Files
mercury/runtime/mercury_heap_profile.c
Mark Brown d465fa53cb Update the COPYING.LIB file and references to it.
Discussion of these changes can be found on the Mercury developers
mailing list archives from June 2018.

COPYING.LIB:
    Add a special linking exception to the LGPL.

*:
    Update references to COPYING.LIB.

    Clean up some minor errors that have accumulated in copyright
    messages.
2018-06-09 17:43:12 +10:00

562 lines
17 KiB
C

// vim: ts=4 sw=4 expandtab ft=c
// Copyright (C) 1997, 1999-2001, 2006, 2011 The University of Melbourne.
// Copyright (C) 2016, 2018 The Mercury team.
// This file is distributed under the terms specified in COPYING.LIB.
// File: mercury_heap_profile.c.
// Main authors: zs, fjh, wangp.
//
// This module records information about the allocations of cells on the heap.
//
// The information recorded by this module is used by code in
// library/benchmarking.m.
////////////////////////////////////////////////////////////////////////////
#include "mercury_imp.h"
#include <stdio.h>
#include <string.h>
#include "mercury_prof_mem.h"
#include "mercury_dword.h"
#include "mercury_heap_profile.h"
#include "mercury_runtime_util.h"
// All fields of these variables are initialized to 0.
MR_memprof_counter MR_memprof_overall;
MR_memprof_table MR_memprof_procs;
MR_memprof_table MR_memprof_types;
// Private global variables.
static MR_bool profile_heap = MR_TRUE;
// Initialize a heap profiling counter.
static void
MR_init_counter(MR_memprof_counter *counter)
{
MR_zero_dword(counter->cells_at_period_start);
MR_zero_dword(counter->words_at_period_start);
MR_zero_dword(counter->cells_since_period_start);
MR_zero_dword(counter->words_since_period_start);
}
// Increment the fields in a heap profiling counter to record the allocation
// of a single cell of `size' words.
static void
MR_increment_counter(MR_memprof_counter *counter, int size)
{
MR_increment_dword(counter->cells_since_period_start, 1);
MR_increment_dword(counter->words_since_period_start, size);
}
// Search the specified `table' to find the entry for the given `name'
// allocating one if there isn't one already, and then increment
// the counters for that entry for an allocation of the specified `size'.
static void
MR_increment_table_entry(MR_memprof_table *table,
const MR_Code *proc, const char *type_name, int size)
{
MR_bool found;
MR_Integer diff;
MR_memprof_record **node_addr;
MR_memprof_record *node;
// Search the tree either by procedure address or by type name.
found = MR_FALSE;
node_addr = &table->root;
if (proc != NULL) {
while ((node = *node_addr) != NULL) {
// The casts to MR_Integer are so that we work with C compilers
// that do not support arithmetic with void pointers.
diff = (MR_Integer)proc - (MR_Integer)node->proc;
if (diff < 0) {
node_addr = &node->left;
} else if (diff > 0) {
node_addr = &node->right;
} else {
found = MR_TRUE;
break;
}
}
} else {
while ((node = *node_addr) != NULL) {
diff = strcmp(type_name, node->type_name);
if (diff < 0) {
node_addr = &node->left;
} else if (diff > 0) {
node_addr = &node->right;
} else {
found = MR_TRUE;
break;
}
}
}
// If the tree didn't already contain a node with this procedure address or
// type name, create a new node for it.
if (!found) {
node = MR_PROF_NEW(MR_memprof_record);
// We need to make a fresh copy of the name, rather than just copying
// the pointer, because our caller may deallocate its copy of the name.
// Normally the name will be a string literal, but even then it might
// be a string literal from a dlopen()'ed module which will later
// get dlclose()'d.
if (type_name != NULL) {
size_t len = strlen(type_name);
char *copy_of_name = MR_PROF_NEW_ARRAY(char, len + 1);
MR_memcpy(copy_of_name, type_name, len + 1);
node->type_name = copy_of_name;
} else {
node->type_name = NULL;
}
node->proc = proc;
node->left = NULL;
node->right = NULL;
MR_init_counter(&node->counter);
*node_addr = node;
table->num_entries++;
}
// Now record the counts in this node.
MR_increment_counter(&node->counter, size);
}
// Record heap profiling information for an allocation of size `size'
// in procedure `proc' for an object of type `type'.
void
MR_record_allocation(int size, const MR_AllocSiteInfoPtr alloc_id,
const char *type)
{
if (!profile_heap || alloc_id == NULL || alloc_id->MR_asi_proc == NULL) {
return;
}
// Increment the overall totals,
// record the allocation in the per-procedure table, and
// record the allocation in the per-type table.
