Files
mercury/compiler/prog_data.m
Julien Fischer 459847a064 Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18
Branches: main

Move the univ, maybe, pair and unit types from std_util into their own
modules.  std_util still contains the general purpose higher-order programming
constructs.

library/std_util.m:
	Move univ, maybe, pair and unit (plus any other related types
	and procedures) into their own modules.

library/maybe.m:
	New module.  This contains the maybe and maybe_error types and
	the associated procedures.

library/pair.m:
	New module.  This contains the pair type and associated procedures.

library/unit.m:
	New module. This contains the types unit/0 and unit/1.

library/univ.m:
	New module. This contains the univ type and associated procedures.

library/library.m:
	Add the new modules.

library/private_builtin.m:
	Update the declaration of the type_ctor_info struct for univ.

runtime/mercury.h:
	Update the declaration for the type_ctor_info struct for univ.

runtime/mercury_mcpp.h:
runtime/mercury_hlc_types.h:
	Update the definition of MR_Univ.

runtime/mercury_init.h:
	Fix a comment: ML_type_name is now exported from type_desc.m.

compiler/mlds_to_il.m:
	Update the the name of the module that defines univs (which are
	handled specially by the il code generator.)

library/*.m:
compiler/*.m:
browser/*.m:
mdbcomp/*.m:
profiler/*.m:
deep_profiler/*.m:
	Conform to the above changes.  Import the new modules where they
	are needed; don't import std_util where it isn't needed.

	Fix formatting in lots of modules.  Delete duplicate module
	imports.

tests/*:
	Update the test suite to confrom to the above changes.
2006-03-29 08:09:58 +00:00

