mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-15 13:55:07 +00:00
Estimated hours taken: lots Branches: main Add the first part of the new termination analyser. This includes most of the argument size analyser and a simple termination checker - I'll add a more extensive one as part of another diff. The one included here is only a placeholder and is roughly equivalent to the one used by the existing termination analyser. The new analysis abstracts term size relationships over a domain of (rational) convex constraints. The resulting size relationships are, in many cases, more precise than we can obtain with the old analysis. This means that we should be able to prove termination in more cases. The tradeoff for this increased precision is that the new termination analysis is slower than the old one. We should also be able to adapt the new analyser to handle things like higher-order constructs and intermodule mutual recursion more easily than the old one. The code for writing termination2_info pragmas to .opt and .trans_opt files is currently commented out. It will need to stay that way until after this change bootstraps and after the tests/term directory as been reworked (the .trans_opt_exp files need to updated and some new test cases have to added - I'll do this as part of separate diff). It isn't clear what the relationship between the new analyser and the existing one should be, so at the moment they are as independent of each other as possible. compiler/termination2.m: New file. Invokes the the other passes of the new analysis and handles the output of termination2_info pragmas to .opt and .trans_opt files. XXX I've disabled the writing out of termination2_info pragmas to the (transitive-)intermodule optimization files until I've updated the test suite. compiler/term_constr_data.m: New file. Defines the main data structures used by the new analysis. compiler/term_constr_initial.m: New file. Sets up information for builtin and compiler generated procedures and processes information about imported procedures. Also handles termination pragmas. compiler/term_constr_build.m: New file. Converts the HLDS representation of a procedure into the abstract representation that we use during the rest of the analysis. compiler/term_constr_fixpoint.m: New file. Perform a fixpoint calculation in order to derive interargument size relationships for a procedure (in the form of convex constraints). compiler/term_constr_pass2.m: New file. A rudimentary termination checker that is roughly equivalent to what the existing termination analysis does. This is just a placeholder. compiler/term_constr_util.m: New file. Utility predicates that are used by the above modules. compiler/term_constr_errors.m: New file. Equivalent to term_errors.m for the new analyser. compiler/rat.m: Provide rational numbers over fixed precision integers. Originally committed on the termination2 branch. compiler/lp_rational.m: Provides the necessary machinery for manipulating systems of linear constraints. Originally committed on the termination2 branch although most of this version is new. (Some bits of the version on the termination2 branch are now in polyhedron.m). The linear solver is essentially the one that is currently in lp.m converted to use rationals rather than floats. compiler/polyhedron.m: New file. An ADT that provides convex polyhedra over the rationals (or at least over rats). The abstraction barrier was designed so that we could experiment with different representations for the polyhedra. compiler/term_norm: Clean up the documentation of this module. Make set_functor_info into a function. Add a function for finding a lower bound on the weight of a functor. compiler/trans_opt.m: Output termination2_info pragmas in .trans_opt files. compiler/transform_hlds.m: Include the new termination analyser. compiler/goal_form.m: When checking whether a goal can loop or not use information from the new termination analyser as well as the old one. compiler/globals.m: compiler/handle_options: compiler/options.m: Add options to control the new analyser. The documentation is currently commented out because the new analysis is still a work-in-progress. It should be uncommented when the new analysis is more mature. XXX The user guide still needs to be updated. compiler/hlds_out.m: Add hlds_out.write_pred_proc_id/4. compiler/hlds_pred.m: Add a slot in the proc_sub_info structure for the termination2_info structure. compiler/rat.m: Provide rational numbers over fixed precision integers. compiler/lp_rational.m: Provide the constraint machinery required by the analyser. compiler/make_hlds.m: Handle imports of termination2_info pragmas. compiler/mercury_compile.m: Run the new pass. Currently, we do this directly after the old termination analysis pass. compiler/mercury_to_mercury.m: Add code to output termination2_info pragmas. compiler/libs.m: Include the rat, polyhedron and lp_rational modules. compiler/prog_data.m: Define the types necessary for termination2_info pragmas. Change the cannot_loop constructor of the generic_termination_info type so it has a polymorphic argument. The new analyser stores information in it. Fix some spelling errors in some of the comments compiler/prog_io_pragma.m: Parse termination2_info pragmas. compiler/error_util.m: Add function versions of sorry/2 and unexpected/2. compiler/module_qual.m: compiler/modules.m: compiler/recompilation.version.m: compiler/termination.m compiler/term_pass2.m compiler/term_util.m: Minor changes to confrom to the above.