MR_increment_counter(&MR_memprof_overall, size);
MR_increment_table_entry(&MR_memprof_procs, alloc_id->MR_asi_proc, NULL,
size);
if (type == NULL) {
type = alloc_id->MR_asi_type;
if (type == NULL) {
type = "unknown";
}
}
MR_increment_table_entry(&MR_memprof_types, NULL, type, size);
}
void
MR_prof_turn_on_heap_profiling(void)
{
profile_heap = MR_TRUE;
}
void
MR_prof_turn_off_heap_profiling(void)
{
profile_heap = MR_FALSE;
}
////////////////////////////////////////////////////////////////////////////
// Memory attribution profiling.
//
// Memory attribution profiling actually bears no particular relationship to
// regular memory profiling, but in the interests of reducing the number of
// grades both are lumped under the `--memory-profiling' option.
//
// For every memory cell, we allocate an extra memory word at the front of the
// object which points to an MR_AllocSiteInfo structure, indicating the
// procedure which allocated the cell, its type, and its true (desired) size.
// We call that the "attribution".
//
// When `benchmarking.report_memory_attribution' is called, we force a GC.
// Using hooks inserted into Boehm GC, a function is called for every live
// memory object on the heap. During that callback, we increment the counters
// in a hash table (for attributed objects), or counters in a binary tree (for
// unattributed objects, or Mercury runtime objects that we don't care to
// distinguish).
#ifdef MR_MPROF_PROFILE_MEMORY_ATTRIBUTION
typedef struct MR_AttribCount_Struct MR_AttribCount;
typedef struct MR_VarSizeCount_Struct MR_VarSizeCount;
// Counts for attributed objects.
struct MR_AttribCount_Struct {
unsigned MR_atc_id;
MR_AllocSiteInfo const *MR_atc_alloc_site;
size_t MR_atc_num_cells;
size_t MR_atc_num_words;
};
// Objects which are unattributed, or explicitly attributed as runtime
// structures, may come in many different sizes. We store the counters for
// each different size as a separate node in a binary search tree.
struct MR_VarSizeCount_Struct {
size_t MR_vsc_size;
size_t MR_vsc_count;
MR_VarSizeCount *MR_vsc_left;
MR_VarSizeCount *MR_vsc_right;
};
#define SNAPSHOTS_FILENAME "Prof.Snapshots"
#define KNOWN_COUNT_TABLE_INITIAL_SIZE (1 << 8) // power of two
static MR_AttribCount *attrib_count_table;
static size_t attrib_count_table_size;
static size_t attrib_count_table_used;
static MR_VarSizeCount *runtime_count_tree;
static MR_VarSizeCount *unknown_count_tree;
static int snapshot_counter;
static FILE *snapshot_file;
static void add_attrib_count_entry(MR_AttribCount *table,
size_t table_size, size_t *table_used, unsigned id,
const MR_AllocSiteInfo *alloc_site);
static void rehash_attrib_count_table(void);
static unsigned hash_addr(MR_Word key);
static void * GC_CALLBACK enumerate_reachable_objects_locked(void *data);
static GC_CALLBACK void
reachable_object_callback(void *p, size_t bytes, void *data);
static MR_bool increment_attrib_count(MR_Word addr, size_t num_words);
static void increment_var_size_count(MR_VarSizeCount **node, size_t words);
static void finish_reachable_report(const char *label);
static void write_attrib_counts(FILE *fp, MR_AttribCount *table,
size_t table_size);
static void write_var_size_counts(FILE *fp, const char *prefix,
MR_VarSizeCount *node);
static const char *maybe_filename(const char *s);
#define MR_NUM_BUILTIN_ALLOC_SITES 9
MR_AllocSiteInfo MR_builtin_alloc_sites[MR_NUM_BUILTIN_ALLOC_SITES] = {
// These must match the macros in mercury_memory.h.
