mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 07:15:19 +00:00
Estimated hours taken: 18 Branches: main Move the univ, maybe, pair and unit types from std_util into their own modules. std_util still contains the general purpose higher-order programming constructs. library/std_util.m: Move univ, maybe, pair and unit (plus any other related types and procedures) into their own modules. library/maybe.m: New module. This contains the maybe and maybe_error types and the associated procedures. library/pair.m: New module. This contains the pair type and associated procedures. library/unit.m: New module. This contains the types unit/0 and unit/1. library/univ.m: New module. This contains the univ type and associated procedures. library/library.m: Add the new modules. library/private_builtin.m: Update the declaration of the type_ctor_info struct for univ. runtime/mercury.h: Update the declaration for the type_ctor_info struct for univ. runtime/mercury_mcpp.h: runtime/mercury_hlc_types.h: Update the definition of MR_Univ. runtime/mercury_init.h: Fix a comment: ML_type_name is now exported from type_desc.m. compiler/mlds_to_il.m: Update the the name of the module that defines univs (which are handled specially by the il code generator.) library/*.m: compiler/*.m: browser/*.m: mdbcomp/*.m: profiler/*.m: deep_profiler/*.m: Conform to the above changes. Import the new modules where they are needed; don't import std_util where it isn't needed. Fix formatting in lots of modules. Delete duplicate module imports. tests/*: Update the test suite to confrom to the above changes.
1740 lines
65 KiB
Mathematica
1740 lines
65 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1996-2006 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% File: prog_data.m.
|
|
% Main author: fjh.
|
|
|
|
% This module, together with prog_item, defines a data structure for
|
|
% representing Mercury programs.
|
|
|
|
% This data structure specifies basically the same information as is contained
|
|
% in the source code, but in a parse tree rather than a flat file. This
|
|
% module defines the parts of the parse tree that are needed by the various
|
|
% compiler backends; parts of the parse tree that are not needed by the
|
|
% backends are contained in prog_item.m.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module parse_tree.prog_data.
|
|
:- interface.
|
|
|
|
:- import_module libs.globals.
|
|
:- import_module libs.rat.
|
|
:- import_module mdbcomp.prim_data.
|
|
:- import_module parse_tree.prog_item.
|
|
|
|
:- import_module assoc_list.
|
|
:- import_module bool.
|
|
:- import_module list.
|
|
:- import_module map.
|
|
:- import_module maybe.
|
|
:- import_module pair.
|
|
:- import_module set.
|
|
:- import_module term.
|
|
:- import_module unit.
|
|
:- import_module varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Indicates the type of information the compiler should get from the
|
|
% declaration's clause.
|
|
%
|
|
:- type promise_type
|
|
% promise ex declarations
|
|
---> exclusive % Each disjunct is mutually exclusive.
|
|
; exhaustive % Disjunction cannot fail.
|
|
; exclusive_exhaustive % Both of the above.
|
|
% assertions
|
|
; true. % Promise goal is true.
|
|
|
|
:- type type_and_mode
|
|
---> type_only(mer_type)
|
|
; type_and_mode(mer_type, mer_mode).
|
|
|
|
% Purity indicates whether a goal can have side effects or can depend on
|
|
% global state. See purity.m and the "Purity" section of the Mercury
|
|
% language reference manual.
|
|
:- type purity
|
|
---> purity_pure
|
|
; purity_semipure
|
|
; purity_impure.
|
|
|
|
% Compare two purities.
|
|
%
|
|
:- pred less_pure(purity::in, purity::in) is semidet.
|
|
|
|
% Sort of a "maximum" for impurity.
|
|
%
|
|
:- func worst_purity(purity, purity) = purity.
|
|
|
|
% Sort of a "minimum" for impurity.
|
|
%
|
|
:- func best_purity(purity, purity) = purity.
|
|
|
|
% The `determinism' type specifies how many solutions a given procedure
|
|
% may have.
|
|
%
|
|
:- type determinism
|
|
---> det
|
|
; semidet
|
|
; nondet
|
|
; multidet
|
|
; cc_nondet
|
|
; cc_multidet
|
|
; erroneous
|
|
; failure.
|
|
|
|
:- type can_fail
|
|
---> can_fail
|
|
; cannot_fail.
|
|
|
|
:- type soln_count
|
|
---> at_most_zero
|
|
; at_most_one
|
|
; at_most_many_cc
|
|
% "_cc" means "committed-choice": there is more than one logical
|
|
% solution, but the pred or goal is being used in a context where
|
|
% we are only looking for the first solution.
|
|
; at_most_many.
|
|
|
|
:- pred determinism_components(determinism, can_fail, soln_count).
|
|
:- mode determinism_components(in, out, out) is det.
|
|
:- mode determinism_components(out, in, in) is det.
|
|
|
|
% The following predicates implement the tables for computing the
|
|
% determinism of compound goals from the determinism of their components.
|
|
|
|
:- pred det_conjunction_detism(determinism::in, determinism::in,
|
|
determinism::out) is det.
|
|
|
|
:- pred det_par_conjunction_detism(determinism::in, determinism::in,
|
|
determinism::out) is det.
|
|
|
|
:- pred det_switch_detism(determinism::in, determinism::in, determinism::out)
|
|
is det.
|
|
|
|
:- pred det_negation_det(determinism::in, maybe(determinism)::out) is det.
|
|
|
|
:- pred det_conjunction_maxsoln(soln_count::in, soln_count::in,
|
|
soln_count::out) is det.
|
|
|
|
:- pred det_conjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
|
|
is det.
|
|
|
|
:- pred det_disjunction_maxsoln(soln_count::in, soln_count::in,
|
|
soln_count::out) is det.
|
|
|
|
:- pred det_disjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
|
|
is det.
|
|
|
|
:- pred det_switch_maxsoln(soln_count::in, soln_count::in, soln_count::out)
|
|
is det.
|
|
|
|
:- pred det_switch_canfail(can_fail::in, can_fail::in, can_fail::out) is det.
|
|
|
|
% The `is_solver_type' type specifies whether a type is a "solver" type,
|
|
% for which `any' insts are interpreted as "don't know", or a non-solver
|
|
% type for which `any' is the same as `bound(...)'.
|
|
%
|
|
:- type is_solver_type
|
|
---> non_solver_type
|
|
% The inst `any' is always `bound' for this type.
|
|
|
|
; solver_type.
|
|
% The inst `any' is not always `bound' for this type
|
|
% (i.e. the type was declared with
|
|
% `:- solver type ...').
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the foreign language interface pragmas
|
|
%
|
|
|
|
% Is the foreign code declarations local to this module or
|
|
% exported?
|
|
%
|
|
:- type foreign_decl_is_local
|
|
---> foreign_decl_is_local
|
|
; foreign_decl_is_exported.
|
|
|
|
% A foreign_language_type represents a type that is defined in a
|
|
% foreign language and accessed in Mercury (most likely through
|
|
% pragma foreign_type).
|
|
% Currently we only support foreign_language_types for IL.
|
|
%
|
|
% It is important to distinguish between IL value types and reference
|
|
% types, the compiler may need to generate different code for each of
|
|
% these cases.
|
|
%
|
|
:- type foreign_language_type
|
|
---> il(il_foreign_type)
|
|
; c(c_foreign_type)
|
|
; java(java_foreign_type).
|
|
|
|
:- type il_foreign_type
|
|
---> il(
|
|
ref_or_val, % An indicator of whether the type is a
|
|
% reference of value type.
|
|
string, % The location of the .NET name (the assembly)
|
|
sym_name % The .NET type name
|
|
).
|
|
|
|
:- type c_foreign_type
|
|
---> c(
|
|
string % The C type name
|
|
).
|
|
|
|
:- type java_foreign_type
|
|
---> java(
|
|
string % The Java type name
|
|
).
|
|
|
|
:- type ref_or_val
|
|
---> reference
|
|
; value.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for tabling pragmas
|
|
%
|
|
|
|
:- type eval_minimal_method
|
|
---> stack_copy % Saving and restoring stack segments as necessary.