1740 lines
65 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: prog_data.m.
% Main author: fjh.
% This module, together with prog_item, defines a data structure for
% representing Mercury programs.
% This data structure specifies basically the same information as is contained
% in the source code, but in a parse tree rather than a flat file. This
% module defines the parts of the parse tree that are needed by the various
% compiler backends; parts of the parse tree that are not needed by the
% backends are contained in prog_item.m.
%-----------------------------------------------------------------------------%
:- module parse_tree.prog_data.
:- interface.
:- import_module libs.globals.
:- import_module libs.rat.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_item.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module term.
:- import_module unit.
:- import_module varset.
%-----------------------------------------------------------------------------%
% Indicates the type of information the compiler should get from the
% declaration's clause.
%
:- type promise_type
% promise ex declarations
---> exclusive % Each disjunct is mutually exclusive.
; exhaustive % Disjunction cannot fail.
; exclusive_exhaustive % Both of the above.
% assertions
; true. % Promise goal is true.
:- type type_and_mode
---> type_only(mer_type)
; type_and_mode(mer_type, mer_mode).
% Purity indicates whether a goal can have side effects or can depend on
% global state. See purity.m and the "Purity" section of the Mercury
% language reference manual.
:- type purity
---> purity_pure
; purity_semipure
; purity_impure.
% Compare two purities.
%
:- pred less_pure(purity::in, purity::in) is semidet.
% Sort of a "maximum" for impurity.
%
:- func worst_purity(purity, purity) = purity.
% Sort of a "minimum" for impurity.
%
:- func best_purity(purity, purity) = purity.
% The `determinism' type specifies how many solutions a given procedure
% may have.
%
:- type determinism
---> det
; semidet
; nondet
; multidet
; cc_nondet
; cc_multidet
; erroneous
; failure.
:- type can_fail
---> can_fail
; cannot_fail.
:- type soln_count
---> at_most_zero
; at_most_one
; at_most_many_cc
% "_cc" means "committed-choice": there is more than one logical
% solution, but the pred or goal is being used in a context where
% we are only looking for the first solution.
; at_most_many.
:- pred determinism_components(determinism, can_fail, soln_count).
:- mode determinism_components(in, out, out) is det.
:- mode determinism_components(out, in, in) is det.
% The following predicates implement the tables for computing the
% determinism of compound goals from the determinism of their components.
:- pred det_conjunction_detism(determinism::in, determinism::in,
determinism::out) is det.
:- pred det_par_conjunction_detism(determinism::in, determinism::in,
determinism::out) is det.
:- pred det_switch_detism(determinism::in, determinism::in, determinism::out)
is det.
:- pred det_negation_det(determinism::in, maybe(determinism)::out) is det.
:- pred det_conjunction_maxsoln(soln_count::in, soln_count::in,
soln_count::out) is det.
:- pred det_conjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
is det.
:- pred det_disjunction_maxsoln(soln_count::in, soln_count::in,
soln_count::out) is det.
:- pred det_disjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
is det.
:- pred det_switch_maxsoln(soln_count::in, soln_count::in, soln_count::out)
is det.
:- pred det_switch_canfail(can_fail::in, can_fail::in, can_fail::out) is det.
% The `is_solver_type' type specifies whether a type is a "solver" type,
% for which `any' insts are interpreted as "don't know", or a non-solver
% type for which `any' is the same as `bound(...)'.
%
:- type is_solver_type
---> non_solver_type
% The inst `any' is always `bound' for this type.
; solver_type.
% The inst `any' is not always `bound' for this type
% (i.e. the type was declared with
% `:- solver type ...').
%-----------------------------------------------------------------------------%
%
% Stuff for the foreign language interface pragmas
%
% Is the foreign code declarations local to this module or
% exported?
%
:- type foreign_decl_is_local
---> foreign_decl_is_local
; foreign_decl_is_exported.
% A foreign_language_type represents a type that is defined in a
% foreign language and accessed in Mercury (most likely through
% pragma foreign_type).
% Currently we only support foreign_language_types for IL.
%
% It is important to distinguish between IL value types and reference
% types, the compiler may need to generate different code for each of
% these cases.
%
:- type foreign_language_type
---> il(il_foreign_type)
; c(c_foreign_type)
; java(java_foreign_type).
:- type il_foreign_type
---> il(
ref_or_val, % An indicator of whether the type is a
% reference of value type.
string, % The location of the .NET name (the assembly)
sym_name % The .NET type name
).
:- type c_foreign_type
---> c(
string % The C type name
).
:- type java_foreign_type
---> java(
string % The Java type name
).
:- type ref_or_val
---> reference
; value.
%-----------------------------------------------------------------------------%
%
% Stuff for tabling pragmas
%
:- type eval_minimal_method
---> stack_copy % Saving and restoring stack segments as necessary.
; own_stacks. % Each generator has its own stacks.
% The evaluation method that should be used for a procedure.
%
:- type eval_method
---> eval_normal % normal mercury evaluation
; eval_loop_check % loop check only
; eval_memo(call_table_strictness)
% memoing + loop check
; eval_table_io( % memoing I/O actions for debugging
table_io_is_decl,
table_io_is_unitize
)
; eval_minimal(eval_minimal_method).
% minimal model evaluation
:- type call_table_strictness
---> all_strict
; all_fast_loose
; specified(
list(maybe(arg_tabling_method))
% This list contains one element for each user-visible
% argument of the predicate. Elements that correspond
% to output arguments should be "no". Elements that
% correspond to input arguments should be "yes",
% specifying how to look up that argument in the call
% table.
).
:- type arg_tabling_method
---> arg_value
; arg_addr
; arg_promise_implied.
:- type table_io_is_decl
---> table_io_decl % The procedure is tabled for
% declarative debugging.
; table_io_proc. % The procedure is tabled only for
% procedural debugging.
:- type table_io_is_unitize
---> table_io_unitize % The procedure is tabled for I/O
% together with its Mercury descendants.
; table_io_alone. % The procedure is tabled for I/O by itself;
% it can have no Mercury descendants.
%-----------------------------------------------------------------------------%
%
% Stuff for the `termination_info' pragma.
% See term_util.m.
%
:- type generic_arg_size_info(ErrorInfo)
---> finite(int, list(bool))
% The termination constant is a finite integer. The list of bool
% has a 1:1 correspondence with the input arguments of the
% procedure. It stores whether the argument contributes to the
% size of the output arguments.
; infinite(ErrorInfo).
% There is no finite integer for which the above equation is true.
:- type generic_termination_info(TermInfo, ErrorInfo)
---> cannot_loop(TermInfo) % This procedure definitely terminates
% for all possible inputs.