710 lines
23 KiB
Mathematica
710 lines
23 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 2002, 2005 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% file: term_constr_pass2.m
|
|
% main author: juliensf
|
|
%
|
|
% This module analyses a SCC of the call-graph and tries to prove that
|
|
% it terminates.
|
|
%
|
|
% XXX This version is just a place-holder. It attempts a very simple
|
|
% proof method which is essentially what the existing termination analyser
|
|
% does.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module transform_hlds.term_constr_pass2.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds.hlds_module.
|
|
:- import_module hlds.hlds_pred.
|
|
:- import_module transform_hlds.term_constr_main.
|
|
|
|
:- import_module io.
|
|
:- import_module list.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This structure holds the values of options used to control
|
|
% pass 2.
|
|
%
|
|
:- type pass2_options.
|
|
|
|
% pass2_options_init(MaxMatrixSize).
|
|
% Initialise the pass2_options structure. `MaxMatrixSize' specifies
|
|
% the maximum number of constraints we allow a matrix to grow to
|
|
% before we abort and try other approximations.
|
|
%
|
|
%
|
|
:- func pass2_options_init(int) = pass2_options.
|
|
|
|
:- pred prove_termination_in_scc(pass2_options::in, list(pred_proc_id)::in,
|
|
module_info::in, constr_termination_info::out, io::di, io::uo) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module check_hlds.mode_util.
|
|
:- import_module hlds.hlds_module.
|
|
:- import_module hlds.hlds_out.
|
|
:- import_module hlds.hlds_pred.
|
|
:- import_module libs.globals.
|
|
:- import_module libs.lp_rational.
|
|
:- import_module libs.options.
|
|
:- import_module libs.polyhedron.
|
|
:- import_module libs.rat.
|
|
:- import_module parse_tree.error_util.
|
|
:- import_module parse_tree.mercury_to_mercury.
|
|
:- import_module parse_tree.prog_data.
|
|
:- import_module transform_hlds.term_constr_data.
|
|
:- import_module transform_hlds.term_constr_errors.
|
|
:- import_module transform_hlds.term_constr_util.
|
|
|
|
:- import_module assoc_list.
|
|
:- import_module bimap.
|
|
:- import_module bool.
|
|
:- import_module int.
|
|
:- import_module map.
|
|
:- import_module require.
|
|
:- import_module set.
|
|
:- import_module std_util.
|
|
:- import_module string.
|
|
:- import_module term.
|
|
:- import_module varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Handle pass 2 options.
|
|
%
|
|
|
|
:- type pass2_options
|
|
---> pass2_options(
|
|
max_matrix_size :: int
|
|
).
|
|
|
|
pass2_options_init(MaxSize) = pass2_options(MaxSize).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- type scc == list(abstract_ppid).
|
|
|
|
% Each edge in the call-graph represents a single call site.
|
|
%
|
|
:- type edge
|
|
---> edge(
|
|
head :: abstract_ppid,
|
|
% The procedure that is making the call.
|
|
|
|
zeros :: set(size_var),
|
|
% Variables in the procedure known to have
|
|
% zero size.
|
|
|
|
head_args :: size_vars,
|
|
% The size_vars that correspond to the
|
|
% variables in the head of the procedure.
|
|
|
|
label :: polyhedron,
|
|
% The constraints that occur between the
|
|
% head of the procedure and the call.
|
|
|
|
call :: abstract_ppid,
|
|
% The callee procedure.
|
|
|
|
call_args :: size_vars
|
|
% The size_vars that correspond to the
|
|
% variables in the procedure call.
|
|
).
|
|
|
|
:- type edges == list(edge).
|
|
|
|
:- type cycle
|
|
---> cycle(
|
|
nodes :: list(abstract_ppid),
|
|
% A list of every procedure involved in
|
|
% this cycle.
|
|
|
|
edges :: list(edge)
|
|
% A list of edges involved in this cycle.
|
|
% Note: It is not ordered. This allows
|
|
% us to decide (later) on where we want
|
|
% the cycle to start.
|
|
).
|
|
|
|
:- type cycles == list(cycle).
|
|
|
|
% A c_cycle, or collapsed cycle, is an elmentary cycle from the
|
|
% call-graph where we have picked a starting vertex and travelled
|
|
% around the cycle conjoining all the labels (constraints) as we go.
|
|
%
|
|
:- type cycle_set
|
|
---> c_set(
|
|
start :: abstract_ppid,
|
|
c_cycles :: list(edge)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
prove_termination_in_scc(_, [], _, cannot_loop(analysis), !IO).
