Files
mercury/compiler/term_constr_pass2.m
Zoltan Somogyi 9ad83d648d Convert predicates that used to have one clause for each kind of
Estimated hours taken: 12
Branches: main

compiler/*.m:
	Convert predicates that used to have one clause for each kind of
	HLDS goal into explicit disjunctions, since this gives the debugger
	a meaningful name for each argument. In some cases, this exposed
	arguments that were used by *no* clause. In other cases, it allowed
	factoring out common code, as well as code that *should* have been
	common but wasn't.

	Put the disjuncts in a meaningful order. In too many cases, they were
	almost random.

	Merge the resulting predicates into their parents, in places where
	the Prolog indexing one could get from separate clauses was the only
	reason for separating those predicates from their parents in the first
	place. Similarly, merge child predicates handling generic call kinds
	and such back into the main predicate where this improves clarity.
	In some cases, this allows putting the extraction of hlds_goal_expr
	from a hlds_goal into one place, instead of repeating it in lots of
	places.

	Give some predicates more descriptive names. In some cases, rationalize
	argument order. In some cases, rationalize the order of predicates
	in the module.

	Replace some uses of booleans with purpose-specific types.

	Give some fields names, and put type-identifying prefixes on the names
	of other fields, to make tag files work better.

	In some cases, reorder fields to them put into related groups.

	Use more standard and/or more descriptive variable names

	Use a standard syntax for if-then-else in each module.

	Follow our style convention for comments.
2008-01-21 00:32:55 +00:00

703 lines
25 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2002, 2005-2008 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: term_constr_pass2.m.
% Main author: juliensf.
%
% This module analyses a SCC of the call-graph and tries to prove that
% it terminates.
%
% XXX This version is just a place-holder. It attempts a very simple
% proof method which is essentially what the existing termination analyser
% does.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.term_constr_pass2.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module transform_hlds.term_constr_main.
:- import_module io.
:- import_module list.
%-----------------------------------------------------------------------------%
% This structure holds the values of options used to control pass 2.
%
:- type pass2_options.
% pass2_options_init(MaxMatrixSize).
% Initialise the pass2_options structure. `MaxMatrixSize' specifies
% the maximum number of constraints we allow a matrix to grow to
% before we abort and try other approximations.
%
:- func pass2_options_init(int) = pass2_options.
:- pred prove_termination_in_scc(pass2_options::in, list(pred_proc_id)::in,
module_info::in, constr_termination_info::out, io::di, io::uo) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_pred.
:- import_module libs.compiler_util.
:- import_module libs.lp_rational.
:- import_module libs.polyhedron.
:- import_module libs.rat.
:- import_module parse_tree.prog_data.
:- import_module transform_hlds.term_constr_data.
:- import_module transform_hlds.term_constr_errors.
:- import_module transform_hlds.term_constr_util.
:- import_module assoc_list.
:- import_module bimap.
:- import_module bool.
:- import_module int.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
%
% Handle pass 2 options.
%
:- type pass2_options
---> pass2_options(
max_matrix_size :: int
).
pass2_options_init(MaxSize) = pass2_options(MaxSize).
%-----------------------------------------------------------------------------%
:- type scc == list(abstract_ppid).
% Each edge in the call-graph represents a single call site.
%
:- type edge
---> term_cg_edge(
% The procedure that is making the call.
tcge_caller :: abstract_ppid,
% The procedure being called.
tcge_callee :: abstract_ppid,
% The size_vars that correspond to the variables in the head
% of the procedure.
tcge_head_args :: size_vars,
% The size_vars that correspond to the variables
% in the procedure call.
tcge_call_args :: size_vars,
% Variables in the procedure known to have zero size.
tcge_zeros :: set(size_var),
% The constraints that occur between the head of the procedure
% and the call.
tcge_label :: polyhedron
).
:- type edges == list(edge).