; can_loop(ErrorInfo).
% This procedure might not terminate.
:- type pragma_arg_size_info == generic_arg_size_info(unit).
:- type pragma_termination_info == generic_termination_info(unit, unit).
%-----------------------------------------------------------------------------%
%
% Stuff for the `termination2_info' pragma
%
% This is the form in which termination information from other
% modules (imported via `.opt' or `.trans_opt' files) comes.
% We convert this to an intermediate form and let the termination
% analyser convert it to the correct form.
%
% NOTE: the reason that we cannot convert it to the correct form
% is that we don't have complete information about how many typeinfo
% related arguments there are until after the polymoprhism pass.
%
:- type arg_size_constr
---> le(list(arg_size_term), rat)
; eq(list(arg_size_term), rat).
:- type arg_size_term == pair(int, rat).
:- type pragma_constr_arg_size_info == list(arg_size_constr).
%-----------------------------------------------------------------------------%
%
% Stuff for the `structure_sharing_info' pragma.
%
% Whenever structure sharing analysis is unable to determine a good
% approximation of the set of structure sharing pairs that might exist
% during the execution of a program, it must use "top" as the only safe
% approximation. In order to collect some useful basic feedback information
% as to `why' a top was generated, we use:
%
:- type top_feedback == string.
% Elements of the structure sharing domain lattice are either bottom
% (no structure sharing), top (any kind of structure sharing), or
% a list of structure sharing pairs.
%
:- type structure_sharing_domain
---> bottom
; real(structure_sharing)
; top(list(top_feedback)).
% Public representation of structure sharing.
%
:- type structure_sharing == list(structure_sharing_pair).
% A structure sharing pair represents the information that two
% data structures might be represented by the same memoryspace, hence
% its representation as a pair of datastructs.
%
:- type structure_sharing_pair == pair(datastruct).
% A datastructure is a concept that designates a particular subterm of the
% term to which a particular variable may be bound.
%
:- type datastruct
---> selected_cel(
sc_var :: prog_var,
sc_selector :: selector
).
% A selector describes a path in a type-tree.
%
:- type selector == list(unit_selector).
% Unit-selectors are either term selectors or type selectors. A term
% selector selects a subterm f/n of a term, where f is a functor
% (identified by the cons_id), and n an integer. A type selector
% designates any subterm that has that specific type.
%
:- type unit_selector
---> termsel(cons_id, int) % term selector
; typesel(mer_type). % type selector
%-----------------------------------------------------------------------------%
%
% Stuff for the `unused_args' pragma
%
% This `mode_num' type is only used for mode numbers written out in
% automatically-generated `pragma unused_args' pragmas in `.opt' files.
% The mode_num gets converted to an HLDS proc_id by make_hlds.m.
% We don't want to use the `proc_id' type here since the parse tree
% (prog_data.m and prog_item.m) should not depend on the HLDS.
%
:- type mode_num == int.
%-----------------------------------------------------------------------------%
%
% Stuff for the `exceptions' pragma
%
:- type exception_status
---> will_not_throw
% This procedure will not throw an exception.
; may_throw(exception_type)
% This procedure may throw an exception. The exception is
% classified by the `exception_type' type.
; conditional.
% Whether the procedure will not throw an exception depends upon
% the value of one or more polymorphic arguments. XXX This needs
% to be extended for ho preds. (See exception_analysis.m for
% more details).
:- type exception_type
---> user_exception
% The exception that might be thrown is of a result of some code
% calling exception.throw/1.
; type_exception.
% The exception is a result of a compiler introduced
% unification/comparison maybe throwing an exception
% (in the case of user-defined equality or comparison) or
% propagating an exception from them.
%-----------------------------------------------------------------------------%
%
% Stuff for the trailing analysis
%
:- type trailing_status
---> may_modify_trail
; will_not_modify_trail
; conditional.
%-----------------------------------------------------------------------------%
%
% Stuff for the `type_spec' pragma
%
% The type substitution for a `pragma type_spec' declaration.
% Elsewhere in the compiler we generally use the `tsubst' type
% which is a map rather than an assoc_list.
%
:- type type_subst == assoc_list(tvar, mer_type).
%-----------------------------------------------------------------------------%
%
% Stuff for `foreign_code' pragma
%
% This type holds information about the implementation details
% of procedures defined via `pragma foreign_code'.
%
% All the strings in this type may be accompanied by the context of their
% appearance in the source code. These contexts are used to tell the
% foreign language compiler where the included code comes from, to allow it
% to generate error messages that refer to the original appearance of the
% code in the Mercury program. The context is missing if the foreign code
% was constructed by the compiler.
%
% NOTE: nondet pragma foreign definitions might not be possible in all
% foreign languages.
%
:- type pragma_foreign_code_impl
---> ordinary(
% This is a foreign language definition of a model_det or
% model_semi procedure. (We also allow model_non, until
% everyone has had time to adapt to the new way of handling
% model_non pragmas.)
string, % The code of the procedure.
maybe(prog_context)
)
; nondet(
% This is a foreign language definition of a model_non
% procedure.
string,
maybe(prog_context),
% The info saved for the time when backtracking reenters
% this procedure is stored in a data structure. This arg
% contains the field declarations.
string,
maybe(prog_context),
% Gives the code to be executed when the procedure is
% called for the first time. This code may access the
% input variables.
string,
maybe(prog_context),
% Gives the code to be executed when control backtracks
% into the procedure. This code may not access the input
% variables.
pragma_shared_code_treatment,
% How should the shared code be treated during code
% generation.
string,
maybe(prog_context)
% Shared code that is executed after both the previous
% code fragments. May not access the input variables.
)
; import(
string, % Pragma imported C func name
string, % Code to handle return value
string, % Comma separated variables which the import
% function is called with.
maybe(prog_context)
).
% The use of this type is explained in the comment at the top of
% pragma_c_gen.m.
%
:- type pragma_shared_code_treatment
---> duplicate
; share
; automatic.
:- type foreign_import_module_info == list(foreign_import_module).
% in reverse order
:- type foreign_import_module
---> foreign_import_module(
foreign_language,
module_name,
prog_context
).
%-----------------------------------------------------------------------------%
%
% Type classes
%
% A class constraint represents a constraint that a given list of types