|
|
prove_termination_in_scc(Options, SCC0 @ [_|_], ModuleInfo, Result, !IO) :-
|
|
AbstractSCC = get_abstract_scc(ModuleInfo, SCC0),
|
|
% XXX Pass 1 should really set this up.
|
|
SCC = list.map((func(A) = real(A)), SCC0),
|
|
( scc_contains_recursion(AbstractSCC) ->
|
|
Varset = varset_from_abstract_scc(AbstractSCC),
|
|
Edges = label_edges_in_scc(AbstractSCC, ModuleInfo,
|
|
Options ^ max_matrix_size),
|
|
Cycles = find_elementary_cycles_in_scc(SCC, Edges),
|
|
CycleSets = partition_cycles(SCC, Cycles),
|
|
prove_termination(CycleSets, AbstractSCC, Varset, Result)
|
|
;
|
|
Result = cannot_loop(analysis)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Predicates for labelling edges.
|
|
%
|
|
|
|
% Work out what the constraints are between each procedure head and each
|
|
% call for every call in the SCC. This information is implicit in the
|
|
% AR, so we traverse the AR building up a list of labelled edges as
|
|
% we go - this is similar to the fixpoint calculation we performed in pass 1
|
|
% except that we can stop after we have examined the last call. This often
|
|
% means that we can avoid performing unnecessary convex hull operations.
|
|
|
|
:- func label_edges_in_scc(abstract_scc, module_info, int) = edges.
|
|
|
|
label_edges_in_scc(Procs, ModuleInfo, MaxMatrixSize) = Edges :-
|
|
FindEdges = (pred(Proc::in, !.Edges::in, !:Edges::out) is det :-
|
|
find_edges_in_goal(Proc, Procs, ModuleInfo, MaxMatrixSize,
|
|
Proc ^ body, 1, _, polyhedron.universe, _, [],
|
|
ProcEdges, yes, _),
|
|
list.append(ProcEdges, !Edges)
|
|
),
|
|
list.foldl(FindEdges, Procs, [], Edges).
|
|
|
|
% The four accumulators here are for:
|
|
% (1) the number of calls seen so far
|
|
% (2) the constraints so far
|
|
% (3) the edges found
|
|
% (4) whether to abort or continue looking
|
|
%
|
|
:- pred find_edges_in_goal(abstract_proc::in, abstract_scc::in,
|
|
module_info::in, int::in, abstract_goal::in, int::in, int::out,
|
|
polyhedron::in, polyhedron::out, edges::in, edges::out, bool::in,
|
|
bool::out) is det.
|
|
|
|
find_edges_in_goal(Proc, AbstractSCC, ModuleInfo, MaxMatrixSize,
|
|
AbstractGoal, !Calls, !Polyhedron, !Edges, !Continue) :-
|
|
AbstractGoal = disj(Goals, _, Locals, _),
|
|
(
|
|
!.Continue = yes,
|
|
%
|
|
% XXX We may be able to prove termination in more cases
|
|
% if we pass in !.Polyhedron instead of
|
|
% of polyhedron.universe ... although I don't think
|
|
% it is a major concern at the moment.
|
|
%
|
|
find_edges_in_disj(Proc, AbstractSCC, ModuleInfo,
|
|
MaxMatrixSize, polyhedron.universe, Goals, !Calls,
|
|
[], DisjConstrs0, [], Edges1, !Continue),
|
|
Edges2 = list.map(fix_edges(!.Polyhedron), Edges1),
|
|
list.append(Edges2, !Edges),
|
|
(
|
|
!.Continue = yes,
|
|
Varset = Proc ^ varset,
|
|
DisjConstrs = polyhedron.project_all(Varset, Locals,
|
|
DisjConstrs0),
|
|
Constrs2 = list.foldl(
|
|
polyhedron.convex_union(Varset,
|
|
yes(MaxMatrixSize)), DisjConstrs,
|
|
polyhedron.empty),
|
|
polyhedron.intersection(Constrs2, !Polyhedron)
|
|
;
|
|
!.Continue = no
|
|
)
|
|
;
|
|
!.Continue = no
|
|
).
|
|
|
|
find_edges_in_goal(Proc, AbstractSCC, ModuleInfo, MaxMatrixSize,
|
|
AbstractGoal, !Calls, !Polyhedron, !Edges, !Continue) :-
|
|
AbstractGoal = conj(Goals, Locals, _),
|
|
(
|
|
!.Continue = yes,
|
|
list.foldl4(find_edges_in_goal(Proc, AbstractSCC, ModuleInfo,
|
|
MaxMatrixSize),
|
|
Goals, !Calls, !Polyhedron, !Edges, !Continue),
|
|
(
|
|
!.Continue = yes,
|
|
polyhedron.project(Locals, Proc ^ varset, !Polyhedron)
|
|
;
|
|
!.Continue = no
|
|
)
|
|
;
|
|
!.Continue = no
|
|
).
