Files
mercury/compiler/code_util.m
Peter Wang 4c2846593a Make it possible to store double-precision `float' constructor arguments in
Branches: main

Make it possible to store double-precision `float' constructor arguments in
unboxed form, in low-level C grades on 32-bit platforms, i.e. `float' (and
equivalent) arguments may occupy two machine words. However, until we implement
float registers, this does more harm than good so it remains disabled.

compiler/llds.m:
	Add a type `cell_arg' to hold information about an argument of a cell
	being constructed.

	Change `heap_ref' so that we can refer to a pointer with an unknown
	tag.

compiler/unify_gen.m:
	Use the `cell_arg' type to simplify code related to generating
	constructions.

	Handle double word arguments in constructions and deconstructions.

	Update enumeration packing code to account for the presence of double
	width arguments and the `cell_arg' type.

	Take double width arguments into account when generating ground terms.

compiler/code_info.m:
	Extend `assign_field_lval_expr_to_var' to work for expressions
	involving multiple field lvals of the same variable.

	Make `assign_cell_to_var' conform to changes.

compiler/code_util.m:
	Add a predicate to calculate the size of a cell given its cell_args.

compiler/var_locn.m:
	Conform to the use of the `cell_arg' type and the presense of double
	width arguments.

	Calculate cell size correctly in places.

	Move sanity checking from `var_locn_assign_field_lval_expr_to_var'
	to `code_info.assign_field_lval_expr_to_var'.

compiler/global_data.m:
	Make `rval_type_as_arg' take into account the width of the argument.

	Conform to changes.

compiler/c_util.m:
	Add a new binop category.  Unlike the existing macro_binop category,
	the arguments of macros in this category cannot all be assumed to be
	of integral types.

compiler/llds_out_data.m:
compiler/llds_out_instr.m:
	Output calls to the macros `MR_float_word_bits', `MR_float_from_dword'
	and `MR_float_from_dword_ptr' which were introduced previously.

	When a `heap_ref' has an unknown tag, make the generated code mask off
	the tag bits.

compiler/lco.m:
	Disable the optimisation when float arguments are present, on the basis
	of whether Mercury floats are wider than a machine word.  The comments
	about when floats are stored in boxed form are out of date.

compiler/arg_pack.m:
	Rename a predicate.

compiler/make_hlds_passes.m:
	Update a comment.

compiler/disj_gen.m:
compiler/exprn_aux.m:
compiler/global_data.m:
compiler/llds_to_x86_64.m:
compiler/lookup_switch.m:
compiler/mlds_to_c.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/stack_layout.m:
compiler/string_switch.m:
	Conform to changes.

runtime/mercury_float.h:
	Add a cast to `MR_float_word_bits' to avoid a gcc error.

tests/hard_coded/Mercury.options:
tests/hard_coded/Mmakefile:
tests/hard_coded/heap_ref_mask_tag.exp:
tests/hard_coded/heap_ref_mask_tag.m:
tests/hard_coded/reuse_double.exp:
tests/hard_coded/reuse_double.m:
	Add test cases.

tests/hard_coded/lookup_disj.exp:
tests/hard_coded/lookup_disj.m:
	Extend existing test case.
2011-09-16 07:03:36 +00:00

