, C2),
|
|
% A1 = A2,
|
|
% B1 = B2,
|
|
% C1 = C2
|
|
% ).
|
|
|
|
:- pred unify_proc__generate_du_unify_clauses(list(constructor), prog_var,
|
|
prog_var, prog_context, list(clause),
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__generate_du_unify_clauses(in, in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_proc__generate_du_unify_clauses([], _H1, _H2, _Context, []) --> [].
|
|
unify_proc__generate_du_unify_clauses([Ctor | Ctors], H1, H2, Context,
|
|
[Clause | Clauses]) -->
|
|
{ Ctor = ctor(ExistQTVars, _Constraints, FunctorName, ArgTypes) },
|
|
{ list__length(ArgTypes, FunctorArity) },
|
|
{ FunctorConsId = cons(FunctorName, FunctorArity) },
|
|
unify_proc__make_fresh_vars(ArgTypes, ExistQTVars, Vars1),
|
|
unify_proc__make_fresh_vars(ArgTypes, ExistQTVars, Vars2),
|
|
{ create_atomic_unification(
|
|
H1, functor(FunctorConsId, Vars1), Context, explicit, [],
|
|
UnifyH1_Goal) },
|
|
{ create_atomic_unification(
|
|
H2, functor(FunctorConsId, Vars2), Context, explicit, [],
|
|
UnifyH2_Goal) },
|
|
unify_proc__unify_var_lists(ArgTypes, ExistQTVars, Vars1, Vars2,
|
|
UnifyArgs_Goal),
|
|
{ GoalList = [UnifyH1_Goal, UnifyH2_Goal | UnifyArgs_Goal] },
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context,
|
|
GoalInfo) },
|
|
{ conj_list_to_goal(GoalList, GoalInfo, Goal) },
|
|
unify_proc__quantify_clause_body([H1, H2], Goal, Context, Clause),
|
|
unify_proc__generate_du_unify_clauses(Ctors, H1, H2, Context, Clauses).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% For a type such as
|
|
%
|
|
% :- type foo ---> f ; g(a, b, c) ; h(foo).
|
|
%
|
|
% we want to generate code
|
|
%
|
|
% index(X, Index) :-
|
|
% (
|
|
% X = f,
|
|
% Index = 0
|
|
% ;
|
|
% X = g(_, _, _),
|
|
% Index = 1
|
|
% ;
|
|
% X = h(_),
|
|
% Index = 2
|
|
% ).
|
|
|
|
:- pred unify_proc__generate_du_index_clauses(list(constructor), prog_var,
|
|
prog_var, prog_context, int, list(clause),
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__generate_du_index_clauses(in, in, in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_proc__generate_du_index_clauses([], _X, _Index, _Context, _N, []) --> [].
|
|
unify_proc__generate_du_index_clauses([Ctor | Ctors], X, Index, Context, N,
|
|
[Clause | Clauses]) -->
|
|
{ Ctor = ctor(ExistQTVars, _Constraints, FunctorName, ArgTypes) },
|
|
{ list__length(ArgTypes, FunctorArity) },
|
|
{ FunctorConsId = cons(FunctorName, FunctorArity) },
|
|
unify_proc__make_fresh_vars(ArgTypes, ExistQTVars, ArgVars),
|
|
{ create_atomic_unification(
|
|
X, functor(FunctorConsId, ArgVars), Context, explicit, [],
|
|
UnifyX_Goal) },
|
|
{ create_atomic_unification(
|
|
Index, functor(int_const(N), []), Context, explicit, [],
|
|
UnifyIndex_Goal) },
|
|
{ GoalList = [UnifyX_Goal, UnifyIndex_Goal] },
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
{ conj_list_to_goal(GoalList, GoalInfo, Goal) },
|
|
unify_proc__quantify_clause_body([X, Index], Goal, Context, Clause),
|
|
{ N1 is N + 1 },
|
|
unify_proc__generate_du_index_clauses(Ctors, X, Index, Context, N1,
|
|
Clauses).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred unify_proc__generate_du_compare_clauses((type)::in,
|
|
list(constructor)::in, prog_var::in, prog_var::in, prog_var::in,
|
|