|
|
; own_stacks. % Each generator has its own stacks.
|
|
|
|
% The evaluation method that should be used for a procedure.
|
|
%
|
|
:- type eval_method
|
|
---> eval_normal % normal mercury evaluation
|
|
; eval_loop_check % loop check only
|
|
; eval_memo(call_table_strictness)
|
|
% memoing + loop check
|
|
; eval_table_io( % memoing I/O actions for debugging
|
|
table_io_is_decl,
|
|
table_io_is_unitize
|
|
)
|
|
; eval_minimal(eval_minimal_method).
|
|
% minimal model evaluation
|
|
|
|
:- type call_table_strictness
|
|
---> all_strict
|
|
; all_fast_loose
|
|
; specified(
|
|
list(maybe(arg_tabling_method))
|
|
% This list contains one element for each user-visible
|
|
% argument of the predicate. Elements that correspond
|
|
% to output arguments should be "no". Elements that
|
|
% correspond to input arguments should be "yes",
|
|
% specifying how to look up that argument in the call
|
|
% table.
|
|
).
|
|
|
|
:- type arg_tabling_method
|
|
---> arg_value
|
|
; arg_addr
|
|
; arg_promise_implied.
|
|
|
|
:- type table_io_is_decl
|
|
---> table_io_decl % The procedure is tabled for
|
|
% declarative debugging.
|
|
; table_io_proc. % The procedure is tabled only for
|
|
% procedural debugging.
|
|
|
|
:- type table_io_is_unitize
|
|
---> table_io_unitize % The procedure is tabled for I/O
|
|
% together with its Mercury descendants.
|
|
|
|
; table_io_alone. % The procedure is tabled for I/O by itself;
|
|
% it can have no Mercury descendants.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the `termination_info' pragma.
|
|
% See term_util.m.
|
|
%
|
|
|
|
:- type generic_arg_size_info(ErrorInfo)
|
|
---> finite(int, list(bool))
|
|
% The termination constant is a finite integer. The list of bool
|
|
% has a 1:1 correspondence with the input arguments of the
|
|
% procedure. It stores whether the argument contributes to the
|
|
% size of the output arguments.
|
|
|
|
; infinite(ErrorInfo).
|
|
% There is no finite integer for which the above equation is true.
|
|
|
|
:- type generic_termination_info(TermInfo, ErrorInfo)
|
|
---> cannot_loop(TermInfo) % This procedure definitely terminates
|
|
% for all possible inputs.
|
|
; can_loop(ErrorInfo).
|
|
% This procedure might not terminate.
|
|
|
|
:- type pragma_arg_size_info == generic_arg_size_info(unit).
|
|
:- type pragma_termination_info == generic_termination_info(unit, unit).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the `termination2_info' pragma
|
|
%
|
|
|
|
% This is the form in which termination information from other
|
|
% modules (imported via `.opt' or `.trans_opt' files) comes.
|
|
% We convert this to an intermediate form and let the termination
|
|
% analyser convert it to the correct form.
|
|
%
|
|
% NOTE: the reason that we cannot convert it to the correct form
|
|
% is that we don't have complete information about how many typeinfo
|
|
% related arguments there are until after the polymoprhism pass.
|
|
%
|
|
:- type arg_size_constr
|
|
---> le(list(arg_size_term), rat)
|
|
; eq(list(arg_size_term), rat).
|
|
|
|
:- type arg_size_term == pair(int, rat).
|
|
|
|
:- type pragma_constr_arg_size_info == list(arg_size_constr).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the `structure_sharing_info' pragma.
|
|
%
|
|
% Whenever structure sharing analysis is unable to determine a good
|
|
% approximation of the set of structure sharing pairs that might exist
|
|
% during the execution of a program, it must use "top" as the only safe
|
|
% approximation. In order to collect some useful basic feedback information
|
|
% as to `why' a top was generated, we use:
|
|
%
|
|
:- type top_feedback == string.
|
|
|
|
% Elements of the structure sharing domain lattice are either bottom
|
|
% (no structure sharing), top (any kind of structure sharing), or
|
|
% a list of structure sharing pairs.
|
|
%
|
|
:- type structure_sharing_domain
|
|
---> bottom
|
|
; real(structure_sharing)
|
|
; top(list(top_feedback)).
|
|
|
|
% Public representation of structure sharing.
|
|
%
|
|
:- type structure_sharing == list(structure_sharing_pair).
|
|
|
|
% A structure sharing pair represents the information that two
|
|
% data structures might be represented by the same memoryspace, hence
|
|
% its representation as a pair of datastructs.
|
|
%
|
|
:- type structure_sharing_pair == pair(datastruct).
|
|
|
|
% A datastructure is a concept that designates a particular subterm of the
|
|
% term to which a particular variable may be bound.
|
|
%
|
|
:- type datastruct
|
|
---> selected_cel(
|
|
sc_var :: prog_var,
|
|
sc_selector :: selector
|
|
).
|
|
|
|
% A selector describes a path in a type-tree.
|
|
%
|
|
:- type selector == list(unit_selector).
|
|
|
|
% Unit-selectors are either term selectors or type selectors. A term
|
|
% selector selects a subterm f/n of a term, where f is a functor
|
|
% (identified by the cons_id), and n an integer. A type selector
|
|
% designates any subterm that has that specific type.
|
|
%
|
|
:- type unit_selector
|
|
---> termsel(cons_id, int) % term selector
|
|
; typesel(mer_type). % type selector
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the `unused_args' pragma
|
|
%
|
|
|
|
% This `mode_num' type is only used for mode numbers written out in
|
|
% automatically-generated `pragma unused_args' pragmas in `.opt' files.
|
|
% The mode_num gets converted to an HLDS proc_id by make_hlds.m.
|
|
% We don't want to use the `proc_id' type here since the parse tree
|
|
% (prog_data.m and prog_item.m) should not depend on the HLDS.
|
|
%
|
|
:- type mode_num == int.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the `exceptions' pragma
|
|
%
|
|
|
|
:- type exception_status
|
|
---> will_not_throw
|
|
% This procedure will not throw an exception.
|
|
|
|
; may_throw(exception_type)
|
|
% This procedure may throw an exception. The exception is
|
|
% classified by the `exception_type' type.
|
|
|
|
; conditional.
|
|
% Whether the procedure will not throw an exception depends upon
|
|
% the value of one or more polymorphic arguments. XXX This needs
|
|
% to be extended for ho preds. (See exception_analysis.m for
|
|
% more details).
|
|
|
|
:- type exception_type
|
|
---> user_exception
|
|
% The exception that might be thrown is of a result of some code
|
|
% calling exception.throw/1.
|
|
|
|
; type_exception.
|
|
% The exception is a result of a compiler introduced
|
|
% unification/comparison maybe throwing an exception
|
|
% (in the case of user-defined equality or comparison) or
|
|
% propagating an exception from them.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the trailing analysis
|
|
%
|
|
|
|
:- type trailing_status
|
|
---> may_modify_trail
|
|
; will_not_modify_trail
|
|
; conditional.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for the `type_spec' pragma
|
|
%
|
|
|
|
% The type substitution for a `pragma type_spec' declaration.
|
|
% Elsewhere in the compiler we generally use the `tsubst' type
|
|
% which is a map rather than an assoc_list.
|
|
%
|
|
:- type type_subst == assoc_list(tvar, mer_type).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff for `foreign_code' pragma
|
|
%
|
|
|
|
% This type holds information about the implementation details
|
|
% of procedures defined via `pragma foreign_code'.
|
|
%
|
|
% All the strings in this type may be accompanied by the context of their
|
|
% appearance in the source code. These contexts are used to tell the
|
|
% foreign language compiler where the included code comes from, to allow it
|
|
% to generate error messages that refer to the original appearance of the
|
|
% code in the Mercury program. The context is missing if the foreign code
|
|
% was constructed by the compiler.
