Files
mercury/compiler/prog_io_dcg.m
Simon Taylor 5940825cdb Implement syntax for getting and setting fields of constructors.
Estimated hours taken: 70

Implement syntax for getting and setting fields of constructors.

compiler/make_hlds.m:
	Add information about field definitions to the module_info.

	Check that user-defined field access functions for exported
	fields are also exported, otherwise predicates in other modules
	could use a different method to access a field than predicates
	in module defining the field.
	Add a `predicate preds_add_implicit_report_error' to allow that check
	to be performed for functions which are added to the module_info
	by some means other than a `:- func' declaration.

	Parse field access goals and expressions.

	Add predicates `insert_arg_unifications_with_supplied_contexts',
	and `append_arg_unification', which allow more control over
	the contexts given to the added unifications. These are
	useful because the field value for an update is really an
	argument of the inner-most update function call, while the
	input term is an argument of the outer-most function call.

compiler/prog_io_dcg.m:
	Allow DCG goals of the form `:=(DCGArg)', which unifies `DCGArg'
	with the output DCG argument, ignoring the input DCG argument.
	The rationale for this change is that if we have convenient syntax
	for updating parts of a DCG argument, we should also have convenient
	syntax for updating the whole DCG argument.

compiler/typecheck.m:
	Add a default clause for field access functions for which
	the user has supplied type and mode declarations but no
	clauses.

	Typecheck field access function calls.

	Use `io__write_list' to remove some duplication of code
	to write out comma separated lists of error descriptions.

compiler/post_typecheck.m:
	Expand field accessor goals into the equivalent unifications.
	They are expanded inline rather than generating new get and set
	predicates for field name to avoid having to work out how to mode
	the generated predicates.

	Remove an unnecessary goal traversal to qualify function
	calls and constructors. That code is now called from purity.m.

compiler/prog_data.m:
compiler/prog_io.m:
compiler/mercury_to_goedel.m:
compiler/mercury_to_mercury.m:
	Store field names as `sym_name's rather than strings.
	Use a `maybe' type rather than an empty string to designate
	an unlabelled field.

compiler/hlds_data.m:
	Define data structures to hold information about
	the field names visible in a module.

compiler/hlds_module.m:
	Add a field to type module_info to hold information
	about the fields visible in a module.

compiler/hlds_pred.m:
	Add predicates to identify field access function names,
	and to handle the arguments of field access functions.

compiler/make_hlds.m:
compiler/hlds_goal.m:
compiler/modecheck_call.m:
compiler/higher_order.m:
compiler/purity.m:
compiler/polymorphism.m:
compiler/dnf.m:
compiler/cse_detection.m:
compiler/lambda.m:
	Move `create_atomic_unification' from make_hlds.m to hlds_goal.m
	because it is used by several other modules.

compiler/hlds_goal.m:
	Add a version of goal_info_init which takes the context of
	the goal, for use by make_hlds.m.

compiler/type_util.m:
	Add a predicate `type_util__get_type_and_cons_defn' to
	get the hlds_type_defn and hlds_cons_defn for a user-defined
	constructor.

compiler/prog_util.m:
	Add predicates to add and remove prefixes or suffixes
	from the unqualified part of a sym_name.

compiler/prog_out.m:
	Add a predicate to convert a `sym_name/arity' to a string.

compiler/hlds_out.m:
	Add `hlds_out__simple_call_id_to_string' to convert a
	`pred_or_func - sym_name/arity' to a string for use in
	error messages.

compiler/purity.m:
	Thread through the pred_info so that the expansion of field accessor
	goals can add new variables.

compiler/mercury_to_mercury.m:
library/ops.m:
	Reduce precedence of `^/2' for use as a field name separator.

	Add operator `^'/1 to designate which side of the `:=' is
	the field name in a DCG field access goal.