:- type cycle
---> term_cg_cycle(
% A list of every procedure involved in this cycle.
tcgc_nodes :: list(abstract_ppid),
% A list of edges involved in this cycle.
% Note: The list is not ordered. This allows us to decide
% (later) on where we want the cycle to start.
tcgc_edges :: list(edge)
).
:- type cycles == list(cycle).
% A c_cycle, or collapsed cycle, is an elmentary cycle from the
% call-graph where we have picked a starting vertex and travelled
% around the cycle conjoining all the labels (constraints) as we go.
%
:- type cycle_set
---> term_cg_cycle_set(
tcgcs_start :: abstract_ppid,
tcgcs_cycles :: list(edge)
).
%-----------------------------------------------------------------------------%
prove_termination_in_scc(_, [], _, cannot_loop(term_reason_analysis), !IO).
prove_termination_in_scc(Options, SCC0 @ [_ | _], ModuleInfo, Result, !IO) :-
AbstractSCC = get_abstract_scc(ModuleInfo, SCC0),
% XXX Pass 1 should really set this up.
SCC = list.map((func(A) = real(A)), SCC0),
( scc_contains_recursion(AbstractSCC) ->
SizeVarSet = size_varset_from_abstract_scc(AbstractSCC),
Edges = label_edges_in_scc(AbstractSCC, ModuleInfo,
Options ^ max_matrix_size),
Cycles = find_elementary_cycles_in_scc(SCC, Edges),
CycleSets = partition_cycles(SCC, Cycles),
prove_termination(CycleSets, AbstractSCC, SizeVarSet, Result)
;
Result = cannot_loop(term_reason_analysis)
).
%-----------------------------------------------------------------------------%
%
% Predicates for labelling edges.
%
% Work out what the constraints are between each procedure head and each
% call for every call in the SCC. This information is implicit in the
% AR, so we traverse the AR building up a list of labelled edges as
% we go - this is similar to the fixpoint calculation we performed in pass 1
% except that we can stop after we have examined the last call. This often
% means that we can avoid performing unnecessary convex hull operations.
:- func label_edges_in_scc(abstract_scc, module_info, int) = edges.
label_edges_in_scc(Procs, ModuleInfo, MaxMatrixSize) = Edges :-
FindEdges = (pred(Proc::in, !.Edges::in, !:Edges::out) is det :-
find_edges_in_goal(Proc, Procs, ModuleInfo, MaxMatrixSize,
Proc ^ ap_body, 1, _, polyhedron.universe, _, [],
ProcEdges, yes, _),
list.append(ProcEdges, !Edges)
),
list.foldl(FindEdges, Procs, [], Edges).
% The four accumulators here are for:
% (1) the number of calls seen so far
% (2) the constraints so far
% (3) the edges found
% (4) whether to abort or continue looking
%
:- pred find_edges_in_goal(abstract_proc::in, abstract_scc::in,
module_info::in, int::in, abstract_goal::in, int::in, int::out,
polyhedron::in, polyhedron::out, edges::in, edges::out, bool::in,
bool::out) is det.
find_edges_in_goal(Proc, AbstractSCC, ModuleInfo, MaxMatrixSize,
Goal, !Calls, !Polyhedron, !Edges, !Continue) :-
(
Goal = term_disj(Goals, _, Locals, _),
(
!.Continue = yes,
% XXX We may be able to prove termination in more cases if we pass
% it !.Polyhedron instead of of polyhedron.universe ... although
% I don't think it is a major concern at the moment.