|
|
%
|
|
% NOTE: nondet pragma foreign definitions might not be possible in all
|
|
% foreign languages.
|
|
%
|
|
:- type pragma_foreign_code_impl
|
|
---> ordinary(
|
|
% This is a foreign language definition of a model_det or
|
|
% model_semi procedure. (We also allow model_non, until
|
|
% everyone has had time to adapt to the new way of handling
|
|
% model_non pragmas.)
|
|
|
|
string, % The code of the procedure.
|
|
maybe(prog_context)
|
|
)
|
|
|
|
; nondet(
|
|
% This is a foreign language definition of a model_non
|
|
% procedure.
|
|
|
|
string,
|
|
maybe(prog_context),
|
|
% The info saved for the time when backtracking reenters
|
|
% this procedure is stored in a data structure. This arg
|
|
% contains the field declarations.
|
|
|
|
string,
|
|
maybe(prog_context),
|
|
% Gives the code to be executed when the procedure is
|
|
% called for the first time. This code may access the
|
|
% input variables.
|
|
|
|
string,
|
|
maybe(prog_context),
|
|
% Gives the code to be executed when control backtracks
|
|
% into the procedure. This code may not access the input
|
|
% variables.
|
|
|
|
pragma_shared_code_treatment,
|
|
% How should the shared code be treated during code
|
|
% generation.
|
|
|
|
string,
|
|
maybe(prog_context)
|
|
% Shared code that is executed after both the previous
|
|
% code fragments. May not access the input variables.
|
|
)
|
|
|
|
; import(
|
|
string, % Pragma imported C func name
|
|
string, % Code to handle return value
|
|
string, % Comma separated variables which the import
|
|
% function is called with.
|
|
maybe(prog_context)
|
|
).
|
|
|
|
% The use of this type is explained in the comment at the top of
|
|
% pragma_c_gen.m.
|
|
%
|
|
:- type pragma_shared_code_treatment
|
|
---> duplicate
|
|
; share
|
|
; automatic.
|
|
|
|
:- type foreign_import_module_info == list(foreign_import_module).
|
|
% in reverse order
|
|
|
|
:- type foreign_import_module
|
|
---> foreign_import_module(
|
|
foreign_language,
|
|
module_name,
|
|
prog_context
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Type classes
|
|
%
|
|
|
|
% A class constraint represents a constraint that a given list of types
|
|
% is a member of the specified type class. It is an invariant of this data
|
|
% structure that the types in a class constraint do not contain any
|
|
% information in their prog_context fields. This invariant is needed
|
|
% to ensure that we can do unifications, map.lookups, etc., and get the
|
|
% expected semantics. (This invariant now applies to all types, but is
|
|
% especially important here.)
|
|
%
|
|
:- type prog_constraint
|
|
---> constraint(
|
|
class_name,
|
|
list(mer_type)
|
|
).
|
|
|
|
:- type prog_constraints
|
|
---> constraints(
|
|
univ_constraints :: list(prog_constraint),
|
|
% universally quantified
|
|
% constraints
|
|
exist_constraints :: list(prog_constraint)
|
|
% existentially quantified
|
|
% constraints
|
|
).
|
|
|
|
% A functional dependency on the variables in the head of a class
|
|
% declaration. This asserts that, given the complete set of instances
|
|
% of this class, the binding of the range variables can be uniquely
|
|
% determined from the binding of the domain variables.
|
|
%
|
|
:- type prog_fundep
|
|
---> fundep(
|
|
domain :: list(tvar),
|
|
range :: list(tvar)
|
|
).
|
|
|
|
:- type class_name == sym_name.
|
|
:- type class_id
|
|
---> class_id(class_name, arity).
|
|
|
|
:- type class_interface
|
|
---> abstract
|
|
; concrete(class_methods).
|
|
|
|
:- type instance_method
|
|
---> instance_method(
|
|
pred_or_func,
|
|
sym_name, % method name
|
|
instance_proc_def,
|
|
arity,
|
|
prog_context % context of the instance declaration
|
|
).
|
|
|
|
:- type instance_proc_def
|
|
---> name(
|
|
% defined using the `pred(...) is <Name>' syntax
|
|
sym_name
|
|
)
|
|
|
|
; clauses(
|
|
% defined using clauses
|
|
list(item) % the items must be either
|
|
% pred_clause or func_clause items
|
|
).
|
|
|
|
:- type instance_body
|
|
---> abstract
|
|
; concrete(instance_methods).
|
|
|
|
:- type instance_methods == list(instance_method).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Some more stuff for the foreign language interface
|
|
%
|
|
|
|
% An abstract type for representing a set of
|
|
% `pragma_foreign_proc_attribute's.
|
|
%
|
|
:- type pragma_foreign_proc_attributes.
|
|
|
|
:- func default_attributes(foreign_language) = pragma_foreign_proc_attributes.
|
|
:- func may_call_mercury(pragma_foreign_proc_attributes) = may_call_mercury.
|
|
:- func thread_safe(pragma_foreign_proc_attributes) = thread_safe.
|
|
:- func purity(pragma_foreign_proc_attributes) = purity.
|
|
:- func terminates(pragma_foreign_proc_attributes) = terminates.
|
|
:- func foreign_language(pragma_foreign_proc_attributes) = foreign_language.
|
|
:- func tabled_for_io(pragma_foreign_proc_attributes) = tabled_for_io.
|
|
:- func legacy_purity_behaviour(pragma_foreign_proc_attributes) = bool.
|
|
:- func may_throw_exception(pragma_foreign_proc_attributes) =
|
|
may_throw_exception.
|
|
:- func ordinary_despite_detism(pragma_foreign_proc_attributes) = bool.
|
|
:- func may_modify_trail(pragma_foreign_proc_attributes) = may_modify_trail.
|
|
:- func box_policy(pragma_foreign_proc_attributes) = box_policy.
|
|
:- func extra_attributes(pragma_foreign_proc_attributes)
|
|
= pragma_foreign_proc_extra_attributes.
|
|
|
|
:- pred set_may_call_mercury(may_call_mercury::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_thread_safe(thread_safe::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_foreign_language(foreign_language::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_tabled_for_io(tabled_for_io::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_purity(purity::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_terminates(terminates::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_may_throw_exception(may_throw_exception::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_legacy_purity_behaviour(bool::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_ordinary_despite_detism(bool::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_may_modify_trail(may_modify_trail::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred set_box_policy(box_policy::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
:- pred add_extra_attribute(pragma_foreign_proc_extra_attribute::in,
|
|
pragma_foreign_proc_attributes::in,
|
|
pragma_foreign_proc_attributes::out) is det.
|
|
|
|
% For pragma c_code, there are two different calling conventions,
|
|
% one for C code that may recursively call Mercury code, and another
|
|
% more efficient one for the case when we know that the C code will
|
|
% not recursively invoke Mercury code.
|
|
:- type may_call_mercury
|
|
---> may_call_mercury
|
|
; will_not_call_mercury.
|
|
|
|
% If thread_safe execution is enabled, then we need to put a mutex
|
|
% around the C code for each `pragma c_code' declaration, unless
|
|
% it's declared to be thread_safe. If a piece of foreign code is
|
|
% declared to be maybe_thread_safe whether we put the mutex around
|
|
% the foreign code depends upon the `--maybe-thread-safe' compiler flag.
|
|
%
|
|
:- type thread_safe
|
|
---> not_thread_safe
|
|
; thread_safe
|
|
; maybe_thread_safe.
|
|
|
|
:- type tabled_for_io
|
|
---> not_tabled_for_io
|
|
; tabled_for_io
|
|
; tabled_for_io_unitize
|
|
; tabled_for_descendant_io.
|
|
|
|
:- type may_modify_trail
|
|
---> may_modify_trail
|
|
; will_not_modify_trail.
|
|
|
|
:- type pragma_var
|
|
---> pragma_var(prog_var, string, mer_mode, box_policy).