	Add operator `:=/2' for field update expressions.

doc/reference_manual.texi:
	Document the new syntax.

doc/transition_guide.texi:
	Document the new operators.

tests/hard_coded/Mmakefile:
tests/hard_coded/record_syntax.m:
tests/hard_coded/record_syntax.exp:
tests/invalid/Mmakefile:
tests/invalid/record_syntax_errors.m:
tests/invalid/record_syntax_errors.err_exp:
	Test cases.
2000-01-13 06:19:43 +00:00

460 lines
16 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_dcg.m.
% Main authors: fjh, zs.
%
% This module handles the parsing of clauses in Definite Clause Grammar
% notation.
:- module prog_io_dcg.
:- interface.
:- import_module prog_data, prog_io_util.
:- import_module varset, term.
:- pred parse_dcg_clause(module_name, varset, term, term,
prog_context, maybe_item_and_context).
:- mode parse_dcg_clause(in, in, in, in, in, out) is det.
% parse_dcg_pred_goal(GoalTerm, VarSet0, Goal,
% DCGVarInitial, DCGVarFinal, Varset)
% parses `GoalTerm' and expands it as a DCG goal,
% `VarSet0' is the initial varset, and `VarSet' is
% the final varset. `DCGVarInitial' is the first DCG variable,
% and `DCGVarFinal' is the final DCG variable.
:- pred parse_dcg_pred_goal(term, prog_varset, goal, prog_var,
prog_var, prog_varset).
:- mode parse_dcg_pred_goal(in, in, out, out, out, out) is det.
:- implementation.
:- import_module prog_io, prog_io_goal, prog_util, purity.
:- import_module int, map, string, std_util, list.
%-----------------------------------------------------------------------------%
parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context,
Result) :-
varset__coerce(VarSet0, ProgVarSet0),
new_dcg_var(ProgVarSet0, 0, ProgVarSet1, N0, DCG_0_Var),
parse_dcg_goal(DCG_Body, ProgVarSet1, N0, DCG_0_Var,
Body, ProgVarSet, _N, DCG_Var),
parse_implicitly_qualified_term(ModuleName,
DCG_Head, DCG_Body, "DCG clause head", HeadResult),
process_dcg_clause(HeadResult, ProgVarSet, DCG_0_Var, DCG_Var,
Body, R),
add_context(R, DCG_Context, Result).
%-----------------------------------------------------------------------------%
parse_dcg_pred_goal(GoalTerm, VarSet0, Goal, DCGVar0, DCGVar, VarSet) :-
new_dcg_var(VarSet0, 0, VarSet1, N0, DCGVar0),
parse_dcg_goal(GoalTerm, VarSet1, N0, DCGVar0,
Goal, VarSet, _N, DCGVar).
%-----------------------------------------------------------------------------%
% Used to allocate fresh variables needed for the DCG expansion.
:- pred new_dcg_var(prog_varset, int, prog_varset, int, prog_var).
:- mode new_dcg_var(in, in, out, out, out) is det.
new_dcg_var(VarSet0, N0, VarSet, N, DCG_0_Var) :-
string__int_to_string(N0, StringN),
string__append("DCG_", StringN, VarName),
varset__new_var(VarSet0, DCG_0_Var, VarSet1),
varset__name_var(VarSet1, DCG_0_Var, VarName, VarSet),
N is N0 + 1.
%-----------------------------------------------------------------------------%
% Expand a DCG goal.
:- pred parse_dcg_goal(term, prog_varset, int, prog_var, goal,
prog_varset, int, prog_var).
:- mode parse_dcg_goal(in, in, in, in, out, out, out, out) is det.
parse_dcg_goal(Term, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
% first, figure out the context for the goal
(
Term = term__functor(_, _, Context)
;
Term = term__variable(_),
term__context_init(Context)
),
% next, parse it
(
term__coerce(Term, ProgTerm),
sym_name_and_args(ProgTerm, SymName, Args0)
->
% First check for the special cases:
(
SymName = unqualified(Functor),
list__map(term__coerce, Args0, Args1),
parse_dcg_goal_2(Functor, Args1, Context,
VarSet0, N0, Var0, Goal1, VarSet1, N1, Var1)
->
Goal = Goal1,
VarSet = VarSet1,
N = N1,
Var = Var1
;
% It's the ordinary case of non-terminal.
% Create a fresh var as the DCG output var from this
% goal, and append the DCG argument pair to the