prog_context::in, list(clause)::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_du_compare_clauses(Type, Ctors, Res, H1, H2,
|
|
Context, Clauses) -->
|
|
(
|
|
{ Ctors = [] },
|
|
{ error("compare for type with no functors") }
|
|
;
|
|
{ Ctors = [Ctor] },
|
|
unify_proc__info_get_module_info(ModuleInfo),
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_int_option(Globals, compare_specialization,
|
|
CompareSpec) },
|
|
( { CompareSpec >= 1 } ->
|
|
unify_proc__generate_du_one_compare_clause(
|
|
Ctor, Res, H1, H2,
|
|
Context, Clauses)
|
|
;
|
|
unify_proc__generate_du_general_compare_clauses(Type,
|
|
Ctors, Res, H1, H2, Context, Clauses)
|
|
)
|
|
;
|
|
{ Ctors = [Ctor1, Ctor2] },
|
|
unify_proc__info_get_module_info(ModuleInfo),
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_int_option(Globals, compare_specialization,
|
|
CompareSpec) },
|
|
( { CompareSpec >= 2 } ->
|
|
unify_proc__generate_du_two_compare_clauses(
|
|
Ctor1, Ctor2, Res, H1, H2,
|
|
Context, Clauses)
|
|
;
|
|
unify_proc__generate_du_general_compare_clauses(Type,
|
|
Ctors, Res, H1, H2, Context, Clauses)
|
|
)
|
|
;
|
|
{ Ctors = [Ctor1, Ctor2, Ctor3] },
|
|
unify_proc__info_get_module_info(ModuleInfo),
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_int_option(Globals, compare_specialization,
|
|
CompareSpec) },
|
|
( { CompareSpec >= 3 } ->
|
|
unify_proc__generate_du_three_compare_clauses(
|
|
Ctor1, Ctor2, Ctor3, Res, H1, H2,
|
|
Context, Clauses)
|
|
;
|
|
unify_proc__generate_du_general_compare_clauses(Type,
|
|
Ctors, Res, H1, H2, Context, Clauses)
|
|
)
|
|
;
|
|
{ Ctors = [_, _, _, _ | _] },
|
|
unify_proc__generate_du_general_compare_clauses(Type,
|
|
Ctors, Res, H1, H2, Context, Clauses)
|
|
).
|
|
|
|
unify_proc__max_exploited_compare_spec_value = 3.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% For a du type with one function symbol, such as
|
|
%
|
|
% :- type foo ---> f(a, b, c)
|
|
%
|
|
% we want to generate code
|
|
%
|
|
% compare(Res, X, Y) :-
|
|
% X = f(X1, X2, X3), Y = f(Y1, Y2, Y3),
|
|
% ( compare(R1, X1, Y1), R1 \= (=) ->
|
|
% R = R1
|
|
% ; compare(R2, X2, Y2), R2 \= (=) ->
|
|
% R = R2
|
|
% ;
|
|
% compare(R, X3, Y3)
|
|
% ).
|
|
|
|
:- pred unify_proc__generate_du_one_compare_clause(constructor::in,
|
|
prog_var::in, prog_var::in, prog_var::in,
|
|
prog_context::in, list(clause)::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_du_one_compare_clause(Ctor, R, X, Y, Context, Clauses) -->
|
|
unify_proc__generate_compare_case(Ctor, R, X, Y, Context, Goal),
|
|
{ HeadVars = [R, X, Y] },
|
|
unify_proc__quantify_clauses_body(HeadVars, Goal, Context, Clauses).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% For a du type with two or three function symbols, such as
|
|
%
|
|
% :- type foo ---> f(a) ; g(a, b, c)
|
|
%
|
|
% we want to generate code such as
|
|
%
|
|
% compare(Res, X, Y) :-
|
|
% (
|
|
% X = f(X1),
|
|
% Y = f(Y1),
|
|
% compare(R, X1, Y1)
|
|
% ;
|
|
% X = f(_),
|
|
% Y = g(_, _, _),
|
|
% R = (<)
|
|
% ;
|
|
% X = g(_, _, _),
|
|
% Y = f(_),
|
|
% R = (>)
|
|
% ;
|
|
% X = g(X1, X2, X3),
|
|
% Y = g(Y1, Y2, Y3),
|
|
% ( compare(R1, X1, Y1), R1 \= (=) ->
|
|
% R = R1
|
|
% ; compare(R2, X2, Y2), R2 \= (=) ->
|
|
% R = R2
|
|
% ;
|
|
% compare(R, X3, Y3)
|
|
% )
|
|
% ).