|
|
% variable, name, mode
|
|
% We explicitly store the name because we need the real
|
|
% name in code_gen.
|
|
|
|
:- type box_policy
|
|
---> native_if_possible
|
|
; always_boxed.
|
|
|
|
% This type specifies the termination property of a procedure
|
|
% defined using pragma c_code or pragma foreign_proc.
|
|
%
|
|
:- type terminates
|
|
---> terminates
|
|
% The foreign code will terminate for all input assuming
|
|
% that any input streams are finite.
|
|
|
|
; does_not_terminate
|
|
% The foreign code will not necessarily terminate for some
|
|
% (possibly all) input.
|
|
|
|
; depends_on_mercury_calls.
|
|
% The termination of the foreign code depends on whether the code
|
|
% makes calls back to Mercury (See termination.m for details).
|
|
|
|
:- type may_throw_exception
|
|
---> will_not_throw_exception
|
|
% The foreign code will not result in an exception being thrown.
|
|
|
|
; default_exception_behaviour.
|
|
% If the foreign_proc is erroneous then mark it as throwing an
|
|
% exception. Otherwise mark it as throwing an exception if it
|
|
% makes calls back to Mercury and not throwing an exception
|
|
% otherwise.
|
|
|
|
:- type pragma_foreign_proc_extra_attribute
|
|
---> max_stack_size(int)
|
|
; backend(backend).
|
|
|
|
:- type pragma_foreign_proc_extra_attributes ==
|
|
list(pragma_foreign_proc_extra_attribute).
|
|
|
|
% Convert the foreign code attributes to their source code representations
|
|
% suitable for placing in the attributes list of the pragma (not all
|
|
% attributes have one). In particular, the foreign language attribute needs
|
|
% to be handled separately as it belongs at the start of the pragma.
|
|
%
|
|
:- func attributes_to_strings(pragma_foreign_proc_attributes) = list(string).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Goals
|
|
%
|
|
|
|
% NOTE: the representation of goals in the parse tree is defined in
|
|
% prog_item.m.
|
|
|
|
:- type implicit_purity_promise
|
|
---> make_implicit_promises
|
|
; dont_make_implicit_promises.
|
|
|
|
% These type equivalences are for the type of program variables
|
|
% and associated structures.
|
|
%
|
|
:- type prog_var_type ---> prog_var_type.
|
|
:- type prog_var == var(prog_var_type).
|
|
:- type prog_varset == varset(prog_var_type).
|
|
:- type prog_substitution == substitution(prog_var_type).
|
|
:- type prog_term == term(prog_var_type).
|
|
:- type prog_vars == list(prog_var).
|
|
|
|
% A prog_context is just a term.context.
|
|
%
|
|
:- type prog_context == term.context.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Cons ids
|
|
%
|
|
|
|
% The representation of cons_ids below is a compromise. The cons_id
|
|
% type must be defined here, in a submodule of parse_tree.m, because
|
|
% it is a component of insts. However, after the program has been read
|
|
% in, the cons_ids cons, int_const, string_const and float_const,
|
|
% which can appear in user programs, may also be augmented by the other
|
|
% cons_ids, which can only be generated by the compiler.
|
|
%
|
|
% The problem is that some of these compiler generated cons_ids
|
|
% refer to procedures, and the natural method of identifying
|
|
% procedures requires the types pred_id and proc_id, defined
|
|
% in hlds_pred.m, which we don't want to import here.
|
|
%
|
|
% We could try to avoid this problem using two different types
|
|
% for cons_ids, one defined here for use in the parse tree and one
|
|
% defined in hlds_data.m for use in the HLDS. We could distinguish
|
|
% the two by having the HLDS cons_id have a definition such as
|
|
% hlds_cons_id ---> parse_cons_id(parse_cons_id) ; ...
|
|
% or, alternatively, by making cons_id parametric in the type of
|
|
% constants, and substitute different constant types (since all the
|
|
% cons_ids that refer to HLDS concepts are constants).
|
|
%
|
|
% Using two different types requires a translation from one to the
|
|
% other. While the runtime cost would be acceptable, the cost in code
|
|
% complexity isn't, since the translation isn't confined to
|
|
% make_hlds.m. (I found this out the hard way.) This is especially so
|
|
% if we want to use in each case only the tightest possible type.
|
|
% For example, while construct goals can involve all cons_ids,
|
|
% deconstruct goals and switches can currently involve only the
|
|
% cons_ids that can appear in parse trees.
|
|
%
|
|
% The solution we have chosen is to exploit the fact that pred_ids
|
|
% and proc_ids are integers. Those types are private to hlds_pred.m,
|
|
% but hlds_pred.m also contains functions for translating them to and
|
|
% from the shrouded versions defined below. The next three types are
|
|
% designed to be used in only two ways: for translation to their HLDS
|
|
% equivalents by the unshroud functions in hlds_pred.m, and for
|
|
% printing for diagnostics.
|
|
%
|
|
:- type shrouded_pred_id ---> shrouded_pred_id(int).
|
|
:- type shrouded_proc_id ---> shrouded_proc_id(int).
|
|
:- type shrouded_pred_proc_id ---> shrouded_pred_proc_id(int, int).
|
|
|
|
:- type cons_id
|
|
---> cons(sym_name, arity) % name, arity
|
|
% Tuples have cons_id `cons(unqualified("{}"), Arity)'.
|
|
|
|
; int_const(int)
|
|
; string_const(string)
|
|
; float_const(float)
|
|
|
|
; pred_const(shrouded_pred_proc_id, lambda_eval_method)
|
|
% Note that a pred_const represents a closure,
|
|
% not just a code address.
|
|
|
|
; type_ctor_info_const(
|
|
module_name,
|
|
string, % Name of the type constructor.
|
|
int % Its arity.
|
|
)
|
|
; base_typeclass_info_const(
|
|
module_name, % Module name of instance declaration
|
|
% (not filled in so that link errors result
|
|
% from overlapping instances).
|
|
class_id, % Class name and arity.
|
|
int, % Class instance.
|
|
string % Encodes the type names and arities of the
|
|
% arguments of the instance declaration.
|
|
)
|
|
|
|
; type_info_cell_constructor(type_ctor)
|
|
; typeclass_info_cell_constructor
|
|
|
|
; tabling_pointer_const(shrouded_pred_proc_id)
|
|
% The address of the static variable that points to the table
|
|
% that implements memoization, loop checking or the minimal
|
|
% model semantics for the given procedure.
|
|
|
|
; deep_profiling_proc_layout(shrouded_pred_proc_id)
|
|
% The Proc_Layout structure of a procedure. Its proc_static field
|
|
% is used by deep profiling, as documented in the deep profiling
|
|
% paper.
|
|
|
|
; table_io_decl(shrouded_pred_proc_id).
|
|
% The address of a structure that describes the layout of the
|
|
% answer block used by I/O tabling for declarative debugging.
|
|
|
|
% Describe how a lambda expression is to be evaluated.
|
|
%
|
|
% `normal' is the top-down Mercury execution algorithm.
|
|
:- type lambda_eval_method
|
|
---> lambda_normal.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Types
|
|
%
|
|
|
|
% This is how types are represented.
|
|
|
|
% One day we might allow types to take
|
|
% value parameters as well as type parameters.
|
|
|
|
% type_defn/3 is defined in prog_item.m as a constructor for item/0
|
|
|
|
:- type type_defn
|
|
---> du_type(
|
|
du_ctors :: list(constructor),
|
|
du_user_uc :: maybe(unify_compare)
|
|
)
|
|
; eqv_type(
|
|
eqv_type :: mer_type
|
|
)
|
|
; abstract_type(
|
|
abstract_is_solver :: is_solver_type
|
|
)
|
|
; solver_type(
|
|
solver_details :: solver_type_details,
|
|
solver_user_uc :: maybe(unify_compare)
|
|
)
|
|
; foreign_type(
|
|
foreign_lang_type :: foreign_language_type,
|
|
foreign_user_uc :: maybe(unify_compare),
|
|
foreign_assertions :: list(foreign_type_assertion)
|
|
).