% non-terminal's argument list.
new_dcg_var(VarSet0, N0, VarSet, N, Var),
list__append(Args0,
[term__variable(Var0),
term__variable(Var)], Args),
Goal = call(SymName, Args, pure) - Context
)
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/3 - the typechecker
% will catch calls to numbers and strings.
new_dcg_var(VarSet0, N0, VarSet, N, Var),
term__coerce(Term, ProgTerm),
Goal = call(unqualified("call"), [ProgTerm,
term__variable(Var0), term__variable(Var)],
pure) - Context
).
% parse_dcg_goal_2(Functor, Args, Context, VarSet0, N0, Var0,
% Goal, VarSet, N, Var):
% VarSet0/VarSet are an accumulator pair which we use to
% allocate fresh DCG variables; N0 and N are an accumulator pair
% we use to keep track of the number to give to the next DCG
% variable (so that we can give it a semi-meaningful name "DCG_<N>"
% for use in error messages, debugging, etc.).
% Var0 and Var are an accumulator pair we use to keep track of
% the current DCG variable.
:- pred parse_dcg_goal_2(string, list(term), prog_context, prog_varset,
int, prog_var, goal, prog_varset, int, prog_var).
:- mode parse_dcg_goal_2(in, in, in, in, in, in, out, out, out, out)
is semidet.
% Ordinary goal inside { curly braces }.
parse_dcg_goal_2("{}", [G], _, VarSet0, N, Var, Goal, VarSet, N, Var) :-
parse_goal(G, VarSet0, Goal, VarSet).
parse_dcg_goal_2("impure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (impure),
Goal, VarSet, N, Var).
parse_dcg_goal_2("semipure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N,
Var) :-
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (semipure),
Goal, VarSet, N, Var).
% Empty list - just unify the input and output DCG args.
parse_dcg_goal_2("[]", [], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
new_dcg_var(VarSet0, N0, VarSet, N, Var),
Goal = unify(term__variable(Var0), term__variable(Var)) - Context.
% Non-empty list of terminals. Append the DCG output arg
% as the new tail of the list, and unify the result with
% the DCG input arg.
parse_dcg_goal_2(".", [X, Xs], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
new_dcg_var(VarSet0, N0, VarSet, N, Var),
ConsTerm0 = term__functor(term__atom("."), [X, Xs], Context),
term__coerce(ConsTerm0, ConsTerm),
term_list_append_term(ConsTerm, term__variable(Var), Term),
Goal = unify(term__variable(Var0), Term) - Context.
% Call to '='/1 - unify argument with DCG input arg.
parse_dcg_goal_2("=", [A0], Context, VarSet, N, Var, Goal, VarSet, N, Var) :-
term__coerce(A0, A),
Goal = unify(A, term__variable(Var)) - Context.
% Call to ':='/1 - unify argument with DCG output arg.
parse_dcg_goal_2(":=", [A0], Context, VarSet0, N0, _Var0,
Goal, VarSet, N, Var) :-
new_dcg_var(VarSet0, N0, VarSet, N, Var),
term__coerce(A0, A),
Goal = unify(A, term__variable(Var)) - Context.
% If-then (Prolog syntax).
% We need to add an else part to unify the DCG args.
/******
Since (A -> B) has different semantics in standard Prolog
(A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
for the moment we'll just disallow it.
parse_dcg_goal_2("->", [Cond0, Then0], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, Cond, Then, VarSet, N, Var),
( Var = Var0 ->
Goal = if_then(SomeVars, Cond, Then) - Context
;
Unify = unify(term__variable(Var), term__variable(Var0)),
Goal = if_then_else(SomeVars, Cond, Then, Unify - Context)
- Context
).
******/
% If-then (NU-Prolog syntax).
parse_dcg_goal_2("if", [
term__functor(term__atom("then"), [Cond0, Then0], _)
], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, Cond, Then, VarSet, N, Var),
( Var = Var0 ->
Goal = if_then(SomeVars, Cond, Then) - Context
;
Unify = unify(term__variable(Var), term__variable(Var0)),
Goal = if_then_else(SomeVars, Cond, Then, Unify - Context)