|
|
|
|
:- pred unify_proc__generate_du_two_compare_clauses(
|
|
constructor::in, constructor::in, prog_var::in, prog_var::in,
|
|
prog_var::in, prog_context::in, list(clause)::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_du_two_compare_clauses(Ctor1, Ctor2, R, X, Y,
|
|
Context, Clauses) -->
|
|
unify_proc__generate_compare_case(Ctor1, R, X, Y, Context, Case11),
|
|
unify_proc__generate_compare_case(Ctor2, R, X, Y, Context, Case22),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor1, Ctor2, "<",
|
|
R, X, Y, Context, Case12),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor2, Ctor1, ">",
|
|
R, X, Y, Context, Case21),
|
|
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
{ map__init(Empty) },
|
|
{ Goal = disj([Case11, Case12, Case21, Case22], Empty) - GoalInfo },
|
|
{ HeadVars = [R, X, Y] },
|
|
unify_proc__quantify_clauses_body(HeadVars, Goal, Context, Clauses).
|
|
|
|
:- pred unify_proc__generate_du_three_compare_clauses(
|
|
constructor::in, constructor::in, constructor::in,
|
|
prog_var::in, prog_var::in, prog_var::in, prog_context::in,
|
|
list(clause)::out, unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_du_three_compare_clauses(Ctor1, Ctor2, Ctor3, R, X, Y,
|
|
Context, Clauses) -->
|
|
unify_proc__generate_compare_case(Ctor1, R, X, Y, Context, Case11),
|
|
unify_proc__generate_compare_case(Ctor2, R, X, Y, Context, Case22),
|
|
unify_proc__generate_compare_case(Ctor3, R, X, Y, Context, Case33),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor1, Ctor2, "<",
|
|
R, X, Y, Context, Case12),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor1, Ctor3, "<",
|
|
R, X, Y, Context, Case13),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor2, Ctor3, "<",
|
|
R, X, Y, Context, Case23),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor2, Ctor1, ">",
|
|
R, X, Y, Context, Case21),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor3, Ctor1, ">",
|
|
R, X, Y, Context, Case31),
|
|
unify_proc__generate_asymmetric_compare_case(Ctor3, Ctor2, ">",
|
|
R, X, Y, Context, Case32),
|
|
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
{ map__init(Empty) },
|
|
{ Goal = disj([Case11, Case12, Case13, Case21, Case22, Case23,
|
|
Case31, Case32, Case33], Empty) - GoalInfo },
|
|
{ HeadVars = [R, X, Y] },
|
|
unify_proc__quantify_clauses_body(HeadVars, Goal, Context, Clauses).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% For a du type with four or more function symbols, such as
|
|
%
|
|
% :- type foo ---> f ; g(a) ; h(b, foo).
|
|
%
|
|
% we want to generate code
|
|
%
|
|
% compare(Res, X, Y) :-
|
|
% __Index__(X, X_Index), % Call_X_Index
|
|
% __Index__(Y, Y_Index), % Call_Y_Index
|
|
% ( X_Index < Y_Index -> % Call_Less_Than
|
|
% Res = (<) % Return_Less_Than
|
|
% ; X_Index > Y_Index -> % Call_Greater_Than
|
|
% Res = (>) % Return_Greater_Than
|
|
% ;
|
|
% % This disjunction is generated by
|
|
% % unify_proc__generate_compare_cases, below.
|
|
% (
|
|
% X = f, Y = f,
|
|
% R = (=)
|
|
% ;
|
|
% X = g(X1), Y = g(Y1),
|
|
% compare(R, X1, Y1)
|
|
% ;
|
|
% X = h(X1, X2), Y = h(Y1, Y2),
|
|
% ( compare(R1, X1, Y1), R1 \= (=) ->
|
|
% R = R1
|
|
% ;
|
|
% compare(R, X2, Y2)
|
|
% )
|
|
% )
|
|
% ->
|
|
% Res = R % Return_R
|
|
% ;
|
|
% compare_error % Abort
|
|
% ).
|
|
|
|
:- pred unify_proc__generate_du_general_compare_clauses((type)::in,
|
|
list(constructor)::in, prog_var::in, prog_var::in, prog_var::in,
|
|
prog_context::in, list(clause)::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_du_general_compare_clauses(Type, Ctors, Res, X, Y,
|
|
Context, [Clause]) -->
|
|
unify_proc__generate_du_compare_clauses_2(Type, Ctors, Res,
|
|
X, Y, Context, Goal),
|
|
{ HeadVars = [Res, X, Y] },
|
|
unify_proc__quantify_clause_body(HeadVars, Goal, Context, Clause).