find_edges_in_disj(Proc, AbstractSCC, ModuleInfo,
MaxMatrixSize, polyhedron.universe, Goals, !Calls,
[], DisjConstrs0, [], Edges1, !Continue),
Edges2 = list.map(fix_edges(!.Polyhedron), Edges1),
list.append(Edges2, !Edges),
(
!.Continue = yes,
SizeVarSet = Proc ^ ap_size_varset,
DisjConstrs = polyhedron.project_all(SizeVarSet, Locals,
DisjConstrs0),
Constrs2 = list.foldl(
polyhedron.convex_union(SizeVarSet, yes(MaxMatrixSize)),
DisjConstrs, polyhedron.empty),
polyhedron.intersection(Constrs2, !Polyhedron)
;
!.Continue = no
)
;
!.Continue = no
)
;
Goal = term_conj(Goals, Locals, _),
(
!.Continue = yes,
list.foldl4(
find_edges_in_goal(Proc, AbstractSCC, ModuleInfo,
MaxMatrixSize),
Goals, !Calls, !Polyhedron, !Edges, !Continue),
(
!.Continue = yes, polyhedron.project(Locals,
Proc ^ ap_size_varset, !Polyhedron)
;
!.Continue = no
)
;
!.Continue = no
)
;
Goal = term_call(CallPPId0, _, CallVars, ZeroVars, _, _, _),
% Having found a call we now need to construct a label for that edge
% and then continue looking for more edges.
Edge = term_cg_edge(Proc ^ ap_ppid, CallPPId0,
Proc ^ ap_head_vars, CallVars, Proc ^ ap_zeros, !.Polyhedron),
list.cons(Edge, !Edges),
% Update the call count and maybe stop processing
% if that was the last call.
!:Calls = !.Calls + 1,
( !.Calls > Proc ^ ap_num_calls ->
!:Continue = no
;
true
),
(
!.Continue = no
;
!.Continue = yes,
CallPPId0 = real(CallPPId),
module_info_pred_proc_info(ModuleInfo, CallPPId, _, CallProcInfo),
proc_info_get_termination2_info(CallProcInfo, CallTermInfo),
MaybeArgSizeInfo = CallTermInfo ^ success_constrs,
(
MaybeArgSizeInfo = no,
unexpected(this_file, "Proc with no arg size info in pass 2.")
;
MaybeArgSizeInfo = yes(ArgSizePolyhedron0),
( polyhedron.is_universe(ArgSizePolyhedron0) ->
% If the polyhedron is universe then there is no point
% in running the substitution.
true
;
MaybeCallProc = CallTermInfo ^ abstract_rep,
(
MaybeCallProc = yes(CallProc0),
CallProc = CallProc0
;
MaybeCallProc = no,
unexpected(this_file,
"No abstract representation for proc.")
),
HeadVars = CallProc ^ ap_head_vars,
Subst = map.from_corresponding_lists(HeadVars, CallVars),
Eqns0 = non_false_constraints( ArgSizePolyhedron0),
Eqns1 = substitute_size_vars(Eqns0, Subst),
Eqns = lp_rational.set_vars_to_zero(ZeroVars, Eqns1),
ArgSizePolyhedron = from_constraints(Eqns),
polyhedron.intersection(ArgSizePolyhedron, !Polyhedron)
)
)
)
;
Goal = term_primitive(Primitive, _, _),
(
!.Continue = yes,
polyhedron.intersection(Primitive, !Polyhedron)
;
!.Continue = no
)
).
:- pred find_edges_in_disj(abstract_proc::in, abstract_scc::in,
module_info::in, int::in, polyhedron::in, abstract_goals::in,
int::in, int::out, polyhedra::in, polyhedra::out, edges::in, edges::out,
bool::in, bool::out) is det.
find_edges_in_disj(_, _, _, _, _, [], !Calls, !DisjConstrs, !Edges, !Continue).
find_edges_in_disj(Proc, AbstractSCC, ModuleInfo, MaxMatrixSize, TopPoly,
[Disj | Disjs], !Calls, !DisjConstrs, !Edges, !Continue) :-
find_edges_in_goal(Proc, AbstractSCC, ModuleInfo, MaxMatrixSize, Disj,
!Calls, TopPoly, Constrs, !Edges, !Continue),
list.cons(Constrs, !DisjConstrs),
% This is why it is important that after numbering the calls in the AR
% we don't change anything around; otherwise this short-circuiting
% will not work correctly.