% is a member of the specified type class. It is an invariant of this data
% structure that the types in a class constraint do not contain any
% information in their prog_context fields. This invariant is needed
% to ensure that we can do unifications, map.lookups, etc., and get the
% expected semantics. (This invariant now applies to all types, but is
% especially important here.)
%
:- type prog_constraint
---> constraint(
class_name,
list(mer_type)
).
:- type prog_constraints
---> constraints(
univ_constraints :: list(prog_constraint),
% universally quantified
% constraints
exist_constraints :: list(prog_constraint)
% existentially quantified
% constraints
).
% A functional dependency on the variables in the head of a class
% declaration. This asserts that, given the complete set of instances
% of this class, the binding of the range variables can be uniquely
% determined from the binding of the domain variables.
%
:- type prog_fundep
---> fundep(
domain :: list(tvar),
range :: list(tvar)
).
:- type class_name == sym_name.
:- type class_id
---> class_id(class_name, arity).
:- type class_interface
---> abstract
; concrete(class_methods).
:- type instance_method
---> instance_method(
pred_or_func,
sym_name, % method name
instance_proc_def,
arity,
prog_context % context of the instance declaration
).
:- type instance_proc_def
---> name(
% defined using the `pred(...) is <Name>' syntax
sym_name
)
; clauses(
% defined using clauses
list(item) % the items must be either
% pred_clause or func_clause items
).
:- type instance_body
---> abstract
; concrete(instance_methods).
:- type instance_methods == list(instance_method).
%-----------------------------------------------------------------------------%
%
% Some more stuff for the foreign language interface
%
% An abstract type for representing a set of
% `pragma_foreign_proc_attribute's.
%
:- type pragma_foreign_proc_attributes.
:- func default_attributes(foreign_language) = pragma_foreign_proc_attributes.
:- func may_call_mercury(pragma_foreign_proc_attributes) = may_call_mercury.
:- func thread_safe(pragma_foreign_proc_attributes) = thread_safe.
:- func purity(pragma_foreign_proc_attributes) = purity.
:- func terminates(pragma_foreign_proc_attributes) = terminates.
:- func foreign_language(pragma_foreign_proc_attributes) = foreign_language.
:- func tabled_for_io(pragma_foreign_proc_attributes) = tabled_for_io.
:- func legacy_purity_behaviour(pragma_foreign_proc_attributes) = bool.
:- func may_throw_exception(pragma_foreign_proc_attributes) =
may_throw_exception.
:- func ordinary_despite_detism(pragma_foreign_proc_attributes) = bool.
:- func may_modify_trail(pragma_foreign_proc_attributes) = may_modify_trail.
:- func box_policy(pragma_foreign_proc_attributes) = box_policy.
:- func extra_attributes(pragma_foreign_proc_attributes)
= pragma_foreign_proc_extra_attributes.
:- pred set_may_call_mercury(may_call_mercury::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_thread_safe(thread_safe::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_foreign_language(foreign_language::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_tabled_for_io(tabled_for_io::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_purity(purity::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_terminates(terminates::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_may_throw_exception(may_throw_exception::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_legacy_purity_behaviour(bool::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_ordinary_despite_detism(bool::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_may_modify_trail(may_modify_trail::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_box_policy(box_policy::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred add_extra_attribute(pragma_foreign_proc_extra_attribute::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
% For pragma c_code, there are two different calling conventions,
% one for C code that may recursively call Mercury code, and another
% more efficient one for the case when we know that the C code will
% not recursively invoke Mercury code.
:- type may_call_mercury
---> may_call_mercury
; will_not_call_mercury.
% If thread_safe execution is enabled, then we need to put a mutex
% around the C code for each `pragma c_code' declaration, unless
% it's declared to be thread_safe. If a piece of foreign code is
% declared to be maybe_thread_safe whether we put the mutex around
% the foreign code depends upon the `--maybe-thread-safe' compiler flag.
%
:- type thread_safe
---> not_thread_safe
; thread_safe
; maybe_thread_safe.
:- type tabled_for_io
---> not_tabled_for_io
; tabled_for_io
; tabled_for_io_unitize
; tabled_for_descendant_io.
:- type may_modify_trail
---> may_modify_trail
; will_not_modify_trail.
:- type pragma_var
---> pragma_var(prog_var, string, mer_mode, box_policy).
% variable, name, mode
% We explicitly store the name because we need the real
% name in code_gen.
:- type box_policy
---> native_if_possible
; always_boxed.
% This type specifies the termination property of a procedure
% defined using pragma c_code or pragma foreign_proc.
%
:- type terminates
---> terminates
% The foreign code will terminate for all input assuming
% that any input streams are finite.
; does_not_terminate
% The foreign code will not necessarily terminate for some
% (possibly all) input.
; depends_on_mercury_calls.
% The termination of the foreign code depends on whether the code
% makes calls back to Mercury (See termination.m for details).
:- type may_throw_exception
---> will_not_throw_exception
% The foreign code will not result in an exception being thrown.
; default_exception_behaviour.
% If the foreign_proc is erroneous then mark it as throwing an
% exception. Otherwise mark it as throwing an exception if it
% makes calls back to Mercury and not throwing an exception
% otherwise.
:- type pragma_foreign_proc_extra_attribute
---> max_stack_size(int)
; backend(backend).
:- type pragma_foreign_proc_extra_attributes ==
list(pragma_foreign_proc_extra_attribute).
% Convert the foreign code attributes to their source code representations
% suitable for placing in the attributes list of the pragma (not all
% attributes have one). In particular, the foreign language attribute needs
% to be handled separately as it belongs at the start of the pragma.
%
:- func attributes_to_strings(pragma_foreign_proc_attributes) = list(string).
%-----------------------------------------------------------------------------%
%
% Goals
%
% NOTE: the representation of goals in the parse tree is defined in
% prog_item.m.
:- type implicit_purity_promise
---> make_implicit_promises
; dont_make_implicit_promises.
% These type equivalences are for the type of program variables
% and associated structures.
%
:- type prog_var_type ---> prog_var_type.
:- type prog_var == var(prog_var_type).
:- type prog_varset == varset(prog_var_type).
:- type prog_substitution == substitution(prog_var_type).
:- type prog_term == term(prog_var_type).
:- type prog_vars == list(prog_var).
% A prog_context is just a term.context.
%
:- type prog_context == term.context.
%-----------------------------------------------------------------------------%
%
% Cons ids
%