|
|
|
|
:- pred unify_proc__generate_du_compare_clauses_2((type)::in,
|
|
list(constructor)::in, prog_var::in, prog_var::in, prog_var::in,
|
|
prog_context::in, hlds_goal::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_du_compare_clauses_2(Type, Ctors, Res, X, Y, Context,
|
|
Goal) -->
|
|
{ IntType = int_type },
|
|
{ mercury_public_builtin_module(MercuryBuiltin) },
|
|
{ construct_type(qualified(MercuryBuiltin, "comparison_result") - 0,
|
|
[], ResType) },
|
|
unify_proc__info_new_var(IntType, X_Index),
|
|
unify_proc__info_new_var(IntType, Y_Index),
|
|
unify_proc__info_new_var(ResType, R),
|
|
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
|
|
{ instmap_delta_from_assoc_list([X_Index - ground(shared, none)],
|
|
X_InstmapDelta) },
|
|
unify_proc__build_specific_call(Type, index, [X, X_Index],
|
|
X_InstmapDelta, det, Context, Call_X_Index),
|
|
{ instmap_delta_from_assoc_list([Y_Index - ground(shared, none)],
|
|
Y_InstmapDelta) },
|
|
unify_proc__build_specific_call(Type, index, [Y, Y_Index],
|
|
Y_InstmapDelta, det, Context, Call_Y_Index),
|
|
|
|
unify_proc__build_call("builtin_int_lt", [X_Index, Y_Index], Context,
|
|
Call_Less_Than),
|
|
unify_proc__build_call("builtin_int_gt", [X_Index, Y_Index], Context,
|
|
Call_Greater_Than),
|
|
|
|
{ create_atomic_unification(
|
|
Res, functor(cons(unqualified("<"), 0), []),
|
|
Context, explicit, [],
|
|
Return_Less_Than) },
|
|
|
|
{ create_atomic_unification(
|
|
Res, functor(cons(unqualified(">"), 0), []),
|
|
Context, explicit, [],
|
|
Return_Greater_Than) },
|
|
|
|
{ create_atomic_unification(Res, var(R), Context, explicit, [],
|
|
Return_R) },
|
|
|
|
unify_proc__generate_compare_cases(Ctors, R, X, Y, Context, Cases),
|
|
{ map__init(Empty) },
|
|
{ CasesGoal = disj(Cases, Empty) - GoalInfo },
|
|
|
|
unify_proc__build_call("compare_error", [], Context, Abort),
|
|
|
|
{ Goal = conj([
|
|
Call_X_Index,
|
|
Call_Y_Index,
|
|
if_then_else([], Call_Less_Than, Return_Less_Than,
|
|
if_then_else([], Call_Greater_Than, Return_Greater_Than,
|
|
if_then_else([], CasesGoal, Return_R, Abort, Empty
|
|
) - GoalInfo, Empty
|
|
) - GoalInfo, Empty
|
|
) - GoalInfo
|
|
]) - GoalInfo }.
|
|
|
|
% unify_proc__generate_compare_cases: for a type such as
|
|
%
|
|
% :- type foo ---> f ; g(a) ; h(b, foo).
|
|
%
|
|
% we want to generate code
|
|
% (
|
|
% X = f, % UnifyX_Goal
|
|
% Y = f, % UnifyY_Goal
|
|
% R = (=) % CompareArgs_Goal
|
|
% ;
|
|
% X = g(X1),
|
|
% Y = g(Y1),
|
|
% compare(R, X1, Y1)
|
|
% ;
|
|
% X = h(X1, X2),
|
|
% Y = h(Y1, Y2),
|
|
% ( compare(R1, X1, Y1), R1 \= (=) ->
|
|
% R = R1
|
|
% ;
|
|
% compare(R, X2, Y2)
|
|
% )
|
|
% )
|
|
|
|
:- pred unify_proc__generate_compare_cases(list(constructor), prog_var,
|
|
prog_var, prog_var, prog_context, list(hlds_goal),
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__generate_compare_cases(in, in, in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_proc__generate_compare_cases([], _R, _X, _Y, _Context, []) --> [].
|
|
unify_proc__generate_compare_cases([Ctor | Ctors], R, X, Y, Context,
|
|
[Case | Cases]) -->
|
|
unify_proc__generate_compare_case(Ctor, R, X, Y, Context, Case),
|
|
unify_proc__generate_compare_cases(Ctors, R, X, Y, Context, Cases).