(
!.Continue = yes,
find_edges_in_disj(Proc, AbstractSCC, ModuleInfo,
MaxMatrixSize, TopPoly, Disjs, !Calls, !DisjConstrs,
!Edges, !Continue)
;
!.Continue = no
).
:- func fix_edges(polyhedron, edge) = edge.
fix_edges(Poly, Edge0) = Edge :-
Label0 = Edge0 ^ tcge_label,
Label = polyhedron.intersection(Poly, Label0),
Edge = Edge0 ^ tcge_label := Label.
%-----------------------------------------------------------------------------%
%
% Cycle detection.
%
% To find the elementary cycles of this SCC we perform a DFS of the
% call-graph. Since the call-graph is technically a pseudograph (ie. it
% admits parallel edges and self-loops), we first of all strip out any
% self-loops to make things easier.
:- func find_elementary_cycles_in_scc(list(abstract_ppid), edges) = cycles.
find_elementary_cycles_in_scc(SCC, Edges0) = Cycles :-
% Get any self-loops for each procedure.
list.filter_map(direct_call, Edges0, Cycles0, Edges),
% Find larger elementary cycles in what is left.
Cycles1 = find_cycles(SCC, Edges),
Cycles = Cycles0 ++ Cycles1.
% Succeeds iff Edge is an edge that represents a directly recursive call
% (a self-loop in the pseudograph)
%
:- pred direct_call(edge::in, cycle::out) is semidet.
direct_call(Edge, Cycle) :-
Edge ^ tcge_caller = Edge ^ tcge_callee,
Cycle = term_cg_cycle([Edge ^ tcge_caller], [Edge]).
:- func find_cycles(list(abstract_ppid), edges) = cycles.
find_cycles(SCC, Edges) = Cycles :-
EdgeMap = partition_edges(SCC, Edges),
Cycles = search_for_cycles(SCC, EdgeMap).
% Builds a map from `pred_proc_id' to a list of the edges that begin
% with the `pred_proc_id.
%
:- func partition_edges(list(abstract_ppid), edges) = map(abstract_ppid, edges).
partition_edges([], _) = map.init.
partition_edges([ProcId | SCC], Edges0) = Map :-
Map0 = partition_edges(SCC, Edges0),
Edges = list.filter(
(pred(Edge::in) is semidet :- ProcId = Edge ^ tcge_caller),
Edges0),
Map = map.det_insert(Map0, ProcId, Edges).
:- func search_for_cycles(list(abstract_ppid), map(abstract_ppid, edges))
= cycles.
search_for_cycles([], _) = [].
search_for_cycles([Start | Rest], Map0) = Cycles :-
Cycles0 = search_for_cycles_2(Start, Map0),
Map = map.delete(Map0, Start),
Cycles1 = search_for_cycles(Rest, Map),
Cycles = Cycles0 ++ Cycles1.
:- func search_for_cycles_2(abstract_ppid, map(abstract_ppid, edges)) = cycles.
search_for_cycles_2(StartPPId, Map) = Cycles :-
InitialEdges = Map ^ det_elem(StartPPId),
list.foldl(search_for_cycles_3(StartPPId, [], Map, []), InitialEdges,
[], Cycles).
:- pred search_for_cycles_3(abstract_ppid::in, edges::in,
map(abstract_ppid, edges)::in, list(abstract_ppid)::in, edge::in,
cycles::in, cycles::out) is det.
search_for_cycles_3(Start, SoFar, Map, Visited, Edge, !Cycles) :-
( Start = Edge ^ tcge_callee ->
Cycle = term_cg_cycle([Edge ^ tcge_caller | Visited], [Edge | SoFar]),
list.cons(Cycle, !Cycles)
;
( MoreEdges0 = Map ^ elem(Edge ^ tcge_callee) ->
NotVisited = (pred(E::in) is semidet :-
not list.member(E ^ tcge_caller, Visited)
),
MoreEdges = list.filter(NotVisited, MoreEdges0),
list.foldl(
search_for_cycles_3(Start, [Edge | SoFar], Map,
[Edge ^ tcge_caller | Visited]),
MoreEdges, !Cycles)
;
true
)
).