|
|
|
|
:- type foreign_type_assertion
|
|
---> can_pass_as_mercury_type
|
|
; stable.
|
|
|
|
:- type constructor
|
|
---> ctor(
|
|
cons_exist :: existq_tvars,
|
|
cons_constraints :: list(prog_constraint),
|
|
% existential constraints
|
|
cons_name :: sym_name,
|
|
cons_args :: list(constructor_arg)
|
|
).
|
|
|
|
:- type constructor_arg == pair(maybe(ctor_field_name), mer_type).
|
|
|
|
:- type ctor_field_name == sym_name.
|
|
|
|
% unify_compare gives the user-defined unification and/or comparison
|
|
% predicates for a noncanonical type, if they are known. The value
|
|
% `abstract_noncanonical_type' represents a type whose definition uses
|
|
% the syntax `where type_is_abstract_noncanonical' and has been read
|
|
% from a .int2 file. This means we know that the type has a
|
|
% noncanonical representation, but we don't know what the
|
|
% unification/comparison predicates are.
|
|
%
|
|
:- type unify_compare
|
|
---> unify_compare(
|
|
unify :: maybe(equality_pred),
|
|
compare :: maybe(comparison_pred)
|
|
)
|
|
; abstract_noncanonical_type(is_solver_type).
|
|
|
|
% The `where' attributes of a solver type definition must begin
|
|
% with
|
|
% representation is <<representation type>>,
|
|
% initialisation is <<init pred name>>,
|
|
% ground is <<ground inst>>,
|
|
% any is <<any inst>>,
|
|
% constraint_store is <<mutable(...) or [mutable(...), ...]>>
|
|
%
|
|
:- type solver_type_details
|
|
---> solver_type_details(
|
|
representation_type :: mer_type,
|
|
init_pred :: init_pred,
|
|
ground_inst :: mer_inst,
|
|
any_inst :: mer_inst,
|
|
mutable_items :: list(item)
|
|
).
|
|
|
|
% An init_pred specifies the name of an impure user-defined predicate
|
|
% used to initialise solver type values (the compiler will insert
|
|
% calls to this predicate to convert free solver type variables to
|
|
% inst any variables where necessary.)
|
|
%
|
|
:- type init_pred == sym_name.
|
|
|
|
% An equality_pred specifies the name of a user-defined predicate
|
|
% used for equality on a type. See the chapter on them in the
|
|
% Mercury Language Reference Manual.
|
|
%
|
|
:- type equality_pred == sym_name.
|
|
|
|
% The name of a user-defined comparison predicate.
|
|
%
|
|
:- type comparison_pred == sym_name.
|
|
|
|
% Parameters of type definitions.
|
|
%
|
|
:- type type_param == tvar.
|
|
|
|
% Use type_util.type_to_ctor_and_args to convert a type to a qualified
|
|
% type_ctor and a list of arguments. Use type_util.construct_type to
|
|
% construct a type from a type_ctor and a list of arguments.
|
|
%
|
|
:- type mer_type
|
|
---> variable(tvar, kind)
|
|
% A type variable.
|
|
|
|
; defined(sym_name, list(mer_type), kind)
|
|
% A user defined type constructor.
|
|
|
|
; builtin(builtin_type)
|
|
% These are all known to have kind `star'.
|
|
|
|
% The above three functors should be kept as the first three, since
|
|
% they will be the most commonly used and therefore we want them to
|
|
% get the primary tags on a 32-bit machine.
|
|
|
|
; higher_order(
|
|
% A type for higher-order values. If the second argument
|
|
% is yes(T) then the values are functions returning T,
|
|
% otherwise they are predicates. The kind is always `star'.
|
|
|
|
list(mer_type),
|
|
maybe(mer_type),
|
|
purity,
|
|
lambda_eval_method
|
|
)
|
|
|
|
; tuple(list(mer_type), kind)
|
|
% Tuple types.
|
|
|
|
; apply_n(tvar, list(mer_type), kind)
|
|
% An apply/N expression. `apply_n(V, [T1, ...], K)'
|
|
% would be the representation of type `V(T1, ...)'
|
|
% with kind K. The list must be non-empty.
|
|
|
|
; kinded(mer_type, kind).
|
|
% A type expression with an explicit kind annotation.
|
|
% (These are not yet used.)
|
|
|
|
:- type vartypes == map(prog_var, mer_type).
|
|
|
|
:- type builtin_type
|
|
---> int
|
|
; float
|
|
; string
|
|
; character.
|
|
|
|
:- type type_term == term(tvar_type).
|
|
|
|
:- type tvar_type ---> type_var.
|
|
:- type tvar == var(tvar_type).
|
|
% used for type variables
|
|
:- type tvarset == varset(tvar_type).
|
|
% used for sets of type variables
|
|
:- type tsubst == map(tvar, mer_type). % used for type substitutions
|
|
:- type tvar_renaming == map(tvar, tvar). % type renaming
|
|
|
|
:- type type_ctor == pair(sym_name, arity).
|
|
|
|
:- type tvar_name_map == map(string, tvar).
|
|
|
|
% existq_tvars is used to record the set of type variables which are
|
|
% existentially quantified
|
|
%
|
|
:- type existq_tvars == list(tvar).
|
|
|
|
% Types may have arbitrary assertions associated with them
|
|
% (e.g. you can define a type which represents sorted lists).
|
|
% Similarly, pred declarations can have assertions attached.
|
|
% The compiler will ignore these assertions - they are intended
|
|
% to be used by other tools, such as the debugger.
|
|
%
|
|
:- type condition
|
|
---> true
|
|
; where(term).
|
|
|
|
% Similar to varset.merge_subst but produces a tvar_renaming
|
|
% instead of a substitution, which is more suitable for types.
|
|
%
|
|
:- pred tvarset_merge_renaming(tvarset::in, tvarset::in, tvarset::out,
|
|
tvar_renaming::out) is det.
|
|
|
|
% As above, but behaves like varset.merge_subst_without_names.
|
|
%
|
|
:- pred tvarset_merge_renaming_without_names(tvarset::in, tvarset::in,
|
|
tvarset::out, tvar_renaming::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Kinds
|
|
%
|
|
|
|
% Note that we don't support any kind other than `star' at the
|
|
% moment. The other kinds are intended for the implementation
|
|
% of constructor classes.
|
|
%
|
|
:- type kind
|
|
---> star
|
|
% An ordinary type.
|
|
|
|
; arrow(kind, kind)
|
|
% A type with kind `A' applied to a type with kind `arrow(A, B)'
|
|
% will have kind `B'.
|
|
|
|
; variable(kvar).
|
|
% A kind variable. These can be used during kind inference;
|
|
% after kind inference, all remaining kind variables will be
|
|
% bound to `star'.
|
|
|
|
:- type kvar_type ---> kind_var.
|
|
:- type kvar == var(kvar_type).
|
|
|
|
% The kinds of type variables. For efficiency, we only have entries
|
|
% for type variables that have a kind other than `star'. Any type variable
|
|
% not appearing in this map, which will usually be the majority of type
|
|
% variables, can be assumed to have kind `star'.
|
|
%
|
|
:- type tvar_kind_map == map(tvar, kind).
|
|
|
|
:- pred get_tvar_kind(tvar_kind_map::in, tvar::in, kind::out) is det.
|
|
|
|
% Return the kind of a type.
|
|
%
|
|
:- func get_type_kind(mer_type) = kind.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Insts and modes
|
|
%
|
|
|
|
% This is how instantiatednesses and modes are represented.
|
|
%
|
|
:- type mer_inst
|
|
---> any(uniqueness)
|
|
; free
|
|
; free(mer_type)
|
|
|
|
; bound(uniqueness, list(bound_inst))
|
|
% The list(bound_inst) must be sorted.