% The representation of cons_ids below is a compromise. The cons_id
% type must be defined here, in a submodule of parse_tree.m, because
% it is a component of insts. However, after the program has been read
% in, the cons_ids cons, int_const, string_const and float_const,
% which can appear in user programs, may also be augmented by the other
% cons_ids, which can only be generated by the compiler.
%
% The problem is that some of these compiler generated cons_ids
% refer to procedures, and the natural method of identifying
% procedures requires the types pred_id and proc_id, defined
% in hlds_pred.m, which we don't want to import here.
%
% We could try to avoid this problem using two different types
% for cons_ids, one defined here for use in the parse tree and one
% defined in hlds_data.m for use in the HLDS. We could distinguish
% the two by having the HLDS cons_id have a definition such as
% hlds_cons_id ---> parse_cons_id(parse_cons_id) ; ...
% or, alternatively, by making cons_id parametric in the type of
% constants, and substitute different constant types (since all the
% cons_ids that refer to HLDS concepts are constants).
%
% Using two different types requires a translation from one to the
% other. While the runtime cost would be acceptable, the cost in code
% complexity isn't, since the translation isn't confined to
% make_hlds.m. (I found this out the hard way.) This is especially so
% if we want to use in each case only the tightest possible type.
% For example, while construct goals can involve all cons_ids,
% deconstruct goals and switches can currently involve only the
% cons_ids that can appear in parse trees.
%
% The solution we have chosen is to exploit the fact that pred_ids
% and proc_ids are integers. Those types are private to hlds_pred.m,
% but hlds_pred.m also contains functions for translating them to and
% from the shrouded versions defined below. The next three types are
% designed to be used in only two ways: for translation to their HLDS
% equivalents by the unshroud functions in hlds_pred.m, and for
% printing for diagnostics.
%
:- type shrouded_pred_id ---> shrouded_pred_id(int).
:- type shrouded_proc_id ---> shrouded_proc_id(int).
:- type shrouded_pred_proc_id ---> shrouded_pred_proc_id(int, int).
:- type cons_id
---> cons(sym_name, arity) % name, arity
% Tuples have cons_id `cons(unqualified("{}"), Arity)'.
; int_const(int)
; string_const(string)
; float_const(float)
; pred_const(shrouded_pred_proc_id, lambda_eval_method)
% Note that a pred_const represents a closure,
% not just a code address.
; type_ctor_info_const(
module_name,
string, % Name of the type constructor.
int % Its arity.
)
; base_typeclass_info_const(
module_name, % Module name of instance declaration
% (not filled in so that link errors result
% from overlapping instances).
class_id, % Class name and arity.
int, % Class instance.
string % Encodes the type names and arities of the
% arguments of the instance declaration.
)
; type_info_cell_constructor(type_ctor)
; typeclass_info_cell_constructor
; tabling_pointer_const(shrouded_pred_proc_id)
% The address of the static variable that points to the table
% that implements memoization, loop checking or the minimal
% model semantics for the given procedure.
; deep_profiling_proc_layout(shrouded_pred_proc_id)
% The Proc_Layout structure of a procedure. Its proc_static field
% is used by deep profiling, as documented in the deep profiling
% paper.
; table_io_decl(shrouded_pred_proc_id).
% The address of a structure that describes the layout of the
% answer block used by I/O tabling for declarative debugging.
% Describe how a lambda expression is to be evaluated.
%
% `normal' is the top-down Mercury execution algorithm.
:- type lambda_eval_method
---> lambda_normal.
%-----------------------------------------------------------------------------%
%
% Types
%
% This is how types are represented.
% One day we might allow types to take
% value parameters as well as type parameters.
% type_defn/3 is defined in prog_item.m as a constructor for item/0
:- type type_defn
---> du_type(
du_ctors :: list(constructor),
du_user_uc :: maybe(unify_compare)
)
; eqv_type(
eqv_type :: mer_type
)
; abstract_type(
abstract_is_solver :: is_solver_type
)
; solver_type(
solver_details :: solver_type_details,
solver_user_uc :: maybe(unify_compare)
)
; foreign_type(
foreign_lang_type :: foreign_language_type,
foreign_user_uc :: maybe(unify_compare),
foreign_assertions :: list(foreign_type_assertion)
).
:- type foreign_type_assertion
---> can_pass_as_mercury_type
; stable.
:- type constructor
---> ctor(
cons_exist :: existq_tvars,
cons_constraints :: list(prog_constraint),
% existential constraints
cons_name :: sym_name,
cons_args :: list(constructor_arg)
).
:- type constructor_arg == pair(maybe(ctor_field_name), mer_type).
:- type ctor_field_name == sym_name.
% unify_compare gives the user-defined unification and/or comparison
% predicates for a noncanonical type, if they are known. The value
% `abstract_noncanonical_type' represents a type whose definition uses
% the syntax `where type_is_abstract_noncanonical' and has been read
% from a .int2 file. This means we know that the type has a
% noncanonical representation, but we don't know what the
% unification/comparison predicates are.
%
:- type unify_compare
---> unify_compare(
unify :: maybe(equality_pred),
compare :: maybe(comparison_pred)
)
; abstract_noncanonical_type(is_solver_type).
% The `where' attributes of a solver type definition must begin
% with
% representation is <<representation type>>,
% initialisation is <<init pred name>>,
% ground is <<ground inst>>,
% any is <<any inst>>,
% constraint_store is <<mutable(...) or [mutable(...), ...]>>
%
:- type solver_type_details
---> solver_type_details(
representation_type :: mer_type,
init_pred :: init_pred,
ground_inst :: mer_inst,
any_inst :: mer_inst,
mutable_items :: list(item)
).
% An init_pred specifies the name of an impure user-defined predicate
% used to initialise solver type values (the compiler will insert
% calls to this predicate to convert free solver type variables to
% inst any variables where necessary.)
%
:- type init_pred == sym_name.
% An equality_pred specifies the name of a user-defined predicate
% used for equality on a type. See the chapter on them in the
% Mercury Language Reference Manual.
%
:- type equality_pred == sym_name.
% The name of a user-defined comparison predicate.
%
:- type comparison_pred == sym_name.
% Parameters of type definitions.
%
:- type type_param == tvar.
% Use type_util.type_to_ctor_and_args to convert a type to a qualified
% type_ctor and a list of arguments. Use type_util.construct_type to
% construct a type from a type_ctor and a list of arguments.
%
:- type mer_type
---> variable(tvar, kind)
% A type variable.
; defined(sym_name, list(mer_type), kind)
% A user defined type constructor.
; builtin(builtin_type)
% These are all known to have kind `star'.
% The above three functors should be kept as the first three, since
% they will be the most commonly used and therefore we want them to
% get the primary tags on a 32-bit machine.
; higher_order(
% A type for higher-order values. If the second argument
% is yes(T) then the values are functions returning T,