%-----------------------------------------------------------------------------%
%
% Partitioning sets of cycles.
%
:- func partition_cycles(scc, cycles) = list(cycle_set).
partition_cycles([], _) = [].
partition_cycles([Proc | Procs], Cycles0) = CycleSets :-
list.filter(cycle_contains_proc(Proc), Cycles0, PCycles, Cycles1),
CycleSets0 = partition_cycles(Procs, Cycles1),
PEdges = list.map(collapse_cycle(Proc), PCycles),
(
PEdges = [],
CycleSets = CycleSets0
;
PEdges = [_ | _],
CycleSets = [term_cg_cycle_set(Proc, PEdges) | CycleSets0]
).
:- func get_proc_from_abstract_scc(list(abstract_proc), abstract_ppid)
= abstract_proc.
get_proc_from_abstract_scc([], _) = _ :-
unexpected(this_file, "Cannot find proc.").
get_proc_from_abstract_scc([Proc | Procs], PPId) =
( Proc ^ ap_ppid = PPId ->
Proc
;
get_proc_from_abstract_scc(Procs, PPId)
).
%-----------------------------------------------------------------------------%
%
% Termination checking.
%
% This approach is very crude. It just checks that the sum of all
% the non-zero arguments is decreasing around all the elementary cycles.
:- pred prove_termination(list(cycle_set)::in, abstract_scc::in,
size_varset::in, constr_termination_info::out) is det.
prove_termination(Cycles, AbstractSCC, SizeVarSet, Result) :-
( total_sum_decrease(AbstractSCC, SizeVarSet, Cycles) ->
Result = cannot_loop(term_reason_analysis)
;
% NOTE: The context here will never be used, in any case
% it is not clear what it should be.
Error = term.context_init - cond_not_satisfied,
Result = can_loop([Error])
).
:- pred total_sum_decrease(abstract_scc::in, size_varset::in,
list(cycle_set)::in) is semidet.
total_sum_decrease(_, _, []).
total_sum_decrease(AbstractSCC, SizeVarSet, [CycleSet | CycleSets]):-
CycleSet = term_cg_cycle_set(Start, Loops),
total_sum_decrease_2(AbstractSCC, SizeVarSet, Start, Loops),
total_sum_decrease(AbstractSCC, SizeVarSet, CycleSets).
:- pred total_sum_decrease_2(abstract_scc::in, size_varset::in,
abstract_ppid::in, list(edge)::in) is semidet.
total_sum_decrease_2(_, _, _, []).
total_sum_decrease_2(AbstractSCC, SizeVarSet, PPId, Loops @ [_ | _]) :-
all [Loop] (
list.member(Loop, Loops)
=>
strict_decrease_around_loop(AbstractSCC, SizeVarSet, PPId, Loop)
).
% Succeeds iff there is strict decrease in the sum of *all*
% the arguments around the given loop.
%
:- pred strict_decrease_around_loop(abstract_scc::in, size_varset::in,
abstract_ppid::in, edge::in) is semidet.
strict_decrease_around_loop(AbstractSCC, SizeVarSet, PPId, Loop) :-
(
( PPId \= Loop ^ tcge_caller
; PPId \= Loop ^ tcge_callee
)
->
unexpected(this_file, "Badly formed loop.")
;
true
),
IsActive = (func(Var::in, Input::in) = (Var::out) is semidet :-
Input = yes
),
Proc = get_proc_from_abstract_scc(AbstractSCC, PPId),
Inputs = Proc ^ ap_inputs,
HeadArgs = list.filter_map_corresponding(IsActive, Loop ^ tcge_head_args,
Inputs),
CallArgs = list.filter_map_corresponding(IsActive, Loop ^ tcge_call_args,
Inputs),
Terms = make_coeffs(HeadArgs, -one) ++ make_coeffs(CallArgs, one),
% NOTE: If you examine the condition it may contain fewer variables
% than you expect. This is because if the same argument occurs in the head
% and the call they will cancel each other out.