|
|
|
|
; ground(uniqueness, ground_inst_info)
|
|
% The ground_inst_info holds extra information
|
|
% about the ground inst.
|
|
|
|
; not_reached
|
|
; inst_var(inst_var)
|
|
|
|
; constrained_inst_vars(set(inst_var), mer_inst)
|
|
% Constrained_inst_vars is a set of inst variables that are
|
|
% constrained to have the same uniqueness as and to match_final
|
|
% the specified inst.
|
|
|
|
; defined_inst(inst_name)
|
|
% A defined_inst is possibly recursive inst whose value is
|
|
% stored in the inst_table. This is used both for user-defined
|
|
% insts and for compiler-generated insts.
|
|
|
|
; abstract_inst(sym_name, list(mer_inst)).
|
|
% An abstract inst is a defined inst which
|
|
% has been declared but not actually been
|
|
% defined (yet).
|
|
|
|
:- type uniqueness
|
|
---> shared % There might be other references.
|
|
; unique % There is only one reference.
|
|
; mostly_unique % There is only one reference,
|
|
% but there might be more on backtracking.
|
|
; clobbered % This was the only reference, but
|
|
% the data has already been reused.
|
|
; mostly_clobbered. % This was the only reference, but
|
|
% the data has already been reused;
|
|
% however, there may be more references
|
|
% on backtracking, so we will need to
|
|
% restore the old value on backtracking.
|
|
|
|
% The ground_inst_info type gives extra information about ground insts.
|
|
%
|
|
:- type ground_inst_info
|
|
---> higher_order(pred_inst_info)
|
|
% The ground inst is higher-order.
|
|
; none.
|
|
% No extra information is available.
|
|
|
|
% higher-order predicate terms are given the inst
|
|
% `ground(shared, higher_order(PredInstInfo))'
|
|
% where the PredInstInfo contains the extra modes and the determinism
|
|
% for the predicate. Note that the higher-order predicate term
|
|
% itself must be ground.
|
|
%
|
|
:- type pred_inst_info
|
|
---> pred_inst_info(
|
|
pred_or_func, % Is this a higher-order func mode or a
|
|
% higher-order pred mode?
|
|
|
|
list(mer_mode), % The modes of the additional (i.e.
|
|
% not-yet-supplied) arguments of the pred;
|
|
% for a function, this includes the mode
|
|
% of the return value as the last element
|
|
% of the list.
|
|
|
|
determinism % The determinism of the predicate or
|
|
% function.
|
|
).
|
|
|
|
:- type inst_id == pair(sym_name, arity).
|
|
|
|
:- type bound_inst ---> functor(cons_id, list(mer_inst)).
|
|
|
|
:- type inst_var_type ---> inst_var_type.
|
|
:- type inst_var == var(inst_var_type).
|
|
:- type inst_term == term(inst_var_type).
|
|
:- type inst_varset == varset(inst_var_type).
|
|
|
|
:- type inst_var_sub == map(inst_var, mer_inst).
|
|
|
|
% inst_defn/5 is defined in prog_item.m.
|
|
|
|
:- type inst_defn
|
|
---> eqv_inst(mer_inst)
|
|
; abstract_inst.
|
|
|
|
% An `inst_name' is used as a key for the inst_table.
|
|
% It is either a user-defined inst `user_inst(Name, Args)',
|
|
% or some sort of compiler-generated inst, whose name
|
|
% is a representation of its meaning.
|
|
%
|
|
% For example, `merge_inst(InstA, InstB)' is the name used for the
|
|
% inst that results from merging InstA and InstB using `merge_inst'.
|
|
% Similarly `unify_inst(IsLive, InstA, InstB, IsReal)' is
|
|
% the name for the inst that results from a call to
|
|
% `abstractly_unify_inst(IsLive, InstA, InstB, IsReal)'.
|
|
% And `ground_inst' and `any_inst' are insts that result
|
|
% from unifying an inst with `ground' or `any', respectively.
|
|
% `typed_inst' is an inst with added type information.
|
|
% `typed_ground(Uniq, Type)' a equivalent to
|
|
% `typed_inst(ground(Uniq, no), Type)'.
|
|
% Note that `typed_ground' is a special case of `typed_inst',
|
|
% and `ground_inst' and `any_inst' are special cases of `unify_inst'.
|
|
% The reason for having the special cases is efficiency.
|
|
%
|
|
:- type inst_name
|
|
---> user_inst(sym_name, list(mer_inst))
|
|
; merge_inst(mer_inst, mer_inst)
|
|
; unify_inst(is_live, mer_inst, mer_inst, unify_is_real)
|
|
; ground_inst(inst_name, is_live, uniqueness, unify_is_real)
|
|
; any_inst(inst_name, is_live, uniqueness, unify_is_real)
|
|
; shared_inst(inst_name)
|
|
; mostly_uniq_inst(inst_name)
|
|
; typed_ground(uniqueness, mer_type)
|
|
; typed_inst(mer_type, inst_name).
|
|
|
|
% NOTE: `is_live' records liveness in the sense used by
|
|
% mode analysis. This is not the same thing as the notion of liveness
|
|
% used by code generation. See compiler/notes/glossary.html.
|
|
%
|
|
:- type is_live
|
|
---> live
|
|
; dead.
|
|
|
|
% Unifications of insts fall into two categories, "real" and "fake".
|
|
% The "real" inst unifications correspond to real unifications,
|
|
% and are not allowed to unify with `clobbered' insts (unless
|
|
% the unification would be `det').
|
|
% Any inst unification which is associated with some code that
|
|
% will actually examine the contents of the variables in question
|
|
% must be "real". Inst unifications that are not associated with
|
|
% some real code that examines the variables' values are "fake".
|
|
% "Fake" inst unifications are used for procedure calls in implied
|
|
% modes, where the final inst of the var must be computed by
|
|
% unifying its initial inst with the procedure's final inst,
|
|
% so that if you pass a ground var to a procedure whose mode
|
|
% is `free -> list_skeleton', the result is ground, not list_skeleton.
|
|
% But these fake unifications must be allowed to unify with `clobbered'
|
|
% insts. Hence we pass down a flag to `abstractly_unify_inst' which
|
|
% specifies whether or not to allow unifications with clobbered values.
|
|
%
|
|
:- type unify_is_real
|
|
---> real_unify
|
|
; fake_unify.
|
|
|
|
:- type mode_id == pair(sym_name, arity).
|
|
|
|
:- type mode_defn
|
|
---> eqv_mode(mer_mode).
|
|
|
|
:- type mer_mode
|
|
---> (mer_inst -> mer_inst)
|
|
; user_defined_mode(sym_name, list(mer_inst)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Module system
|
|
%
|
|
|
|
:- type backend
|
|
---> high_level_backend
|
|
; low_level_backend.
|
|
|
|
:- type section
|
|
---> implementation
|
|
; interface.
|
|
|
|
% An import_locn is used to describe the place where an item was
|
|
% imported from.
|
|
:- type import_locn
|
|
---> implementation
|
|
% The item is from a module imported in the implementation.
|
|
|
|
; interface
|
|
% The item is from a module imported in the interface.
|
|
|
|
; ancestor
|
|
% The item is from a module imported by an ancestor.
|
|
|
|
; ancestor_private_interface.
|
|
% The item is from the private interface of an ancestor module.
|
|
|
|
:- type sym_list
|
|
---> sym(list(sym_specifier))
|
|
; pred(list(pred_specifier))
|
|
; func(list(func_specifier))
|
|
; cons(list(cons_specifier))
|
|
; op(list(op_specifier))
|
|
; adt(list(adt_specifier))
|
|
; type(list(type_specifier))
|
|
; module(list(module_specifier)).
|
|
|
|
:- type sym_specifier
|
|
---> sym(sym_name_specifier)
|
|
; typed_sym(typed_cons_specifier)
|
|
; pred(pred_specifier)
|
|
; func(func_specifier)
|
|
; cons(cons_specifier)
|
|
; op(op_specifier)
|
|
; adt(adt_specifier)
|
|
; type(type_specifier)
|
|
; module(module_specifier).