- Context
).
% Conjunction.
parse_dcg_goal_2(",", [A0, B0], Context, VarSet0, N0, Var0,
(A, B) - Context, VarSet, N, Var) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
parse_dcg_goal_2("&", [A0, B0], Context, VarSet0, N0, Var0,
(A & B) - Context, VarSet, N, Var) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
% Disjunction or if-then-else (Prolog syntax).
parse_dcg_goal_2(";", [A0, B0], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
(
A0 = term__functor(term__atom("->"), [Cond0, Then0], _Context)
->
parse_dcg_if_then_else(Cond0, Then0, B0, Context,
VarSet0, N0, Var0, Goal, VarSet, N, Var)
;
parse_dcg_goal(A0, VarSet0, N0, Var0,
A1, VarSet1, N1, VarA),
parse_dcg_goal(B0, VarSet1, N1, Var0,
B1, VarSet, N, VarB),
( VarA = Var0, VarB = Var0 ->
Var = Var0,
Goal = (A1 ; B1) - Context
; VarA = Var0 ->
Var = VarB,
Unify = unify(term__variable(Var),
term__variable(VarA)),
append_to_disjunct(A1, Unify, Context, A2),
Goal = (A2 ; B1) - Context
; VarB = Var0 ->
Var = VarA,
Unify = unify(term__variable(Var),
term__variable(VarB)),
append_to_disjunct(B1, Unify, Context, B2),
Goal = (A1 ; B2) - Context
;
Var = VarB,
prog_util__rename_in_goal(A1, VarA, VarB, A2),
Goal = (A2 ; B1) - Context
)
).
% If-then-else (NU-Prolog syntax).
parse_dcg_goal_2( "else", [
term__functor(term__atom("if"), [
term__functor(term__atom("then"), [Cond0, Then0], _)
], Context),
Else0
], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
parse_dcg_if_then_else(Cond0, Then0, Else0, Context,
VarSet0, N0, Var0, Goal, VarSet, N, Var).
% Negation (NU-Prolog syntax).
parse_dcg_goal_2( "not", [A0], Context, VarSet0, N0, Var0,
not(A) - Context, VarSet, N, Var ) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
Var = Var0.
% Negation (Prolog syntax).
parse_dcg_goal_2( "\\+", [A0], Context, VarSet0, N0, Var0,
not(A) - Context, VarSet, N, Var ) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
Var = Var0.
% Universal quantification.
parse_dcg_goal_2("all", [Vars0, A0], Context,
VarSet0, N0, Var0, all(Vars, A) - Context,
VarSet, N, Var) :-
term__coerce(Vars0, Vars1),
term__vars(Vars1, Vars),
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var).
% Existential quantification.
parse_dcg_goal_2("some", [Vars0, A0], Context,
VarSet0, N0, Var0, some(Vars, A) - Context,
VarSet, N, Var) :-
term__coerce(Vars0, Vars1),
term__vars(Vars1, Vars),
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var).
:- pred parse_dcg_goal_with_purity(term, prog_varset, int, prog_var,
purity, goal, prog_varset, int, prog_var).
:- mode parse_dcg_goal_with_purity(in, in, in, in, in, out, out, out, out)
is det.
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, Purity, Goal, VarSet,
N, Var) :-
parse_dcg_goal(G, VarSet0, N0, Var0, Goal1, VarSet, N, Var),
( Goal1 = call(Pred, Args, pure) - Context ->
Goal = call(Pred, Args, Purity) - Context
;
% Inappropriate placement of an impurity marker, so we treat
% it like a predicate call. typecheck.m prints out something
% descriptive for these errors.
Goal1 = _ - Context,
purity_name(Purity, PurityString),
term__coerce(G, G1),
Goal = call(unqualified(PurityString), [G1], pure) - Context
).
:- pred append_to_disjunct(goal, goal_expr, prog_context, goal).
:- mode append_to_disjunct(in, in, in, out) is det.
append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :-
( Disjunct0 = (A0 ; B0) - Context2 ->
append_to_disjunct(A0, Goal, Context, A),
append_to_disjunct(B0, Goal, Context, B),
Disjunct = (A ; B) - Context2
;
Disjunct = (Disjunct0, Goal - Context) - Context
).
:- pred parse_some_vars_dcg_goal(term, list(prog_var), prog_varset,
int, prog_var, goal, prog_varset, int, prog_var).
:- mode parse_some_vars_dcg_goal(in, out, in, in, in, out, out, out, out)