Condition = constraint(Terms, (=<), -one),
Label = polyhedron.non_false_constraints(Loop ^ tcge_label),
entailed(SizeVarSet, Label, Condition).
:- pred cycle_contains_proc(abstract_ppid::in, cycle::in) is semidet.
cycle_contains_proc(PPId, term_cg_cycle(Nodes, _)) :- list.member(PPId, Nodes).
% XXX Fix this name.
%
:- func make_coeffs(size_vars, rat) = lp_terms.
make_coeffs(Vars, Coeff) = list.map((func(Var) = Var - Coeff), Vars).
%-----------------------------------------------------------------------------%
% Collapse all the cycles so that they all start with the given
% procedure and all the edge labels between are conjoined.
%
:- func collapse_cycles(abstract_ppid, cycles) = edges.
collapse_cycles(Start, Cycles) = list.map(collapse_cycle(Start), Cycles).
:- func collapse_cycle(abstract_ppid, cycle) = edge.
collapse_cycle(StartPPId, Cycle) = CollapsedCycle :-
Cycle = term_cg_cycle(_, Edges0),
(
Edges0 = [],
unexpected(this_file, "Trying to collapse a cycle with no edges.")
;
Edges0 = [Edge],
CollapsedCycle = Edge
;
Edges0 = [_, _ | _],
order_nodes(StartPPId, Edges0, Edges),
(
Edges = [StartEdge | Rest],
StartEdge = term_cg_edge(_, _, HeadVars, CallVars0,
Zeros0, Polyhedron0),
collapse_cycle_2(Rest, Zeros0, Zeros, CallVars0, CallVars,
Polyhedron0, Polyhedron),
CollapsedCycle = term_cg_edge(StartPPId, StartPPId,
HeadVars, CallVars, Zeros, Polyhedron)
;
Edges = [],
unexpected(this_file, "Error while collapsing cycles.")
)
).
:- pred collapse_cycle_2(edges::in, zero_vars::in, zero_vars::out,
size_vars::in, size_vars::out, polyhedron::in, polyhedron::out) is det.
collapse_cycle_2([], !Zeros, !CallVars, !Polyhedron).
collapse_cycle_2([Edge | Edges], !Zeros, !CallVars, !Polyhedron) :-
set.union(Edge ^ tcge_zeros, !Zeros),
HeadVars = Edge ^ tcge_head_args,
Subst0 = assoc_list.from_corresponding_lists(HeadVars, !.CallVars),
bimap.set_from_assoc_list(Subst0, bimap.init, Subst),
% We now need to substitute variables from the call to *this* predicate
% for head variables in both the constraints from the body of the predicate
% and also into the variables in the calls to the next predicate.
%
% While it might be easier to put equality constraints between
% the caller's arguments and the callee's head arguments,
% the substitution is in some ways more desirable as we can detect
% some neutral arguments more directly.
!:CallVars = list.map(subst_size_var(Subst), Edge ^ tcge_call_args),
% These should be non-false, so throw an exception if they are not.
Constraints0 = polyhedron.non_false_constraints(!.Polyhedron),
Constraints1 = polyhedron.non_false_constraints(Edge ^ tcge_label),
Constraints2 = list.map(subst_size_var_eqn(Subst), Constraints1),
Constraints3 = Constraints0 ++ Constraints2,
!:Polyhedron = polyhedron.from_constraints(Constraints3),
collapse_cycle_2(Edges, !Zeros, !CallVars, !Polyhedron).
:- pred order_nodes(abstract_ppid::in, edges::in, edges::out) is det.
order_nodes(StartPPId, Edges0, [Edge | Edges]) :-
EdgeMap = build_edge_map(Edges0),
Edge = EdgeMap ^ det_elem(StartPPId),
order_nodes_2(StartPPId, Edge ^ tcge_callee, EdgeMap, Edges).