|
|
|
|
find_edges_in_goal(Proc, _AbstractSCC, ModuleInfo, _,
|
|
call(CallPPId0, _, CallVars, ZeroVars, _, _, _),
|
|
!Calls, !Polyhedron, !Edges, !Continue) :-
|
|
%
|
|
% Having found a call we now need to construct a label for that
|
|
% edge and then continue looking for more edges.
|
|
%
|
|
Edge = edge(Proc ^ ppid, Proc ^ zeros, Proc ^ head_vars, !.Polyhedron,
|
|
CallPPId0, CallVars),
|
|
list.cons(Edge, !Edges),
|
|
%
|
|
% Update the call count and maybe stop processing if that was
|
|
% the last call.
|
|
%
|
|
!:Calls = !.Calls + 1,
|
|
( if !.Calls > Proc ^ calls
|
|
then !:Continue = no
|
|
else true
|
|
),
|
|
|
|
(
|
|
!.Continue = no
|
|
;
|
|
!.Continue = yes,
|
|
CallPPId0 = real(CallPPId),
|
|
module_info_pred_proc_info(ModuleInfo, CallPPId, _,
|
|
CallProcInfo),
|
|
proc_info_get_termination2_info(CallProcInfo, CallTermInfo),
|
|
MaybeArgSizeInfo = CallTermInfo ^ success_constrs,
|
|
(
|
|
MaybeArgSizeInfo = no,
|
|
unexpected(this_file,
|
|
"Proc with no arg size info in pass 2.")
|
|
;
|
|
MaybeArgSizeInfo = yes(ArgSizePolyhedron0),
|
|
%
|
|
% If the polyhedron is universe then
|
|
% there's no point running the substitution.
|
|
%
|
|
( polyhedron.is_universe(ArgSizePolyhedron0) ->
|
|
true
|
|
;
|
|
MaybeCallProc = CallTermInfo ^ abstract_rep,
|
|
( if MaybeCallProc = yes(CallProc0)
|
|
then CallProc = CallProc0
|
|
else unexpected(this_file,
|
|
"No abstract representation for proc.")
|
|
),
|
|
HeadVars = CallProc ^ head_vars,
|
|
Subst = map.from_corresponding_lists(HeadVars,
|
|
CallVars),
|
|
Eqns0 = non_false_constraints(
|
|
ArgSizePolyhedron0),
|
|
Eqns1 = substitute_size_vars(Eqns0, Subst),
|
|
Eqns = lp_rational.set_vars_to_zero(ZeroVars, Eqns1),
|
|
ArgSizePolyhedron = from_constraints(Eqns),
|
|
polyhedron.intersection(ArgSizePolyhedron,
|
|
!Polyhedron)
|
|
)
|
|
)
|
|
).
|
|
|
|
find_edges_in_goal(_, _, _, _, AbstractGoal, !Calls, !Polyhedron, !Edges,
|
|
!Continue) :-
|
|
AbstractGoal = primitive(Primitive, _, _),
|
|
(
|
|
!.Continue = yes,
|
|
polyhedron.intersection(Primitive, !Polyhedron)
|
|
;
|
|
!.Continue = no
|
|
).
|
|
|
|
:- pred find_edges_in_disj(abstract_proc::in, abstract_scc::in, module_info::in,
|
|
int::in, polyhedron::in, abstract_goals::in, int::in, int::out,
|
|
polyhedra::in, polyhedra::out, edges::in, edges::out, bool::in,
|
|
bool::out) is det.
|
|
|
|
find_edges_in_disj(_, _, _, _, _, [], !Calls, !DisjConstrs, !Edges, !Continue).
|
|
find_edges_in_disj(Proc, AbstractSCC, ModuleInfo, MaxMatrixSize, TopPoly,
|
|
[Disj | Disjs], !Calls, !DisjConstrs, !Edges, !Continue) :-
|
|
find_edges_in_goal(Proc, AbstractSCC, ModuleInfo, MaxMatrixSize, Disj,
|
|
!Calls, TopPoly, Constrs, !Edges, !Continue),
|
|
list.cons(Constrs, !DisjConstrs),
|
|
%
|
|
% This is why it is important that after numbering the
|
|
% calls in the AR we don't change anything around; otherwise
|
|
% this short-circuiting will not work correctly.