|
|
|
|
:- pred unify_proc__generate_compare_case(constructor, prog_var, prog_var,
|
|
prog_var, prog_context, hlds_goal,
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__generate_compare_case(in, in, in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_proc__generate_compare_case(Ctor, R, X, Y, Context, Case) -->
|
|
{ Ctor = ctor(ExistQTVars, _Constraints, FunctorName, ArgTypes) },
|
|
{ list__length(ArgTypes, FunctorArity) },
|
|
{ FunctorConsId = cons(FunctorName, FunctorArity) },
|
|
unify_proc__make_fresh_vars(ArgTypes, ExistQTVars, Vars1),
|
|
unify_proc__make_fresh_vars(ArgTypes, ExistQTVars, Vars2),
|
|
{ create_atomic_unification(
|
|
X, functor(FunctorConsId, Vars1), Context, explicit, [],
|
|
UnifyX_Goal) },
|
|
{ create_atomic_unification(
|
|
Y, functor(FunctorConsId, Vars2), Context, explicit, [],
|
|
UnifyY_Goal) },
|
|
unify_proc__compare_args(ArgTypes, ExistQTVars, Vars1, Vars2,
|
|
R, Context, CompareArgs_Goal),
|
|
{ GoalList = [UnifyX_Goal, UnifyY_Goal, CompareArgs_Goal] },
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
{ conj_list_to_goal(GoalList, GoalInfo, Case) }.
|
|
|
|
:- pred unify_proc__generate_asymmetric_compare_case(constructor::in,
|
|
constructor::in, string::in, prog_var::in, prog_var::in, prog_var::in,
|
|
prog_context::in, hlds_goal::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__generate_asymmetric_compare_case(Ctor1, Ctor2, CompareOp, R, X, Y,
|
|
Context, Case) -->
|
|
{ Ctor1 = ctor(ExistQTVars1, _Constraints1, FunctorName1, ArgTypes1) },
|
|
{ Ctor2 = ctor(ExistQTVars2, _Constraints2, FunctorName2, ArgTypes2) },
|
|
{ list__length(ArgTypes1, FunctorArity1) },
|
|
{ list__length(ArgTypes2, FunctorArity2) },
|
|
{ FunctorConsId1 = cons(FunctorName1, FunctorArity1) },
|
|
{ FunctorConsId2 = cons(FunctorName2, FunctorArity2) },
|
|
unify_proc__make_fresh_vars(ArgTypes1, ExistQTVars1, Vars1),
|
|
unify_proc__make_fresh_vars(ArgTypes2, ExistQTVars2, Vars2),
|
|
{ create_atomic_unification(
|
|
X, functor(FunctorConsId1, Vars1), Context, explicit, [],
|
|
UnifyX_Goal) },
|
|
{ create_atomic_unification(
|
|
Y, functor(FunctorConsId2, Vars2), Context, explicit, [],
|
|
UnifyY_Goal) },
|
|
{ create_atomic_unification(
|
|
R, functor(cons(unqualified(CompareOp), 0), []),
|
|
Context, explicit, [],
|
|
ReturnResult) },
|
|
{ GoalList = [UnifyX_Goal, UnifyY_Goal, ReturnResult] },
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
{ conj_list_to_goal(GoalList, GoalInfo, Case) }.
|
|
|
|
% unify_proc__compare_args: for a constructor such as
|
|
%
|
|
% h(list(int), foo, string)
|
|
%
|
|
% we want to generate code
|
|
%
|
|
% (
|
|
% compare(R1, X1, Y1), % Do_Comparison
|
|
% R1 \= (=) % Check_Not_Equal
|
|
% ->
|
|
% R = R1 % Return_R1
|
|
% ;
|
|
% compare(R2, X2, Y2),
|
|
% R2 \= (=)
|
|
% ->
|
|
% R = R2
|
|
% ;
|
|
% compare(R, X3, Y3) % Return_Comparison
|
|
% )
|
|
%
|
|
% For a constructor with no arguments, we want to generate code
|
|
%
|
|
% R = (=) % Return_Equal
|
|
|
|
:- pred unify_proc__compare_args(list(constructor_arg), existq_tvars,
|
|
list(prog_var), list(prog_var), prog_var, prog_context,
|
|
hlds_goal, unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__compare_args(in, in, in, in, in, in, out, in, out) is det.
|
|
|
|
unify_proc__compare_args(ArgTypes, ExistQTVars, Xs, Ys, R, Context, Goal) -->
|
|
(
|
|
unify_proc__compare_args_2(ArgTypes, ExistQTVars, Xs, Ys, R,
|
|
Context, Goal0)
|
|
->
|
|
{ Goal = Goal0 }
|
|
;
|
|
{ error("unify_proc__compare_args: length mismatch") }
|
|
).