is det.
parse_some_vars_dcg_goal(A0, SomeVars, VarSet0, N0, Var0,
A, VarSet, N, Var) :-
( A0 = term__functor(term__atom("some"), [SomeVars0, A1], _Context) ->
term__coerce(SomeVars0, SomeVars1),
term__vars(SomeVars1, SomeVars),
A2 = A1
;
SomeVars = [],
A2 = A0
),
parse_dcg_goal(A2, VarSet0, N0, Var0, A, VarSet, N, Var).
% Parse the "if" and the "then" part of an if-then or an
% if-then-else.
% If the condition is a DCG goal, but then "then" part
% is not, then we need to translate
% ( a -> { b } ; c )
% as
% ( a(DCG_1, DCG_2) ->
% b,
% DCG_3 = DCG_2
% ;
% c(DCG_1, DCG_3)
% )
% rather than
% ( a(DCG_1, DCG_2) ->
% b
% ;
% c(DCG_1, DCG_2)
% )
% so that the implicit quantification of DCG_2 is correct.
:- pred parse_dcg_if_then(term, term, prog_context, prog_varset, int,
prog_var, list(prog_var), goal, goal, prog_varset, int,
prog_var).
:- mode parse_dcg_if_then(in, in, in, in, in, in, out, out, out, out, out,
out) is det.
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, Cond, Then, VarSet, N, Var) :-
parse_some_vars_dcg_goal(Cond0, SomeVars, VarSet0, N0, Var0,
Cond, VarSet1, N1, Var1),
parse_dcg_goal(Then0, VarSet1, N1, Var1, Then1, VarSet2, N2,
Var2),
( Var0 \= Var1, Var1 = Var2 ->
new_dcg_var(VarSet2, N2, VarSet, N, Var),
Unify = unify(term__variable(Var), term__variable(Var2)),
Then = (Then1, Unify - Context) - Context
;
Then = Then1,
N = N2,
Var = Var2,
VarSet = VarSet2
).
:- pred parse_dcg_if_then_else(term, term, term, prog_context,
prog_varset, int, prog_var, goal, prog_varset, int, prog_var).
:- mode parse_dcg_if_then_else(in, in, in, in, in, in, in,
out, out, out, out) is det.
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, Cond, Then1, VarSet1, N1, VarThen),
parse_dcg_goal(Else0, VarSet1, N1, Var0, Else1, VarSet, N,
VarElse),
( VarThen = Var0, VarElse = Var0 ->
Var = Var0,
Then = Then1,
Else = Else1
; VarThen = Var0 ->
Var = VarElse,
Unify = unify(term__variable(Var), term__variable(VarThen)),
Then = (Then1, Unify - Context) - Context,
Else = Else1
; VarElse = Var0 ->
Var = VarThen,
Then = Then1,
Unify = unify(term__variable(Var), term__variable(VarElse)),
Else = (Else1, Unify - Context) - Context
;
% We prefer to substitute the then part since it is likely
% to be smaller than the else part, since the else part may
% have a deeply nested chain of if-then-elses.
% parse_dcg_if_then guarantees that if VarThen \= Var0,
% then the then part introduces a new DCG variable (i.e.
% VarThen does not appear in the condition). We therefore
% don't need to do the substitution in the condition.
Var = VarElse,
prog_util__rename_in_goal(Then1, VarThen, VarElse, Then),
Else = Else1
),
Goal = if_then_else(SomeVars, Cond, Then, Else) - Context.
% term_list_append_term(ListTerm, Term, Result):
% if ListTerm is a term representing a proper list,
% this predicate will append the term Term
% onto the end of the list
:- pred term_list_append_term(term(T), term(T), term(T)).
:- mode term_list_append_term(in, in, out) is semidet.
term_list_append_term(List0, Term, List) :-
( List0 = term__functor(term__atom("[]"), [], _Context) ->
List = Term
;
List0 = term__functor(term__atom("."), [Head, Tail0], Context2),
List = term__functor(term__atom("."), [Head, Tail], Context2),
term_list_append_term(Tail0, Term, Tail)
).
:- pred process_dcg_clause(maybe_functor, prog_varset, prog_var,
prog_var, goal, maybe1(item)).
:- mode process_dcg_clause(in, in, in, in, in, out) is det.
process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body,
ok(pred_clause(VarSet, Name, Args, Body))) :-
list__map(term__coerce, Args0, Args1),
list__append(Args1, [term__variable(Var0),
term__variable(Var)], Args).
process_dcg_clause(error(Message, Term), _, _, _, _, error(Message, Term)).