|
|
%
|
|
(
|
|
!.Continue = yes,
|
|
find_edges_in_disj(Proc, AbstractSCC, ModuleInfo,
|
|
MaxMatrixSize, TopPoly, Disjs, !Calls, !DisjConstrs,
|
|
!Edges, !Continue)
|
|
;
|
|
!.Continue = no
|
|
).
|
|
|
|
:- func fix_edges(polyhedron, edge) = edge.
|
|
|
|
fix_edges(Poly, Edge0) = Edge :-
|
|
Edge = Edge0 ^ label := polyhedron.intersection(Poly, Edge0 ^ label).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Cycle detection.
|
|
%
|
|
|
|
% To find the elementary cycles of this SCC we perform a DFS of the
|
|
% call-graph. Since the call-graph is technically a pseudograph (ie. it
|
|
% admits parallel edges and self-loops), we first of all strip out any
|
|
% self-loops to make things easier.
|
|
|
|
:- func find_elementary_cycles_in_scc(list(abstract_ppid), edges) = cycles.
|
|
|
|
find_elementary_cycles_in_scc(SCC, Edges0) = Cycles :-
|
|
%
|
|
% Get any self-loops for each procedure.
|
|
%
|
|
list.filter_map(direct_call, Edges0, Cycles0, Edges),
|
|
%
|
|
% Find larger elementary cycles in what is left.
|
|
%
|
|
Cycles1 = find_cycles(SCC, Edges),
|
|
Cycles = Cycles0 ++ Cycles1.
|
|
|
|
% Succeeds iff Edge is an edge that represents
|
|
% a directly recursive call (a self-loop in
|
|
% the pseudograph)
|
|
%
|
|
:- pred direct_call(edge::in, cycle::out) is semidet.
|
|
|
|
direct_call(Edge, Cycle) :-
|
|
Edge ^ head = Edge ^ call,
|
|
Cycle = cycle([Edge ^ head], [Edge]).
|
|
|
|
:- func find_cycles(list(abstract_ppid), edges) = cycles.
|
|
|
|
find_cycles(SCC, Edges) = Cycles :-
|
|
EdgeMap = partition_edges(SCC, Edges),
|
|
Cycles = search_for_cycles(SCC, EdgeMap).
|
|
|
|
% Builds a map from `pred_proc_id' to a list of the edges that begin
|
|
% with the `pred_proc_id.
|
|
%
|
|
:- func partition_edges(list(abstract_ppid), edges) = map(abstract_ppid, edges).
|
|
|
|
partition_edges([], _) = map.init.
|
|
partition_edges([ProcId | SCC], Edges0) = Map :-
|
|
Map0 = partition_edges(SCC, Edges0),
|
|
Edges = list.filter((pred(Edge::in) is semidet :- ProcId = Edge ^ head),
|
|
Edges0),
|
|
Map = map.det_insert(Map0, ProcId, Edges).
|
|
|
|
:- func search_for_cycles(list(abstract_ppid), map(abstract_ppid, edges))
|
|
= cycles.
|
|
|
|
search_for_cycles([], _) = [].
|
|
search_for_cycles([Start | Rest], Map0) = Cycles :-
|
|
Cycles0 = search_for_cycles_2(Start, Map0),
|
|
Map = map.delete(Map0, Start),
|
|
Cycles1 = search_for_cycles(Rest, Map),
|
|
Cycles = Cycles0 ++ Cycles1.
|
|
|
|
:- func search_for_cycles_2(abstract_ppid, map(abstract_ppid, edges)) = cycles.
|
|
|
|
search_for_cycles_2(StartPPId, Map) = Cycles :-
|
|
InitialEdges = Map ^ det_elem(StartPPId),
|
|
list.foldl(search_for_cycles_3(StartPPId, [], Map, []), InitialEdges,
|
|
[], Cycles).
|
|
|
|
:- pred search_for_cycles_3(abstract_ppid::in, edges::in,
|
|
map(abstract_ppid, edges)::in, list(abstract_ppid)::in, edge::in,
|
|
cycles::in, cycles::out) is det.
|
|
|
|
search_for_cycles_3(Start, SoFar, Map, Visited, Edge, !Cycles) :-
|
|
( Start = Edge ^ call ->
|
|
Cycle = cycle([Edge ^ head | Visited], [Edge | SoFar]),
|
|
list.cons(Cycle, !Cycles)
|
|
;
|
|
( MoreEdges0 = Map ^ elem(Edge ^ call) ->
|
|
NotVisited = (pred(E::in) is semidet :-
|
|
not list.member(E ^ head, Visited)
|
|
),
|
|
MoreEdges = list.filter(NotVisited, MoreEdges0),
|
|
list.foldl(search_for_cycles_3(Start, [Edge | SoFar],
|
|
Map, [Edge ^ head | Visited]), MoreEdges,
|
|
!Cycles)
|
|
;
|
|
true
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Partitioning sets of cycles.