|
|
|
|
:- type pred_specifier
|
|
---> sym(sym_name_specifier)
|
|
; name_args(sym_name, list(mer_type)).
|
|
|
|
:- type func_specifier == cons_specifier.
|
|
:- type cons_specifier
|
|
---> sym(sym_name_specifier)
|
|
; typed(typed_cons_specifier).
|
|
|
|
:- type typed_cons_specifier
|
|
---> name_args(sym_name, list(mer_type))
|
|
; name_res(sym_name_specifier, mer_type)
|
|
; name_args_res(sym_name, list(mer_type), mer_type).
|
|
|
|
:- type adt_specifier == sym_name_specifier.
|
|
:- type type_specifier == sym_name_specifier.
|
|
|
|
:- type op_specifier
|
|
---> sym(sym_name_specifier)
|
|
; fixity(sym_name_specifier, fixity).
|
|
% operator fixity specifiers not yet implemented
|
|
|
|
:- type fixity
|
|
---> infix
|
|
; prefix
|
|
; postfix
|
|
; binary_prefix
|
|
; binary_postfix.
|
|
|
|
:- type sym_name_specifier
|
|
---> name(sym_name)
|
|
; name_arity(sym_name, arity).
|
|
|
|
:- type sym_name_and_arity
|
|
---> sym_name / arity.
|
|
|
|
:- type simple_call_id == pair(pred_or_func, sym_name_and_arity).
|
|
|
|
:- type module_specifier == sym_name.
|
|
:- type arity == int.
|
|
|
|
% Describes whether an item can be used without an explicit module
|
|
% qualifier.
|
|
%
|
|
:- type need_qualifier
|
|
---> must_be_qualified
|
|
; may_be_unqualified.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module libs.compiler_util.
|
|
|
|
:- import_module string.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Some more stuff for the foreign language interface
|
|
%
|
|
|
|
:- type pragma_foreign_proc_attributes
|
|
---> attributes(
|
|
foreign_language :: foreign_language,
|
|
may_call_mercury :: may_call_mercury,
|
|
thread_safe :: thread_safe,
|
|
tabled_for_io :: tabled_for_io,
|
|
purity :: purity,
|
|
terminates :: terminates,
|
|
% there is some special case behaviour for
|
|
% pragma c_code and pragma import purity
|
|
% if legacy_purity_behaviour is `yes'
|
|
may_throw_exception :: may_throw_exception,
|
|
legacy_purity_behaviour :: bool,
|
|
ordinary_despite_detism :: bool,
|
|
may_modify_trail :: may_modify_trail,
|
|
box_policy :: box_policy,
|
|
extra_attributes ::
|
|
list(pragma_foreign_proc_extra_attribute)
|
|
).
|
|
|
|
default_attributes(Language) =
|
|
attributes(Language, may_call_mercury, not_thread_safe,
|
|
not_tabled_for_io, purity_impure, depends_on_mercury_calls,
|
|
default_exception_behaviour, no, no, may_modify_trail,
|
|
native_if_possible, []).
|
|
|
|
set_may_call_mercury(MayCallMercury, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ may_call_mercury := MayCallMercury.
|
|
set_thread_safe(ThreadSafe, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ thread_safe := ThreadSafe.
|
|
set_foreign_language(ForeignLanguage, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ foreign_language := ForeignLanguage.
|
|
set_tabled_for_io(TabledForIo, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ tabled_for_io := TabledForIo.
|
|
set_purity(Purity, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ purity := Purity.
|
|
set_terminates(Terminates, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ terminates := Terminates.
|
|
set_may_throw_exception(MayThrowException, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ may_throw_exception := MayThrowException.
|
|
set_legacy_purity_behaviour(Legacy, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ legacy_purity_behaviour := Legacy.
|
|
set_ordinary_despite_detism(OrdinaryDespiteDetism, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ ordinary_despite_detism := OrdinaryDespiteDetism.
|
|
set_may_modify_trail(MayModifyTrail, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ may_modify_trail := MayModifyTrail.
|
|
set_box_policy(BoxPolicyStr, Attrs0, Attrs) :-
|
|
Attrs = Attrs0 ^ box_policy := BoxPolicyStr.
|
|
|
|
attributes_to_strings(Attrs) = StringList :-
|
|
% We ignore Lang because it isn't an attribute that you can put
|
|
% in the attribute list -- the foreign language specifier string
|
|
% is at the start of the pragma.
|
|
Attrs = attributes(_Lang, MayCallMercury, ThreadSafe, TabledForIO,
|
|
Purity, Terminates, Exceptions, _LegacyBehaviour,
|
|
OrdinaryDespiteDetism, MayModifyTrail, BoxPolicy, ExtraAttributes),
|
|
(
|
|
MayCallMercury = may_call_mercury,
|
|
MayCallMercuryStr = "may_call_mercury"
|
|
;
|
|
MayCallMercury = will_not_call_mercury,
|
|
MayCallMercuryStr = "will_not_call_mercury"
|
|
),
|
|
(
|
|
ThreadSafe = not_thread_safe,
|
|
ThreadSafeStr = "not_thread_safe"
|
|
;
|
|
ThreadSafe = thread_safe,
|
|
ThreadSafeStr = "thread_safe"
|
|
;
|
|
ThreadSafe = maybe_thread_safe,
|
|
ThreadSafeStr = "maybe_thread_safe"
|
|
),
|
|
(
|
|
TabledForIO = tabled_for_io,
|
|
TabledForIOStr = "tabled_for_io"
|
|
;
|
|
TabledForIO = tabled_for_io_unitize,
|
|
TabledForIOStr = "tabled_for_io_unitize"
|
|
;
|
|
TabledForIO = tabled_for_descendant_io,
|
|
TabledForIOStr = "tabled_for_descendant_io"
|
|
;
|
|
TabledForIO = not_tabled_for_io,
|
|
TabledForIOStr = "not_tabled_for_io"
|
|
),
|
|
(
|
|
Purity = purity_pure,
|
|
PurityStrList = ["promise_pure"]
|
|
;
|
|
Purity = purity_semipure,
|
|
PurityStrList = ["promise_semipure"]
|
|
;
|
|
Purity = purity_impure,
|
|
PurityStrList = []
|
|
),
|
|
(
|
|
Terminates = terminates,
|
|
TerminatesStrList = ["terminates"]
|
|
;
|
|
Terminates = does_not_terminate,
|
|
TerminatesStrList = ["does_not_terminate"]
|
|
;
|
|
Terminates = depends_on_mercury_calls,
|
|
TerminatesStrList = []
|
|
),
|
|
(
|
|
Exceptions = will_not_throw_exception,
|
|
ExceptionsStrList = ["will_not_throw_exception"]
|
|
;
|
|
Exceptions = default_exception_behaviour,
|
|
ExceptionsStrList = []
|
|
),
|
|
(
|
|
OrdinaryDespiteDetism = yes,
|
|
OrdinaryDespiteDetismStrList = ["ordinary_despite_detism"]
|
|
;
|
|
OrdinaryDespiteDetism = no,
|
|
OrdinaryDespiteDetismStrList = []
|
|
),
|
|
(
|
|
MayModifyTrail = may_modify_trail,
|
|
MayModifyTrailStrList = ["may_modify_trail"]
|
|
;
|
|
MayModifyTrail = will_not_modify_trail,
|
|
MayModifyTrailStrList = ["will_not_modify_trail"]
|
|
),
|
|
(
|
|
BoxPolicy = native_if_possible,
|
|
BoxPolicyStr = []
|
|
;
|
|
BoxPolicy = always_boxed,
|
|
BoxPolicyStr = ["always_boxed"]
|
|
),
|
|
StringList = [MayCallMercuryStr, ThreadSafeStr, TabledForIOStr |
|
|
PurityStrList] ++ TerminatesStrList ++ ExceptionsStrList ++
|
|
OrdinaryDespiteDetismStrList ++ MayModifyTrailStrList ++
|
|
BoxPolicyStr ++ list.map(extra_attribute_to_string, ExtraAttributes).
|
|
|
|
add_extra_attribute(NewAttribute, Attributes0,
|
|
Attributes0 ^ extra_attributes :=
|
|
[NewAttribute | Attributes0 ^ extra_attributes]).
|
|
|
|
:- func extra_attribute_to_string(pragma_foreign_proc_extra_attribute)
|
|
= string.
|
|
|
|
extra_attribute_to_string(backend(low_level_backend)) = "low_level_backend".
|
|
extra_attribute_to_string(backend(high_level_backend)) = "high_level_backend".
|
|
extra_attribute_to_string(max_stack_size(Size)) =
|
|
"max_stack_size(" ++ string.int_to_string(Size) ++ ")".