|
|
|
|
:- pred unify_proc__compare_args_2(list(constructor_arg), existq_tvars,
|
|
list(prog_var), list(prog_var), prog_var, prog_context,
|
|
hlds_goal, unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__compare_args_2(in, in, in, in, in, in, out, in, out)
|
|
is semidet.
|
|
|
|
unify_proc__compare_args_2([], _, [], [], R, Context, Return_Equal) -->
|
|
{ create_atomic_unification(
|
|
R, functor(cons(unqualified("="), 0), []),
|
|
Context, explicit, [],
|
|
Return_Equal) }.
|
|
unify_proc__compare_args_2([_Name - Type|ArgTypes], ExistQTVars, [X|Xs], [Y|Ys],
|
|
R, Context, Goal) -->
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
%
|
|
% When comparing existentially typed arguments, the arguments may
|
|
% have different types; in that case, rather than just comparing them,
|
|
% which would be a type error, we call `typed_compare', which is a
|
|
% builtin that first compares their types and then compares
|
|
% their values.
|
|
%
|
|
{
|
|
list__member(ExistQTVar, ExistQTVars),
|
|
term__contains_var(Type, ExistQTVar)
|
|
->
|
|
ComparePred = "typed_compare"
|
|
;
|
|
ComparePred = "compare"
|
|
},
|
|
( { Xs = [], Ys = [] } ->
|
|
unify_proc__build_call(ComparePred, [R, X, Y], Context, Goal)
|
|
;
|
|
{ mercury_public_builtin_module(MercuryBuiltin) },
|
|
{ construct_type(
|
|
qualified(MercuryBuiltin, "comparison_result") - 0,
|
|
[], ResType) },
|
|
unify_proc__info_new_var(ResType, R1),
|
|
|
|
unify_proc__build_call(ComparePred, [R1, X, Y], Context,
|
|
Do_Comparison),
|
|
|
|
{ create_atomic_unification(
|
|
R1, functor(cons(unqualified("="), 0), []),
|
|
Context, explicit, [],
|
|
Check_Equal) },
|
|
{ Check_Not_Equal = not(Check_Equal) - GoalInfo },
|
|
|
|
{ create_atomic_unification(
|
|
R, var(R1), Context, explicit, [], Return_R1) },
|
|
{ Condition = conj([Do_Comparison, Check_Not_Equal])
|
|
- GoalInfo },
|
|
{ map__init(Empty) },
|
|
{ Goal = if_then_else([], Condition, Return_R1, ElseCase, Empty)
|
|
- GoalInfo},
|
|
unify_proc__compare_args_2(ArgTypes, ExistQTVars, Xs, Ys, R,
|
|
Context, ElseCase)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred unify_proc__build_call(string, list(prog_var), prog_context, hlds_goal,
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__build_call(in, in, in, out, in, out) is det.
|
|
|
|
unify_proc__build_call(Name, ArgVars, Context, Goal) -->
|
|
unify_proc__info_get_module_info(ModuleInfo),
|
|
{ module_info_get_predicate_table(ModuleInfo, PredicateTable) },
|
|
{ list__length(ArgVars, Arity) },
|
|
%
|
|
% We assume that the special preds compare/3, index/2, and unify/2
|
|
% are the only public builtins called by code generated
|
|
% by this module.
|
|
%
|
|
{ special_pred_name_arity(_, Name, _, Arity) ->
|
|
mercury_public_builtin_module(MercuryBuiltin)
|
|
;
|
|
mercury_private_builtin_module(MercuryBuiltin)
|
|
},
|
|
{
|
|
predicate_table_search_pred_m_n_a(PredicateTable,
|
|
MercuryBuiltin, Name, Arity, [PredIdPrime])
|
|
->
|
|
PredId = PredIdPrime
|
|
;
|
|
prog_out__sym_name_to_string(qualified(MercuryBuiltin, Name),
|
|
QualName),
|
|
string__int_to_string(Arity, ArityString),
|
|
string__append_list(["unify_proc__build_call: ",
|
|
"invalid/ambiguous pred `",
|
|
QualName, "/", ArityString, "'"],
|
|
ErrorMessage),
|
|
error(ErrorMessage)
|
|
},
|
|
{ hlds_pred__initial_proc_id(ProcId) },
|
|
{ Call = call(PredId, ProcId, ArgVars, not_builtin,
|
|
no, qualified(MercuryBuiltin, Name)) },
|
|
{ goal_info_init(GoalInfo0) },
|
|
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
|
|
{ Goal = Call - GoalInfo }.