|
|
%
|
|
|
|
:- func partition_cycles(scc, cycles) = list(cycle_set).
|
|
|
|
partition_cycles([], _) = [].
|
|
partition_cycles([Proc | Procs], Cycles0) = CycleSets :-
|
|
list.filter(cycle_contains_proc(Proc), Cycles0, PCycles, Cycles1),
|
|
CycleSets0 = partition_cycles(Procs, Cycles1),
|
|
PEdges = list.map(collapse_cycle(Proc), PCycles),
|
|
( if PEdges = []
|
|
then CycleSets = CycleSets0
|
|
else CycleSets = [c_set(Proc, PEdges) | CycleSets0]
|
|
).
|
|
|
|
:- func get_proc_from_abstract_scc(list(abstract_proc), abstract_ppid)
|
|
= abstract_proc.
|
|
|
|
get_proc_from_abstract_scc([], _) = _ :-
|
|
unexpected(this_file, "Cannot find proc.").
|
|
get_proc_from_abstract_scc([ Proc | Procs ], PPId) =
|
|
( Proc ^ ppid = PPId ->
|
|
Proc
|
|
;
|
|
get_proc_from_abstract_scc(Procs, PPId)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Termination checking.
|
|
%
|
|
|
|
% This approach is very crude. It just checks that the sum of all
|
|
% the non-zero arguments is decreasing around all the elementary cycles.
|
|
|
|
:- pred prove_termination(list(cycle_set)::in, abstract_scc::in,
|
|
size_varset::in, constr_termination_info::out) is det.
|
|
|
|
prove_termination(Cycles, AbstractSCC, Varset, Result) :-
|
|
( total_sum_decrease(AbstractSCC, Varset, Cycles) ->
|
|
Result = cannot_loop(analysis)
|
|
;
|
|
% NOTE: the context here will never be used, in any
|
|
% case it's not clear what it should be.
|
|
Error = term.context_init - cond_not_satisfied,
|
|
Result = can_loop([Error])
|
|
).
|
|
|
|
:- pred total_sum_decrease(abstract_scc::in, size_varset::in,
|
|
list(cycle_set)::in) is semidet.
|
|
|
|
total_sum_decrease(_, _, []).
|
|
total_sum_decrease(AbstractSCC, Varset, [c_set(Start, Loops) | Cycles]):-
|
|
total_sum_decrease_2(AbstractSCC, Varset, Start, Loops),
|
|
total_sum_decrease(AbstractSCC, Varset, Cycles).
|
|
|
|
:- pred total_sum_decrease_2(abstract_scc::in, size_varset::in,
|
|
abstract_ppid::in, list(edge)::in) is semidet.
|
|
|
|
total_sum_decrease_2(_, _, _, []).
|
|
total_sum_decrease_2(AbstractSCC, Varset, PPId, Loops @ [_|_]) :-
|
|
all [Loop] list.member(Loop, Loops) =>
|
|
strict_decrease_around_loop(AbstractSCC, Varset, PPId, Loop).
|
|
|
|
% Succeeds iff there is strict decrease in the sum of *all*
|
|
% the arguments around the given loop.
|
|
%
|
|
:- pred strict_decrease_around_loop(abstract_scc::in, size_varset::in,
|
|
abstract_ppid::in, edge::in) is semidet.
|
|
|
|
strict_decrease_around_loop(AbstractSCC, Varset, PPId, Loop) :-
|
|
( if (PPId \= Loop ^ head ; PPId \= Loop ^ call)
|
|
then unexpected(this_file, "Badly formed loop.")
|
|
else true
|
|
),
|
|
IsActive = (func(Var::in, Input::in) = (Var::out) is semidet :-
|
|
Input = yes
|
|
),
|
|
Proc = get_proc_from_abstract_scc(AbstractSCC, PPId),
|
|
Inputs = Proc ^ inputs,
|
|
HeadArgs = list.filter_map_corresponding(IsActive, Loop ^ head_args,
|
|
Inputs),
|
|
CallArgs = list.filter_map_corresponding(IsActive, Loop ^ call_args,
|
|
Inputs),
|
|
Terms = make_coeffs(HeadArgs, -one) ++ make_coeffs(CallArgs, one),
|
|
%
|
|
% NOTE: if you examine the condition it may contain less
|
|
% variables than you expect. This is because if the same
|
|
% argument occurs in the head and the call they will cancel
|
|
% each other out.