% otherwise they are predicates. The kind is always `star'.
list(mer_type),
maybe(mer_type),
purity,
lambda_eval_method
)
; tuple(list(mer_type), kind)
% Tuple types.
; apply_n(tvar, list(mer_type), kind)
% An apply/N expression. `apply_n(V, [T1, ...], K)'
% would be the representation of type `V(T1, ...)'
% with kind K. The list must be non-empty.
; kinded(mer_type, kind).
% A type expression with an explicit kind annotation.
% (These are not yet used.)
:- type vartypes == map(prog_var, mer_type).
:- type builtin_type
---> int
; float
; string
; character.
:- type type_term == term(tvar_type).
:- type tvar_type ---> type_var.
:- type tvar == var(tvar_type).
% used for type variables
:- type tvarset == varset(tvar_type).
% used for sets of type variables
:- type tsubst == map(tvar, mer_type). % used for type substitutions
:- type tvar_renaming == map(tvar, tvar). % type renaming
:- type type_ctor == pair(sym_name, arity).
:- type tvar_name_map == map(string, tvar).
% existq_tvars is used to record the set of type variables which are
% existentially quantified
%
:- type existq_tvars == list(tvar).
% Types may have arbitrary assertions associated with them
% (e.g. you can define a type which represents sorted lists).
% Similarly, pred declarations can have assertions attached.
% The compiler will ignore these assertions - they are intended
% to be used by other tools, such as the debugger.
%
:- type condition
---> true
; where(term).
% Similar to varset.merge_subst but produces a tvar_renaming
% instead of a substitution, which is more suitable for types.
%
:- pred tvarset_merge_renaming(tvarset::in, tvarset::in, tvarset::out,
tvar_renaming::out) is det.
% As above, but behaves like varset.merge_subst_without_names.
%
:- pred tvarset_merge_renaming_without_names(tvarset::in, tvarset::in,
tvarset::out, tvar_renaming::out) is det.
%-----------------------------------------------------------------------------%
%
% Kinds
%
% Note that we don't support any kind other than `star' at the
% moment. The other kinds are intended for the implementation
% of constructor classes.
%
:- type kind
---> star
% An ordinary type.
; arrow(kind, kind)
% A type with kind `A' applied to a type with kind `arrow(A, B)'
% will have kind `B'.
; variable(kvar).
% A kind variable. These can be used during kind inference;
% after kind inference, all remaining kind variables will be
% bound to `star'.
:- type kvar_type ---> kind_var.
:- type kvar == var(kvar_type).
% The kinds of type variables. For efficiency, we only have entries
% for type variables that have a kind other than `star'. Any type variable
% not appearing in this map, which will usually be the majority of type
% variables, can be assumed to have kind `star'.
%
:- type tvar_kind_map == map(tvar, kind).
:- pred get_tvar_kind(tvar_kind_map::in, tvar::in, kind::out) is det.
% Return the kind of a type.
%
:- func get_type_kind(mer_type) = kind.
%-----------------------------------------------------------------------------%
%
% Insts and modes
%
% This is how instantiatednesses and modes are represented.
%
:- type mer_inst
---> any(uniqueness)
; free
; free(mer_type)
; bound(uniqueness, list(bound_inst))
% The list(bound_inst) must be sorted.
; ground(uniqueness, ground_inst_info)
% The ground_inst_info holds extra information
% about the ground inst.
; not_reached
; inst_var(inst_var)
; constrained_inst_vars(set(inst_var), mer_inst)
% Constrained_inst_vars is a set of inst variables that are
% constrained to have the same uniqueness as and to match_final
% the specified inst.
; defined_inst(inst_name)
% A defined_inst is possibly recursive inst whose value is
% stored in the inst_table. This is used both for user-defined
% insts and for compiler-generated insts.
; abstract_inst(sym_name, list(mer_inst)).
% An abstract inst is a defined inst which
% has been declared but not actually been
% defined (yet).
:- type uniqueness
---> shared % There might be other references.
; unique % There is only one reference.
; mostly_unique % There is only one reference,
% but there might be more on backtracking.
; clobbered % This was the only reference, but
% the data has already been reused.
; mostly_clobbered. % This was the only reference, but
% the data has already been reused;
% however, there may be more references
% on backtracking, so we will need to
% restore the old value on backtracking.
% The ground_inst_info type gives extra information about ground insts.
%
:- type ground_inst_info
---> higher_order(pred_inst_info)
% The ground inst is higher-order.
; none.
% No extra information is available.
% higher-order predicate terms are given the inst
% `ground(shared, higher_order(PredInstInfo))'
% where the PredInstInfo contains the extra modes and the determinism
% for the predicate. Note that the higher-order predicate term
% itself must be ground.
%
:- type pred_inst_info
---> pred_inst_info(
pred_or_func, % Is this a higher-order func mode or a
% higher-order pred mode?
list(mer_mode), % The modes of the additional (i.e.
% not-yet-supplied) arguments of the pred;
% for a function, this includes the mode
% of the return value as the last element
% of the list.
determinism % The determinism of the predicate or
% function.
).
:- type inst_id == pair(sym_name, arity).
:- type bound_inst ---> functor(cons_id, list(mer_inst)).
:- type inst_var_type ---> inst_var_type.
:- type inst_var == var(inst_var_type).
:- type inst_term == term(inst_var_type).
:- type inst_varset == varset(inst_var_type).
:- type inst_var_sub == map(inst_var, mer_inst).
% inst_defn/5 is defined in prog_item.m.
:- type inst_defn
---> eqv_inst(mer_inst)
; abstract_inst.
% An `inst_name' is used as a key for the inst_table.
% It is either a user-defined inst `user_inst(Name, Args)',
% or some sort of compiler-generated inst, whose name
% is a representation of its meaning.
%
% For example, `merge_inst(InstA, InstB)' is the name used for the
% inst that results from merging InstA and InstB using `merge_inst'.
% Similarly `unify_inst(IsLive, InstA, InstB, IsReal)' is
% the name for the inst that results from a call to
% `abstractly_unify_inst(IsLive, InstA, InstB, IsReal)'.
% And `ground_inst' and `any_inst' are insts that result
% from unifying an inst with `ground' or `any', respectively.
% `typed_inst' is an inst with added type information.
% `typed_ground(Uniq, Type)' a equivalent to
% `typed_inst(ground(Uniq, no), Type)'.
% Note that `typed_ground' is a special case of `typed_inst',
% and `ground_inst' and `any_inst' are special cases of `unify_inst'.
% The reason for having the special cases is efficiency.
%
:- type inst_name
---> user_inst(sym_name, list(mer_inst))
; merge_inst(mer_inst, mer_inst)
; unify_inst(is_live, mer_inst, mer_inst, unify_is_real)
; ground_inst(inst_name, is_live, uniqueness, unify_is_real)
; any_inst(inst_name, is_live, uniqueness, unify_is_real)
; shared_inst(inst_name)
; mostly_uniq_inst(inst_name)
; typed_ground(uniqueness, mer_type)
; typed_inst(mer_type, inst_name).
% NOTE: `is_live' records liveness in the sense used by
% mode analysis. This is not the same thing as the notion of liveness
% used by code generation. See compiler/notes/glossary.html.
%
:- type is_live
---> live
; dead.