|
|
|
|
:- pred unify_proc__build_specific_call((type)::in, special_pred_id::in,
|
|
list(prog_var)::in, instmap_delta::in, determinism::in,
|
|
prog_context::in, hlds_goal::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
unify_proc__build_specific_call(Type, SpecialPredId, ArgVars, InstmapDelta,
|
|
Detism, Context, Goal) -->
|
|
unify_proc__info_get_module_info(ModuleInfo),
|
|
{
|
|
polymorphism__get_special_proc(Type, SpecialPredId, ModuleInfo,
|
|
PredName, PredId, ProcId)
|
|
->
|
|
GoalExpr = call(PredId, ProcId, ArgVars, not_builtin, no,
|
|
PredName),
|
|
set__list_to_set(ArgVars, NonLocals),
|
|
goal_info_init(NonLocals, InstmapDelta, Detism, GoalInfo0),
|
|
goal_info_set_context(GoalInfo0, Context, GoalInfo),
|
|
Goal = GoalExpr - GoalInfo
|
|
;
|
|
% unify_proc__build_specific_call is only ever used
|
|
% to build calls to special preds for a type in the
|
|
% bodies of other special preds for that same type.
|
|
% If the special preds for a type are built in the
|
|
% right order (index before compare), the lookup
|
|
% should never fail.
|
|
error("unify_proc__build_specific_call: lookup failed")
|
|
}.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred unify_proc__make_fresh_named_vars_from_types(list(type), string, int,
|
|
list(prog_var), unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__make_fresh_named_vars_from_types(in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_proc__make_fresh_named_vars_from_types([], _, _, []) --> [].
|
|
unify_proc__make_fresh_named_vars_from_types([Type | Types], BaseName, Num,
|
|
[Var | Vars]) -->
|
|
{ string__int_to_string(Num, NumStr) },
|
|
{ string__append(BaseName, NumStr, Name) },
|
|
unify_proc__info_new_named_var(Type, Name, Var),
|
|
unify_proc__make_fresh_named_vars_from_types(Types, BaseName, Num + 1,
|
|
Vars).
|
|
|
|
:- pred unify_proc__make_fresh_vars_from_types(list(type), list(prog_var),
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__make_fresh_vars_from_types(in, out, in, out) is det.
|
|
|
|
unify_proc__make_fresh_vars_from_types([], []) --> [].
|
|
unify_proc__make_fresh_vars_from_types([Type | Types], [Var | Vars]) -->
|
|
unify_proc__info_new_var(Type, Var),
|
|
unify_proc__make_fresh_vars_from_types(Types, Vars).
|
|
|
|
:- pred unify_proc__make_fresh_vars(list(constructor_arg), existq_tvars,
|
|
list(prog_var), unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__make_fresh_vars(in, in, out, in, out) is det.
|
|
|
|
unify_proc__make_fresh_vars(CtorArgs, ExistQTVars, Vars) -->
|
|
( { ExistQTVars = [] } ->
|
|
{ assoc_list__values(CtorArgs, ArgTypes) },
|
|
unify_proc__make_fresh_vars_from_types(ArgTypes, Vars)
|
|
;
|
|
%
|
|
% If there are existential types involved, then it's too
|
|
% hard to get the types right here (it would require
|
|
% allocating new type variables) -- instead, typecheck.m
|
|
% will typecheck the clause to figure out the correct types.
|
|
% So we just allocate the variables and leave it up to
|
|
% typecheck.m to infer their types.
|
|
%
|
|
unify_proc__info_get_varset(VarSet0),
|
|
{ list__length(CtorArgs, NumVars) },
|
|
{ varset__new_vars(VarSet0, NumVars, Vars, VarSet) },
|
|
unify_proc__info_set_varset(VarSet)
|
|
).
|
|
|
|
:- pred unify_proc__unify_var_lists(list(constructor_arg), existq_tvars,
|
|
list(prog_var), list(prog_var), list(hlds_goal),
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__unify_var_lists(in, in, in, in, out, in, out) is det.