:- pred order_nodes_2(abstract_ppid::in, abstract_ppid::in,
map(abstract_ppid, edge)::in, edges::out) is det.
order_nodes_2(StartPPId, CurrPPId, Map, Edges) :-
( StartPPId = CurrPPId ->
Edges = []
;
map.lookup(Map, CurrPPId, Edge),
order_nodes_2(StartPPId, Edge ^ tcge_callee, Map, Edges0),
Edges = [Edge | Edges0]
).
:- func build_edge_map(edges) = map(abstract_ppid, edge).
build_edge_map([]) = map.init.
build_edge_map([Edge | Edges]) =
map.det_insert(build_edge_map(Edges), Edge ^ tcge_caller, Edge).
:- func subst_size_var_eqn(bimap(size_var, size_var), constraint)
= constraint.
subst_size_var_eqn(Map, Eqn0) = Eqn :-
constraint(Eqn0, Coeffs0, Operator, Constant),
Coeffs = list.map(subst_size_var_coeff(Map), Coeffs0),
Eqn = constraint(Coeffs, Operator, Constant).
:- func subst_size_var_coeff(bimap(size_var, size_var), lp_term) = lp_term.
subst_size_var_coeff(Map, Var0 - Coeff) = Var - Coeff :-
Var = subst_size_var(Map, Var0).
:- func subst_size_var(bimap(size_var, size_var), size_var) = size_var.
subst_size_var(Map, Old) = (if bimap.search(Map, Old, New) then New else Old).
%-----------------------------------------------------------------------------%
%
% Predicates for printing out debugging traces.
%
:- pred write_cycles(cycles::in, module_info::in, size_varset::in,
io::di, io::uo) is det.
write_cycles([], _, _, !IO).
write_cycles([Cycle | Cycles], ModuleInfo, SizeVarSet, !IO) :-
io.write_string("Cycle in SCC:\n", !IO),
write_cycle(Cycle ^ tcgc_nodes, ModuleInfo, !IO),
io.write_list(Cycle ^ tcgc_edges, "\n",
write_edge(ModuleInfo, SizeVarSet), !IO),
io.nl(!IO),
write_cycles(Cycles, ModuleInfo, SizeVarSet, !IO).
:- pred write_cycle(list(abstract_ppid)::in, module_info::in, io::di, io::uo)
is det.
write_cycle([], _, !IO).
write_cycle([Proc | Procs], ModuleInfo, !IO) :-
io.write_string("\t- ", !IO),
Proc = real(PredProcId),
hlds_out.write_pred_proc_id(ModuleInfo, PredProcId, !IO),
io.nl(!IO),
write_cycle(Procs, ModuleInfo, !IO).
:- pred write_edge(module_info::in, size_varset::in, edge::in,
io::di, io::uo) is det.
write_edge(ModuleInfo, SizeVarSet, Edge, !IO) :-
io.write_string("Edge is:\n\tHead: ", !IO),
Edge ^ tcge_caller = real(PredProcId),
hlds_out.write_pred_proc_id(ModuleInfo, PredProcId, !IO),
io.write_string(" : ", !IO),
write_size_vars(SizeVarSet, Edge ^ tcge_head_args, !IO),
io.write_string(" :- \n", !IO),
io.write_string("\tConstraints are: \n", !IO),
write_polyhedron(Edge ^ tcge_label, SizeVarSet, !IO),
io.write_string("\n\tCall is: ", !IO),
Edge ^ tcge_callee = real(CallPredProcId),
hlds_out.write_pred_proc_id(ModuleInfo, CallPredProcId, !IO),
io.write_string(" : ", !IO),
write_size_vars(SizeVarSet, Edge ^ tcge_call_args, !IO),
io.write_string(" :- \n", !IO),
io.nl(!IO).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "term_constr_pass2.m".
%-----------------------------------------------------------------------------%
:- end_module transform_hlds.term_constr_pass2.
%-----------------------------------------------------------------------------%