% Unifications of insts fall into two categories, "real" and "fake".
% The "real" inst unifications correspond to real unifications,
% and are not allowed to unify with `clobbered' insts (unless
% the unification would be `det').
% Any inst unification which is associated with some code that
% will actually examine the contents of the variables in question
% must be "real". Inst unifications that are not associated with
% some real code that examines the variables' values are "fake".
% "Fake" inst unifications are used for procedure calls in implied
% modes, where the final inst of the var must be computed by
% unifying its initial inst with the procedure's final inst,
% so that if you pass a ground var to a procedure whose mode
% is `free -> list_skeleton', the result is ground, not list_skeleton.
% But these fake unifications must be allowed to unify with `clobbered'
% insts. Hence we pass down a flag to `abstractly_unify_inst' which
% specifies whether or not to allow unifications with clobbered values.
%
:- type unify_is_real
---> real_unify
; fake_unify.
:- type mode_id == pair(sym_name, arity).
:- type mode_defn
---> eqv_mode(mer_mode).
:- type mer_mode
---> (mer_inst -> mer_inst)
; user_defined_mode(sym_name, list(mer_inst)).
%-----------------------------------------------------------------------------%
%
% Module system
%
:- type backend
---> high_level_backend
; low_level_backend.
:- type section
---> implementation
; interface.
% An import_locn is used to describe the place where an item was
% imported from.
:- type import_locn
---> implementation
% The item is from a module imported in the implementation.
; interface
% The item is from a module imported in the interface.
; ancestor
% The item is from a module imported by an ancestor.
; ancestor_private_interface.
% The item is from the private interface of an ancestor module.
:- type sym_list
---> sym(list(sym_specifier))
; pred(list(pred_specifier))
; func(list(func_specifier))
; cons(list(cons_specifier))
; op(list(op_specifier))
; adt(list(adt_specifier))
; type(list(type_specifier))
; module(list(module_specifier)).
:- type sym_specifier
---> sym(sym_name_specifier)
; typed_sym(typed_cons_specifier)
; pred(pred_specifier)
; func(func_specifier)
; cons(cons_specifier)
; op(op_specifier)
; adt(adt_specifier)
; type(type_specifier)
; module(module_specifier).
:- type pred_specifier
---> sym(sym_name_specifier)
; name_args(sym_name, list(mer_type)).
:- type func_specifier == cons_specifier.
:- type cons_specifier
---> sym(sym_name_specifier)
; typed(typed_cons_specifier).
:- type typed_cons_specifier
---> name_args(sym_name, list(mer_type))
; name_res(sym_name_specifier, mer_type)
; name_args_res(sym_name, list(mer_type), mer_type).
:- type adt_specifier == sym_name_specifier.
:- type type_specifier == sym_name_specifier.
:- type op_specifier
---> sym(sym_name_specifier)
; fixity(sym_name_specifier, fixity).
% operator fixity specifiers not yet implemented
:- type fixity
---> infix
; prefix
; postfix
; binary_prefix
; binary_postfix.
:- type sym_name_specifier
---> name(sym_name)
; name_arity(sym_name, arity).
:- type sym_name_and_arity
---> sym_name / arity.
:- type simple_call_id == pair(pred_or_func, sym_name_and_arity).
:- type module_specifier == sym_name.
:- type arity == int.
% Describes whether an item can be used without an explicit module
% qualifier.
%
:- type need_qualifier
---> must_be_qualified
; may_be_unqualified.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module string.
%-----------------------------------------------------------------------------%
%
% Some more stuff for the foreign language interface
%
:- type pragma_foreign_proc_attributes
---> attributes(
foreign_language :: foreign_language,
may_call_mercury :: may_call_mercury,
thread_safe :: thread_safe,
tabled_for_io :: tabled_for_io,
purity :: purity,
terminates :: terminates,
% there is some special case behaviour for
% pragma c_code and pragma import purity
% if legacy_purity_behaviour is `yes'
may_throw_exception :: may_throw_exception,
legacy_purity_behaviour :: bool,
ordinary_despite_detism :: bool,
may_modify_trail :: may_modify_trail,
box_policy :: box_policy,
extra_attributes ::
list(pragma_foreign_proc_extra_attribute)
).
default_attributes(Language) =
attributes(Language, may_call_mercury, not_thread_safe,
not_tabled_for_io, purity_impure, depends_on_mercury_calls,
default_exception_behaviour, no, no, may_modify_trail,
native_if_possible, []).
set_may_call_mercury(MayCallMercury, Attrs0, Attrs) :-
Attrs = Attrs0 ^ may_call_mercury := MayCallMercury.
set_thread_safe(ThreadSafe, Attrs0, Attrs) :-
Attrs = Attrs0 ^ thread_safe := ThreadSafe.
set_foreign_language(ForeignLanguage, Attrs0, Attrs) :-
Attrs = Attrs0 ^ foreign_language := ForeignLanguage.
set_tabled_for_io(TabledForIo, Attrs0, Attrs) :-
Attrs = Attrs0 ^ tabled_for_io := TabledForIo.
set_purity(Purity, Attrs0, Attrs) :-
Attrs = Attrs0 ^ purity := Purity.
set_terminates(Terminates, Attrs0, Attrs) :-
Attrs = Attrs0 ^ terminates := Terminates.
set_may_throw_exception(MayThrowException, Attrs0, Attrs) :-
Attrs = Attrs0 ^ may_throw_exception := MayThrowException.
set_legacy_purity_behaviour(Legacy, Attrs0, Attrs) :-
Attrs = Attrs0 ^ legacy_purity_behaviour := Legacy.
set_ordinary_despite_detism(OrdinaryDespiteDetism, Attrs0, Attrs) :-
Attrs = Attrs0 ^ ordinary_despite_detism := OrdinaryDespiteDetism.
set_may_modify_trail(MayModifyTrail, Attrs0, Attrs) :-
Attrs = Attrs0 ^ may_modify_trail := MayModifyTrail.
set_box_policy(BoxPolicyStr, Attrs0, Attrs) :-
Attrs = Attrs0 ^ box_policy := BoxPolicyStr.
attributes_to_strings(Attrs) = StringList :-
% We ignore Lang because it isn't an attribute that you can put
% in the attribute list -- the foreign language specifier string
% is at the start of the pragma.
Attrs = attributes(_Lang, MayCallMercury, ThreadSafe, TabledForIO,
Purity, Terminates, Exceptions, _LegacyBehaviour,
OrdinaryDespiteDetism, MayModifyTrail, BoxPolicy, ExtraAttributes),
(
MayCallMercury = may_call_mercury,
MayCallMercuryStr = "may_call_mercury"
;
MayCallMercury = will_not_call_mercury,
MayCallMercuryStr = "will_not_call_mercury"
),
(
ThreadSafe = not_thread_safe,
ThreadSafeStr = "not_thread_safe"
;
ThreadSafe = thread_safe,
ThreadSafeStr = "thread_safe"
;
ThreadSafe = maybe_thread_safe,
ThreadSafeStr = "maybe_thread_safe"
),
(
TabledForIO = tabled_for_io,
TabledForIOStr = "tabled_for_io"
;
TabledForIO = tabled_for_io_unitize,
TabledForIOStr = "tabled_for_io_unitize"
;
TabledForIO = tabled_for_descendant_io,
TabledForIOStr = "tabled_for_descendant_io"
;
TabledForIO = not_tabled_for_io,
TabledForIOStr = "not_tabled_for_io"
),
(
Purity = purity_pure,
PurityStrList = ["promise_pure"]
;
Purity = purity_semipure,
PurityStrList = ["promise_semipure"]
;
Purity = purity_impure,
PurityStrList = []
),
(
Terminates = terminates,
TerminatesStrList = ["terminates"]
;
Terminates = does_not_terminate,
TerminatesStrList = ["does_not_terminate"]
;
Terminates = depends_on_mercury_calls,
TerminatesStrList = []
),
(
Exceptions = will_not_throw_exception,
ExceptionsStrList = ["will_not_throw_exception"]
;
Exceptions = default_exception_behaviour,
ExceptionsStrList = []
),
(
OrdinaryDespiteDetism = yes,