|
|
%
|
|
Condition = constraint(Terms, (=<), -one),
|
|
Label = polyhedron.non_false_constraints(Loop ^ label),
|
|
entailed(Varset, Label, Condition).
|
|
|
|
:- pred cycle_contains_proc(abstract_ppid::in, cycle::in) is semidet.
|
|
|
|
cycle_contains_proc(PPId, cycle(Nodes, _)) :- list.member(PPId, Nodes).
|
|
|
|
% XXX Fix this name.
|
|
:- func make_coeffs(size_vars, rat) = lp_terms.
|
|
|
|
make_coeffs(Vars, Coeff) = list.map((func(Var) = Var - Coeff), Vars).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Collapse all the cycles so that they all start with the given
|
|
% procedure and all the edge labels between are conjoined.
|
|
%
|
|
:- func collapse_cycles(abstract_ppid, cycles) = edges.
|
|
|
|
collapse_cycles(Start, Cycles) = list.map(collapse_cycle(Start), Cycles).
|
|
|
|
:- func collapse_cycle(abstract_ppid, cycle) = edge.
|
|
|
|
collapse_cycle(_, cycle(_, [])) = _ :-
|
|
unexpected(this_file, "Trying to collapse a cycle with no edges.").
|
|
collapse_cycle(_, cycle(_, [Edge])) = Edge.
|
|
collapse_cycle(StartPPId, cycle(_, Edges0 @ [_,_|_])) = CollapsedCycle :-
|
|
order_nodes(StartPPId, Edges0, Edges),
|
|
( if Edges = [StartEdge0 | Rest0]
|
|
then StartEdge = StartEdge0, Rest = Rest0
|
|
else unexpected(this_file, "Error while collapsing cycles.")
|
|
),
|
|
StartEdge = edge(_, Zeros0, HeadVars, Polyhedron0, _, CallVars0),
|
|
collapse_cycle_2(Rest, Zeros0, Zeros, CallVars0, CallVars, Polyhedron0,
|
|
Polyhedron),
|
|
CollapsedCycle = edge(StartPPId, Zeros, HeadVars, Polyhedron,
|
|
StartPPId, CallVars).
|
|
|
|
:- pred collapse_cycle_2(edges::in, zero_vars::in, zero_vars::out,
|
|
size_vars::in, size_vars::out, polyhedron::in, polyhedron::out) is det.
|
|
|
|
collapse_cycle_2([], !Zeros, !CallVars, !Polyhedron).
|
|
collapse_cycle_2([Edge | Edges], !Zeros, !CallVars, !Polyhedron) :-
|
|
set.union(Edge ^ zeros, !Zeros),
|
|
HeadVars = Edge ^ head_args,
|
|
Subst0 = assoc_list.from_corresponding_lists(HeadVars, !.CallVars),
|
|
bimap.set_from_assoc_list(Subst0, bimap.init, Subst),
|
|
%
|
|
% We now need to substitute variables from the call to *this*
|
|
% predicate for head variables in both the constraints from the
|
|
% body of the predicate and also into the variables in the
|
|
% calls to the next predicate.
|
|
%
|
|
% While it might be easier to put equality constraints
|
|
% between the caller's arguments and the callee's head
|
|
% arguments the substitution is in some ways more desirable
|
|
% as we can detect some neutral arguments more directly.
|
|
%
|
|
!:CallVars = list.map(subst_size_var(Subst), Edge ^ call_args),
|
|
%
|
|
% These should be non-false, so throw an exception if they
|
|
% are not.
|
|
%
|
|
Constraints0 = polyhedron.non_false_constraints(!.Polyhedron),
|
|
Constraints1 = polyhedron.non_false_constraints(Edge ^ label),
|
|
Constraints2 = list.map(subst_size_var_eqn(Subst), Constraints1),
|
|
Constraints3 = Constraints0 ++ Constraints2,
|
|
!:Polyhedron = polyhedron.from_constraints(Constraints3),
|
|
collapse_cycle_2(Edges, !Zeros, !CallVars, !Polyhedron).
|
|
|
|
:- pred order_nodes(abstract_ppid::in, edges::in, edges::out) is det.
|
|
|
|
order_nodes(StartPPId, Edges0, [Edge | Edges]) :-
|
|
EdgeMap = build_edge_map(Edges0),
|
|
Edge = EdgeMap ^ det_elem(StartPPId),
|
|
order_nodes_2(StartPPId, Edge ^ call, EdgeMap, Edges).