{ NULL, "runtime", 0, "<runtime structs>", 0 },
{ NULL, "unknown", 0, "float.float/0", MR_FLOAT_WORDS },
{ NULL, "unknown", 0, "string.string/0", 0 },
{ NULL, "unknown", 0, "type_info/0", 0 },
{ NULL, "unknown", 0, "<foreign>", 0 },
{ NULL, "unknown", 0, "<tabling structs>", 0 },
{ NULL, "unknown", 0, "<stm structs>", 0 },
{ NULL, "unknown", 0, "int64.int64/0", MR_INT64_WORDS },
{ NULL, "unknown", 0, "uint64.uint64/0", MR_UINT64_WORDS }
};
void
MR_register_alloc_sites(const MR_AllocSiteInfo *alloc_sites, int size)
{
size_t bytes;
unsigned id;
int i;
if (attrib_count_table == NULL) {
// We must not use GC allocation here.
attrib_count_table_size = KNOWN_COUNT_TABLE_INITIAL_SIZE;
bytes = attrib_count_table_size * sizeof(MR_AttribCount);
attrib_count_table = MR_malloc(bytes);
memset(attrib_count_table, 0, bytes);
MR_register_alloc_sites(MR_builtin_alloc_sites,
MR_NUM_BUILTIN_ALLOC_SITES);
}
for (i = 0; i < size; i++) {
// Enlarge the hash table if necessary.
if (attrib_count_table_size > 0 &&
2 * attrib_count_table_used >= attrib_count_table_size)
{
rehash_attrib_count_table();
}
id = attrib_count_table_used + 1;
add_attrib_count_entry(attrib_count_table, attrib_count_table_size,
&attrib_count_table_used, id, &alloc_sites[i]);
}
}
static void
add_attrib_count_entry(MR_AttribCount *table, size_t table_size,
size_t *table_used, unsigned id, const MR_AllocSiteInfo *alloc_site)
{
MR_AttribCount *entry;
unsigned i;
i = hash_addr((MR_Word) alloc_site) & (table_size - 1);
for (;;) {
assert(i < table_size);
entry = &table[i];
if (entry->MR_atc_alloc_site == alloc_site) {
break;
}
if (entry->MR_atc_alloc_site == NULL) {
entry->MR_atc_id = id;
entry->MR_atc_alloc_site = alloc_site;
(*table_used)++;
break;
}
i = (i + 1) & (table_size - 1);
}
}
static void
rehash_attrib_count_table(void)
{
MR_AttribCount *new_table;
size_t new_size;
size_t new_used;
size_t i;
new_size = attrib_count_table_size * 2;
new_table = MR_malloc(new_size * sizeof(MR_AttribCount));
memset(new_table, 0, new_size * sizeof(MR_AttribCount));
new_used = 0;
for (i = 0; i < attrib_count_table_size; i++) {
if (attrib_count_table[i].MR_atc_alloc_site != NULL) {
add_attrib_count_entry(new_table, new_size, &new_used,
attrib_count_table[i].MR_atc_id,
attrib_count_table[i].MR_atc_alloc_site);
}
}
MR_free(attrib_count_table);
attrib_count_table_size = new_size;
attrib_count_table = new_table;
assert(attrib_count_table_used == new_used);
}
// http://www.concentric.net/~ttwang/tech/inthash.htm
static unsigned
hash_addr(MR_Word key)
{
if (sizeof(MR_Word) == 4) {
unsigned c2 = 0x27d4eb2d; // a prime or an odd constant
key = (key ^ 61) ^ (key >> 16);
key = key + (key << 3);
key = key ^ (key >> 4);
key = key * c2;
key = key ^ (key >> 15);
return key;
} else {
key = (~key) + (key << 18);
key = key ^ (key >> 31);
key = key * 21;
key = key ^ (key >> 11);
key = key + (key << 6);
key = key ^ (key >> 22);
return (unsigned) key;
}
}
void
MR_report_memory_attribution(const char *label, MR_bool run_collect)
{
#ifdef MR_BOEHM_GC
#ifndef MR_HIGHLEVEL_CODE
// Clear out the stacks and registers before garbage collecting.