OrdinaryDespiteDetismStrList = ["ordinary_despite_detism"]
;
OrdinaryDespiteDetism = no,
OrdinaryDespiteDetismStrList = []
),
(
MayModifyTrail = may_modify_trail,
MayModifyTrailStrList = ["may_modify_trail"]
;
MayModifyTrail = will_not_modify_trail,
MayModifyTrailStrList = ["will_not_modify_trail"]
),
(
BoxPolicy = native_if_possible,
BoxPolicyStr = []
;
BoxPolicy = always_boxed,
BoxPolicyStr = ["always_boxed"]
),
StringList = [MayCallMercuryStr, ThreadSafeStr, TabledForIOStr |
PurityStrList] ++ TerminatesStrList ++ ExceptionsStrList ++
OrdinaryDespiteDetismStrList ++ MayModifyTrailStrList ++
BoxPolicyStr ++ list.map(extra_attribute_to_string, ExtraAttributes).
add_extra_attribute(NewAttribute, Attributes0,
Attributes0 ^ extra_attributes :=
[NewAttribute | Attributes0 ^ extra_attributes]).
:- func extra_attribute_to_string(pragma_foreign_proc_extra_attribute)
= string.
extra_attribute_to_string(backend(low_level_backend)) = "low_level_backend".
extra_attribute_to_string(backend(high_level_backend)) = "high_level_backend".
extra_attribute_to_string(max_stack_size(Size)) =
"max_stack_size(" ++ string.int_to_string(Size) ++ ")".
%-----------------------------------------------------------------------------%
%
% Purity
%
less_pure(P1, P2) :-
\+ ( worst_purity(P1, P2) = P2).
% worst_purity/3 could be written more compactly, but this definition
% guarantees us a determinism error if we add to type `purity'. We also
% define less_pure/2 in terms of worst_purity/3 rather than the other way
% around for the same reason.
%
worst_purity(purity_pure, purity_pure) = purity_pure.
worst_purity(purity_pure, purity_semipure) = purity_semipure.
worst_purity(purity_pure, purity_impure) = purity_impure.
worst_purity(purity_semipure, purity_pure) = purity_semipure.
worst_purity(purity_semipure, purity_semipure) = purity_semipure.
worst_purity(purity_semipure, purity_impure) = purity_impure.
worst_purity(purity_impure, purity_pure) = purity_impure.
worst_purity(purity_impure, purity_semipure) = purity_impure.
worst_purity(purity_impure, purity_impure) = purity_impure.
% best_purity/3 is written as a switch for the same reason as
% worst_purity/3.
%
best_purity(purity_pure, purity_pure) = purity_pure.
best_purity(purity_pure, purity_semipure) = purity_pure.
best_purity(purity_pure, purity_impure) = purity_pure.
best_purity(purity_semipure, purity_pure) = purity_pure.
best_purity(purity_semipure, purity_semipure) = purity_semipure.
best_purity(purity_semipure, purity_impure) = purity_semipure.
best_purity(purity_impure, purity_pure) = purity_pure.
best_purity(purity_impure, purity_semipure) = purity_semipure.
best_purity(purity_impure, purity_impure) = purity_impure.
%-----------------------------------------------------------------------------%
%
% Determinism
%
determinism_components(det, cannot_fail, at_most_one).
determinism_components(semidet, can_fail, at_most_one).
determinism_components(multidet, cannot_fail, at_most_many).
determinism_components(nondet, can_fail, at_most_many).
determinism_components(cc_multidet, cannot_fail, at_most_many_cc).
determinism_components(cc_nondet, can_fail, at_most_many_cc).
determinism_components(erroneous, cannot_fail, at_most_zero).
determinism_components(failure, can_fail, at_most_zero).
det_conjunction_detism(DetismA, DetismB, Detism) :-
% When figuring out the determinism of a conjunction, if the second goal
% is unreachable, then then the determinism of the conjunction is just
% the determinism of the first goal.
determinism_components(DetismA, CanFailA, MaxSolnA),
( MaxSolnA = at_most_zero ->
Detism = DetismA
;
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln)
).
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
% Figuring out the determinism of a parallel conjunction is much easier
% than for a sequential conjunction, since you simply ignore the case
% where the second goal is unreachable. Just do a normal solution count.
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
det_switch_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_switch_canfail(CanFailA, CanFailB, CanFail),
det_switch_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
%-----------------------------------------------------------------------------%
%
% The predicates in this section do abstract interpretation to count
% the number of solutions and the possible number of failures.
%
% If the num_solns is at_most_many_cc, this means that the goal might have
% many logical solutions if there were no pruning, but that the goal occurs
% in a single-solution context, so only the first solution will be
% returned.
%
% The reason why we don't throw an exception in det_switch_maxsoln and
% det_disjunction_maxsoln is given in the documentation of the test case
% invalid/magicbox.m.
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% If the first conjunct could be cc pruned, the second conj ought to have
% been cc pruned too.
unexpected(this_file, "det_conjunction_maxsoln: many_cc , many").
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
det_conjunction_canfail(can_fail, can_fail, can_fail).
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
det_disjunction_canfail(can_fail, can_fail, can_fail).
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
det_switch_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
det_switch_canfail(can_fail, can_fail, can_fail).
det_switch_canfail(can_fail, cannot_fail, can_fail).
det_switch_canfail(cannot_fail, can_fail, can_fail).
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
det_negation_det(det, yes(failure)).
det_negation_det(semidet, yes(semidet)).
det_negation_det(multidet, no).
det_negation_det(nondet, no).
det_negation_det(cc_multidet, no).
det_negation_det(cc_nondet, no).
det_negation_det(erroneous, yes(erroneous)).
det_negation_det(failure, yes(det)).
%-----------------------------------------------------------------------------%
tvarset_merge_renaming(TVarSetA, TVarSetB, TVarSet, Renaming) :-
varset.merge_subst(TVarSetA, TVarSetB, TVarSet, Subst),
map.map_values(convert_subst_term_to_tvar, Subst, Renaming).
tvarset_merge_renaming_without_names(TVarSetA, TVarSetB, TVarSet, Renaming) :-
varset.merge_subst_without_names(TVarSetA, TVarSetB, TVarSet, Subst),
map.map_values(convert_subst_term_to_tvar, Subst, Renaming).
:- pred convert_subst_term_to_tvar(tvar::in, term(tvar_type)::in, tvar::out)
is det.
convert_subst_term_to_tvar(_, variable(TVar), TVar).
convert_subst_term_to_tvar(_, functor(_, _, _), _) :-
unexpected(this_file, "non-variable found in renaming").
%-----------------------------------------------------------------------------%
get_tvar_kind(Map, TVar, Kind) :-
( map.search(Map, TVar, Kind0) ->
Kind = Kind0
;
Kind = star
).
get_type_kind(variable(_, Kind)) = Kind.
get_type_kind(defined(_, _, Kind)) = Kind.
get_type_kind(builtin(_)) = star.
get_type_kind(higher_order(_, _, _, _)) = star.
get_type_kind(tuple(_, Kind)) = Kind.
get_type_kind(apply_n(_, _, Kind)) = Kind.
get_type_kind(kinded(_, Kind)) = Kind.
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "prog_data.m".
%-----------------------------------------------------------------------------%
:- end_module prog_data.
%-----------------------------------------------------------------------------%