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Purity
|
|
%
|
|
|
|
less_pure(P1, P2) :-
|
|
\+ ( worst_purity(P1, P2) = P2).
|
|
|
|
% worst_purity/3 could be written more compactly, but this definition
|
|
% guarantees us a determinism error if we add to type `purity'. We also
|
|
% define less_pure/2 in terms of worst_purity/3 rather than the other way
|
|
% around for the same reason.
|
|
%
|
|
worst_purity(purity_pure, purity_pure) = purity_pure.
|
|
worst_purity(purity_pure, purity_semipure) = purity_semipure.
|
|
worst_purity(purity_pure, purity_impure) = purity_impure.
|
|
worst_purity(purity_semipure, purity_pure) = purity_semipure.
|
|
worst_purity(purity_semipure, purity_semipure) = purity_semipure.
|
|
worst_purity(purity_semipure, purity_impure) = purity_impure.
|
|
worst_purity(purity_impure, purity_pure) = purity_impure.
|
|
worst_purity(purity_impure, purity_semipure) = purity_impure.
|
|
worst_purity(purity_impure, purity_impure) = purity_impure.
|
|
|
|
% best_purity/3 is written as a switch for the same reason as
|
|
% worst_purity/3.
|
|
%
|
|
best_purity(purity_pure, purity_pure) = purity_pure.
|
|
best_purity(purity_pure, purity_semipure) = purity_pure.
|
|
best_purity(purity_pure, purity_impure) = purity_pure.
|
|
best_purity(purity_semipure, purity_pure) = purity_pure.
|
|
best_purity(purity_semipure, purity_semipure) = purity_semipure.
|
|
best_purity(purity_semipure, purity_impure) = purity_semipure.
|
|
best_purity(purity_impure, purity_pure) = purity_pure.
|
|
best_purity(purity_impure, purity_semipure) = purity_semipure.
|
|
best_purity(purity_impure, purity_impure) = purity_impure.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Determinism
|
|
%
|
|
|
|
determinism_components(det, cannot_fail, at_most_one).
|
|
determinism_components(semidet, can_fail, at_most_one).
|
|
determinism_components(multidet, cannot_fail, at_most_many).
|
|
determinism_components(nondet, can_fail, at_most_many).
|
|
determinism_components(cc_multidet, cannot_fail, at_most_many_cc).
|
|
determinism_components(cc_nondet, can_fail, at_most_many_cc).
|
|
determinism_components(erroneous, cannot_fail, at_most_zero).
|
|
determinism_components(failure, can_fail, at_most_zero).
|
|
|
|
det_conjunction_detism(DetismA, DetismB, Detism) :-
|
|
% When figuring out the determinism of a conjunction, if the second goal
|
|
% is unreachable, then then the determinism of the conjunction is just
|
|
% the determinism of the first goal.
|
|
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
( MaxSolnA = at_most_zero ->
|
|
Detism = DetismA
|
|
;
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln)
|
|
).
|
|
|
|
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
|
|
% Figuring out the determinism of a parallel conjunction is much easier
|
|
% than for a sequential conjunction, since you simply ignore the case
|
|
% where the second goal is unreachable. Just do a normal solution count.
|
|
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln).
|
|
|
|
det_switch_detism(DetismA, DetismB, Detism) :-
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_switch_canfail(CanFailA, CanFailB, CanFail),
|
|
det_switch_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% The predicates in this section do abstract interpretation to count
|
|
% the number of solutions and the possible number of failures.
|
|
%
|
|
% If the num_solns is at_most_many_cc, this means that the goal might have
|
|
% many logical solutions if there were no pruning, but that the goal occurs
|
|
% in a single-solution context, so only the first solution will be
|
|
% returned.
|
|
%
|
|
% The reason why we don't throw an exception in det_switch_maxsoln and
|
|
% det_disjunction_maxsoln is given in the documentation of the test case
|
|
% invalid/magicbox.m.
|
|
|
|
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
|
|
|
|
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
|
|
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
|
|
% If the first conjunct could be cc pruned, the second conj ought to have
|
|
% been cc pruned too.
|
|
unexpected(this_file, "det_conjunction_maxsoln: many_cc , many").
|
|
|
|
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
|
|
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
det_conjunction_canfail(can_fail, can_fail, can_fail).
|
|
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
|
|
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
|
|
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
|
|
|
|
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
|
|
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
|
|
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
|
|
|
|
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
|
|
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_disjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
det_disjunction_canfail(can_fail, can_fail, can_fail).
|
|
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
|
|
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
|
|
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
|
|
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
|
|
|
|
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
|
|
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
|
|
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
|
|
|
|
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
|
|
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_switch_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
det_switch_canfail(can_fail, can_fail, can_fail).
|
|
det_switch_canfail(can_fail, cannot_fail, can_fail).
|
|
det_switch_canfail(cannot_fail, can_fail, can_fail).
|
|
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_negation_det(det, yes(failure)).
|
|
det_negation_det(semidet, yes(semidet)).
|
|
det_negation_det(multidet, no).
|
|
det_negation_det(nondet, no).
|
|
det_negation_det(cc_multidet, no).
|
|
det_negation_det(cc_nondet, no).
|
|
det_negation_det(erroneous, yes(erroneous)).
|
|
det_negation_det(failure, yes(det)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
tvarset_merge_renaming(TVarSetA, TVarSetB, TVarSet, Renaming) :-
|
|
varset.merge_subst(TVarSetA, TVarSetB, TVarSet, Subst),
|
|
map.map_values(convert_subst_term_to_tvar, Subst, Renaming).
|
|
|
|
tvarset_merge_renaming_without_names(TVarSetA, TVarSetB, TVarSet, Renaming) :-
|
|
varset.merge_subst_without_names(TVarSetA, TVarSetB, TVarSet, Subst),
|
|
map.map_values(convert_subst_term_to_tvar, Subst, Renaming).
|
|
|
|
:- pred convert_subst_term_to_tvar(tvar::in, term(tvar_type)::in, tvar::out)
|
|
is det.
|
|
|
|
convert_subst_term_to_tvar(_, variable(TVar), TVar).
|
|
convert_subst_term_to_tvar(_, functor(_, _, _), _) :-
|
|
unexpected(this_file, "non-variable found in renaming").
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
get_tvar_kind(Map, TVar, Kind) :-
|
|
( map.search(Map, TVar, Kind0) ->
|
|
Kind = Kind0
|
|
;
|
|
Kind = star
|
|
).
|
|
|
|
get_type_kind(variable(_, Kind)) = Kind.
|
|
get_type_kind(defined(_, _, Kind)) = Kind.
|
|
get_type_kind(builtin(_)) = star.
|
|
get_type_kind(higher_order(_, _, _, _)) = star.
|
|
get_type_kind(tuple(_, Kind)) = Kind.
|
|
get_type_kind(apply_n(_, _, Kind)) = Kind.
|
|
get_type_kind(kinded(_, Kind)) = Kind.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- func this_file = string.
|
|
|
|
this_file = "prog_data.m".
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
:- end_module prog_data.
|
|
%-----------------------------------------------------------------------------%
|