MR_clear_zone_for_GC(MR_CONTEXT(MR_ctxt_detstack_zone), MR_sp + 1);
MR_clear_zone_for_GC(MR_CONTEXT(MR_ctxt_nondetstack_zone),
MR_maxfr + 1);
MR_clear_regs_for_GC();
#endif
if (run_collect) {
GC_gcollect();
}
GC_call_with_alloc_lock(enumerate_reachable_objects_locked, NULL);
finish_reachable_report(label);
#endif
}
static void * GC_CALLBACK enumerate_reachable_objects_locked(void *data)
{
GC_enumerate_reachable_objects_inner(reachable_object_callback, NULL);
return NULL;
}
static GC_CALLBACK void
reachable_object_callback(void *p, size_t bytes, void *data)
{
MR_Word addr;
size_t words = bytes/MR_BYTES_PER_WORD;
addr = ((MR_Word*)p)[0];
if ((void *) addr == MR_ALLOC_SITE_RUNTIME) {
increment_var_size_count(&runtime_count_tree, words);
return;
}
if (addr == (MR_Word) NULL ||
!increment_attrib_count(addr, words))
{
increment_var_size_count(&unknown_count_tree, words);
}
}
static MR_bool
increment_attrib_count(MR_Word addr, size_t num_words)
{
MR_AttribCount *entry;
MR_Unsigned orig;
MR_Unsigned i;
orig = i = hash_addr(addr) & (attrib_count_table_size - 1);
do {
assert(i < attrib_count_table_size);
entry = &attrib_count_table[i];
if ((MR_Word) entry->MR_atc_alloc_site == addr) {
entry->MR_atc_num_cells++;
entry->MR_atc_num_words += num_words;
return MR_TRUE;
}
if (entry->MR_atc_alloc_site == NULL) {
return MR_FALSE;
}
i = (i + 1) & (attrib_count_table_size - 1);
} while (i != orig);
return MR_FALSE;
}
static void
increment_var_size_count(MR_VarSizeCount **node, size_t words)
{
while (*node != NULL) {
if ((*node)->MR_vsc_size == words) {
(*node)->MR_vsc_count++;
return;
} else if (words < (*node)->MR_vsc_size) {
node = &(*node)->MR_vsc_left;
} else {
node = &(*node)->MR_vsc_right;
}
}
// We must not use GC allocation here.
*node = MR_NEW(MR_VarSizeCount);
(*node)->MR_vsc_size = words;
(*node)->MR_vsc_count = 1;
(*node)->MR_vsc_left = NULL;
(*node)->MR_vsc_right = NULL;
}
static void
finish_reachable_report(const char *label)
{
if (snapshot_file == NULL) {
snapshot_file = MR_checked_fopen(SNAPSHOTS_FILENAME, "create", "w");
}
snapshot_counter++;
fprintf(snapshot_file, "start [%d] %s\n", snapshot_counter, label);
write_attrib_counts(snapshot_file, attrib_count_table,
attrib_count_table_size);
write_var_size_counts(snapshot_file, "runtime", runtime_count_tree);
write_var_size_counts(snapshot_file, "unknown", unknown_count_tree);
fprintf(snapshot_file, "end [%d] %s\n", snapshot_counter, label);
}
static void
write_attrib_counts(FILE *fp, MR_AttribCount *table, size_t table_size)
{
size_t i;
for (i = 0; i < table_size; i++) {
if (table[i].MR_atc_alloc_site != NULL &&
table[i].MR_atc_num_cells != 0)
{
fprintf(fp, "%d %lu %lu\n",
table[i].MR_atc_id,
table[i].MR_atc_num_cells,
table[i].MR_atc_num_words);
table[i].MR_atc_num_cells = 0;
table[i].MR_atc_num_words = 0;
}
}
}
static void
write_var_size_counts(FILE *fp, const char *prefix, MR_VarSizeCount *node)
{
while (node != NULL) {
write_var_size_counts(fp, prefix, node->MR_vsc_left);
if (node->MR_vsc_count != 0) {
fprintf(fp, "%s %ld %ld\n",
prefix,
node->MR_vsc_count,
node->MR_vsc_size);
node->MR_vsc_count = 0;
}
node = node->MR_vsc_right;
}
}
void
MR_finish_prof_snapshots_file(void)
{
FILE *fp;
const MR_AllocSiteInfo *site;
size_t i;
if (!(fp = snapshot_file)) {
return;
}
fprintf(fp, "size_map");
GC_mercury_write_size_map(fp);
fprintf(fp, "\n");
for (i = 0; i < attrib_count_table_size; i++) {
site = attrib_count_table[i].MR_atc_alloc_site;
if (site != NULL) {
fprintf(fp, "%d\t", attrib_count_table[i].MR_atc_id);
fprintf(fp, "%s\t", MR_lookup_entry_or_internal(site->MR_asi_proc));
fprintf(fp, "%s\t", maybe_filename(site->MR_asi_file_name));
fprintf(fp, "%d\t", site->MR_asi_line_number);
fprintf(fp, "%s\t", site->MR_asi_type);
fprintf(fp, "%d\n", site->MR_asi_words);
}
}
MR_checked_fclose(snapshot_file, SNAPSHOTS_FILENAME);
snapshot_file = NULL;
}
static const char *
maybe_filename(const char *s)
{
if (s == NULL || s[0] == '\0') {
return "(unknown)";
} else {
return s;
}
}
#endif // MR_MPROF_PROFILE_MEMORY_ATTRIBUTION
////////////////////////////////////////////////////////////////////////////