|
|
|
|
unify_proc__unify_var_lists(ArgTypes, ExistQVars, Vars1, Vars2, Goal) -->
|
|
(
|
|
unify_proc__unify_var_lists_2(ArgTypes, ExistQVars,
|
|
Vars1, Vars2, Goal0)
|
|
->
|
|
{ Goal = Goal0 }
|
|
;
|
|
{ error("unify_proc__unify_var_lists: length mismatch") }
|
|
).
|
|
|
|
:- pred unify_proc__unify_var_lists_2(list(constructor_arg), existq_tvars,
|
|
list(prog_var), list(prog_var), list(hlds_goal),
|
|
unify_proc_info, unify_proc_info).
|
|
:- mode unify_proc__unify_var_lists_2(in, in, in, in, out, in, out) is semidet.
|
|
|
|
unify_proc__unify_var_lists_2([], _, [], [], []) --> [].
|
|
unify_proc__unify_var_lists_2([_Name - Type | ArgTypes], ExistQTVars,
|
|
[Var1 | Vars1], [Var2 | Vars2], [Goal | Goals]) -->
|
|
{ term__context_init(Context) },
|
|
%
|
|
% When unifying existentially typed arguments, the arguments may
|
|
% have different types; in that case, rather than just unifying them,
|
|
% which would be a type error, we call `typed_unify', which is a
|
|
% builtin that first checks that their types are equal and then
|
|
% unifies the values.
|
|
%
|
|
(
|
|
{ list__member(ExistQTVar, ExistQTVars) },
|
|
{ term__contains_var(Type, ExistQTVar) }
|
|
->
|
|
unify_proc__build_call("typed_unify", [Var1, Var2], Context,
|
|
Goal)
|
|
;
|
|
{ create_atomic_unification(Var1, var(Var2), Context, explicit,
|
|
[], Goal) }
|
|
),
|
|
unify_proc__unify_var_lists_2(ArgTypes, ExistQTVars, Vars1, Vars2,
|
|
Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% It's a pity that we don't have nested modules.
|
|
|
|
% :- begin_module unify_proc_info.
|
|
% :- interface.
|
|
|
|
:- type unify_proc_info.
|
|
|
|
:- pred unify_proc__info_init(module_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_new_var((type)::in, prog_var::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_new_named_var((type)::in, string::in, prog_var::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_extract(unify_proc_info::in,
|
|
prog_varset::out, vartypes::out) is det.
|
|
:- pred unify_proc__info_get_varset(prog_varset::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_set_varset(prog_varset::in,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_get_types(vartypes::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_set_types(vartypes::in,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_get_type_info_varmap(type_info_varmap::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
:- pred unify_proc__info_get_module_info(module_info::out,
|
|
unify_proc_info::in, unify_proc_info::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% :- implementation
|
|
|
|
:- type unify_proc_info
|
|
---> unify_proc_info(
|
|
varset :: prog_varset,
|
|
vartypes :: vartypes,
|
|
type_info_varmap :: type_info_varmap,
|
|
module_info :: module_info
|
|
).
|
|
|
|
unify_proc__info_init(ModuleInfo, UPI) :-
|
|
varset__init(VarSet),
|
|
map__init(Types),
|
|
map__init(TVarMap),
|
|
UPI = unify_proc_info(VarSet, Types, TVarMap, ModuleInfo).
|
|
|
|
unify_proc__info_new_var(Type, Var, UPI,
|
|
(UPI^varset := VarSet) ^vartypes := Types) :-
|
|
varset__new_var(UPI^varset, Var, VarSet),
|
|
map__det_insert(UPI^vartypes, Var, Type, Types).
|
|
|
|
unify_proc__info_new_named_var(Type, Name, Var, UPI,
|
|
(UPI^varset := VarSet) ^vartypes := Types) :-
|
|
varset__new_named_var(UPI^varset, Name, Var, VarSet),
|
|
map__det_insert(UPI^vartypes, Var, Type, Types).
|
|
|
|
unify_proc__info_extract(UPI, UPI^varset, UPI^vartypes).
|
|
|
|
unify_proc__info_get_varset(UPI^varset, UPI, UPI).
|
|
unify_proc__info_get_types(UPI^vartypes, UPI, UPI).
|
|
unify_proc__info_get_type_info_varmap(UPI^type_info_varmap, UPI, UPI).
|
|
unify_proc__info_get_module_info(UPI^module_info, UPI, UPI).
|
|
|
|
unify_proc__info_set_varset(VarSet, UPI, UPI^varset := VarSet).
|
|
unify_proc__info_set_types(Types, UPI, UPI^vartypes := Types).
|
|
|
|
%-----------------------------------------------------------------------------%
|