|
|
|
|
:- pred order_nodes_2(abstract_ppid::in, abstract_ppid::in,
|
|
map(abstract_ppid, edge)::in, edges::out) is det.
|
|
|
|
order_nodes_2(StartPPId, CurrPPId, Map, Edges) :-
|
|
( if StartPPId = CurrPPId
|
|
then Edges = []
|
|
else
|
|
Edge = Map ^ det_elem(CurrPPId),
|
|
order_nodes_2(StartPPId, Edge ^ call, Map, Edges0),
|
|
Edges = [Edge | Edges0]
|
|
).
|
|
|
|
:- func build_edge_map(edges) = map(abstract_ppid, edge).
|
|
|
|
build_edge_map([]) = map.init.
|
|
build_edge_map([Edge | Edges]) =
|
|
map.det_insert(build_edge_map(Edges), Edge ^ head, Edge).
|
|
|
|
:- func subst_size_var_eqn(bimap(size_var, size_var), constraint)
|
|
= constraint.
|
|
|
|
subst_size_var_eqn(Map, Eqn0) = Eqn :-
|
|
constraint(Eqn0, Coeffs0, Operator, Constant),
|
|
Coeffs = list.map(subst_size_var_coeff(Map), Coeffs0),
|
|
Eqn = constraint(Coeffs, Operator, Constant).
|
|
|
|
:- func subst_size_var_coeff(bimap(size_var, size_var), lp_term) = lp_term.
|
|
|
|
subst_size_var_coeff(Map, Var0 - Coeff) = Var - Coeff :-
|
|
Var = subst_size_var(Map, Var0).
|
|
|
|
:- func subst_size_var(bimap(size_var, size_var), size_var) = size_var.
|
|
|
|
subst_size_var(Map, Old) = (if bimap.search(Map, Old, New) then New else Old).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Predicates for printing out debugging traces.
|
|
%
|
|
|
|
:- pred write_cycles(cycles::in, module_info::in, size_varset::in,
|
|
io::di, io::uo) is det.
|
|
|
|
write_cycles([], _, _, !IO).
|
|
write_cycles([Cycle | Cycles], ModuleInfo, Varset, !IO) :-
|
|
io.write_string("Cycle in SCC:\n", !IO),
|
|
write_cycle(Cycle ^ nodes, ModuleInfo, !IO),
|
|
io.write_list(Cycle ^ edges, "\n", write_edge(ModuleInfo, Varset), !IO),
|
|
io.nl(!IO),
|
|
write_cycles(Cycles, ModuleInfo, Varset, !IO).
|
|
|
|
:- pred write_cycle(list(abstract_ppid)::in, module_info::in, io::di, io::uo)
|
|
is det.
|
|
|
|
write_cycle([], _, !IO).
|
|
write_cycle([ Proc | Procs ], ModuleInfo, !IO) :-
|
|
io.write_string("\t- ", !IO),
|
|
Proc = real(proc(PredId, ProcId)),
|
|
hlds_out.write_pred_proc_id(ModuleInfo, PredId, ProcId, !IO),
|
|
io.nl(!IO),
|
|
write_cycle(Procs, ModuleInfo, !IO).
|
|
|
|
:- pred write_edge(module_info::in, size_varset::in, edge::in,
|
|
io::di, io::uo) is det.
|
|
|
|
write_edge(ModuleInfo, Varset, Edge, !IO) :-
|
|
io.write_string("Edge is:\n\tHead: ", !IO),
|
|
Edge ^ head = real(proc(PredId, ProcId)),
|
|
hlds_out.write_pred_proc_id(ModuleInfo, PredId, ProcId, !IO),
|
|
io.write_string(" : ", !IO),
|
|
write_size_vars(Varset, Edge ^ head_args, !IO),
|
|
io.write_string(" :- \n", !IO),
|
|
io.write_string("\tConstraints are: \n", !IO),
|
|
write_polyhedron(Edge ^ label, Varset, !IO),
|
|
io.write_string("\n\tCall is: ", !IO),
|
|
Edge ^ call = real(proc(CallPredId, CallProcId)),
|
|
hlds_out.write_pred_proc_id(ModuleInfo, CallPredId, CallProcId, !IO),
|
|
io.write_string(" : ", !IO),
|
|
write_size_vars(Varset, Edge ^ call_args, !IO),
|
|
io.write_string(" :- \n", !IO),
|
|
io.nl(!IO).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- func this_file = string.
|
|
|
|
this_file = "term_constr_pass2.m".
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
:- end_module transform_hlds.term_constr_pass2.
|
|
%-----------------------------------------------------------------------------%
|