436 lines
15 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2011 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: code_util.m.
%
% Various utilities routines for code generation and recognition of builtins.
%
%-----------------------------------------------------------------------------%
:- module ll_backend.code_util.
:- interface.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_llds.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_rtti.
:- import_module ll_backend.llds.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module maybe.
:- import_module pair.
%-----------------------------------------------------------------------------%
% Create a code address which holds the address of the specified procedure.
% The `immed' argument should be `no' if the the caller wants the returned
% address to be valid from everywhere in the program. If being valid from
% within the current procedure is enough, this argument should be `yes'
% wrapped around the value of the --procs-per-c-function option and the
% current procedure id. Using an address that is only valid from within
% the current procedure may make jumps more efficient.
%
:- type immed == maybe(pair(int, pred_proc_id)).
:- func make_entry_label(module_info, pred_id, proc_id, immed) = code_addr.
:- func make_entry_label_from_rtti(rtti_proc_label, immed) = code_addr.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation time).
% The fourth argument has the same meaning as for make_entry_label.
%
:- func make_local_entry_label(module_info, pred_id, proc_id, immed) = label.
% Create a label internal to a Mercury procedure.
%
:- func make_internal_label(module_info, pred_id, proc_id, int) = label.
:- func extract_proc_label_from_code_addr(code_addr) = proc_label.
:- pred arg_loc_to_register(arg_loc::in, lval::out) is det.
:- pred max_mentioned_reg(list(lval)::in, int::out) is det.
:- pred max_mentioned_abs_reg(list(abs_locn)::in, int::out) is det.
:- pred goal_may_alloc_temp_frame(hlds_goal::in, bool::out) is det.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
%
:- pred neg_rval(rval::in, rval::out) is det.
:- pred negate_the_test(list(instruction)::in, list(instruction)::out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
%
:- func lvals_in_rval(rval) = list(lval).
:- func lvals_in_lval(lval) = list(lval).
:- func lvals_in_lvals(list(lval)) = list(lval).
% Given a procedure that already has its arg_info field filled in,
% return a list giving its input variables and their initial locations.
%
:- pred build_input_arg_list(proc_info::in, assoc_list(prog_var, lval)::out)
is det.
:- func size_of_cell_args(list(cell_arg)) = int.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs.builtin_ops.
:- import_module backend_libs.proc_label.
:- import_module hlds.code_model.
:- import_module int.
:- import_module require.
:- import_module term.
%---------------------------------------------------------------------------%
make_entry_label(ModuleInfo, PredId, ProcId, Immed) = ProcAddr :-
RttiProcLabel = make_rtti_proc_label(ModuleInfo, PredId, ProcId),
ProcAddr = make_entry_label_from_rtti(RttiProcLabel, Immed).
make_entry_label_from_rtti(RttiProcLabel, Immed) = ProcAddr :-
ProcIsImported = RttiProcLabel ^ rpl_proc_is_imported,
(
ProcIsImported = yes,
ProcLabel = make_proc_label_from_rtti(RttiProcLabel),
ProcAddr = code_imported_proc(ProcLabel)
;
ProcIsImported = no,
Label = make_local_entry_label_from_rtti(RttiProcLabel, Immed),
ProcAddr = code_label(Label)
).
make_local_entry_label(ModuleInfo, PredId, ProcId, Immed) = Label :-
RttiProcLabel = make_rtti_proc_label(ModuleInfo, PredId, ProcId),
Label = make_local_entry_label_from_rtti(RttiProcLabel, Immed).
:- func make_local_entry_label_from_rtti(rtti_proc_label, immed) = label.
make_local_entry_label_from_rtti(RttiProcLabel, Immed) = Label :-
ProcLabel = make_proc_label_from_rtti(RttiProcLabel),
(
Immed = no,
% If we want to define the label or use it to put it into a data
% structure, a label that is usable only within the current C module
% won't do.
ProcIsExported = RttiProcLabel ^ rpl_proc_is_exported,
(
ProcIsExported = yes,
EntryType = entry_label_exported
;
ProcIsExported = no,
EntryType = entry_label_local
),
Label = entry_label(EntryType, ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
Label = choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
RttiProcLabel ^ rpl_pred_id, RttiProcLabel ^ rpl_proc_id,
ProcLabel)
).
:- func choose_local_label_type(int, pred_id, proc_id, pred_id, proc_id,
proc_label) = label.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel) = Label :-
(
% If we want to branch to the label now, we prefer a form that is
% usable only within the current C module, since it is likely to be
% faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
EntryType = entry_label_c_local
;
EntryType = entry_label_local
),
Label = entry_label(EntryType, ProcLabel).
%-----------------------------------------------------------------------------%
make_internal_label(ModuleInfo, PredId, ProcId, LabelNum) = Label :-
ProcLabel = make_proc_label(ModuleInfo, PredId, ProcId),
Label = internal_label(LabelNum, ProcLabel).
extract_proc_label_from_code_addr(CodeAddr) = ProcLabel :-
( CodeAddr = code_label(Label) ->
ProcLabel = get_proc_label(Label)
; CodeAddr = code_imported_proc(ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
unexpected($module, $pred, "failed")
).
%-----------------------------------------------------------------------------%
arg_loc_to_register(ArgLoc, reg(reg_r, ArgLoc)).
%-----------------------------------------------------------------------------%
max_mentioned_reg(Lvals, MaxRegNum) :-
max_mentioned_reg_2(Lvals, 0, MaxRegNum).
:- pred max_mentioned_reg_2(list(lval)::in, int::in, int::out) is det.
max_mentioned_reg_2([], !MaxRegNum).
max_mentioned_reg_2([Lval | Lvals], !MaxRegNum) :-
( Lval = reg(reg_r, N) ->
int.max(N, !MaxRegNum)
;
true
),
max_mentioned_reg_2(Lvals, !MaxRegNum).
max_mentioned_abs_reg(Lvals, MaxRegNum) :-
max_mentioned_abs_reg_2(Lvals, 0, MaxRegNum).
:- pred max_mentioned_abs_reg_2(list(abs_locn)::in, int::in, int::out) is det.
max_mentioned_abs_reg_2([], !MaxRegNum).
max_mentioned_abs_reg_2([Lval | Lvals], !MaxRegNum) :-
( Lval = abs_reg(N) ->
int.max(N, !MaxRegNum)
;
true
),
max_mentioned_abs_reg_2(Lvals, !MaxRegNum).
%-----------------------------------------------------------------------------%
goal_may_alloc_temp_frame(hlds_goal(GoalExpr, _GoalInfo), May) :-
goal_may_alloc_temp_frame_2(GoalExpr, May).
:- pred goal_may_alloc_temp_frame_2(hlds_goal_expr::in, bool::out)
is det.
goal_may_alloc_temp_frame_2(generic_call(_, _, _, _), no).
goal_may_alloc_temp_frame_2(plain_call(_, _, _, _, _, _), no).
goal_may_alloc_temp_frame_2(unify(_, _, _, _, _), no).
% We cannot safely say that a foreign code fragment does not allocate
% temporary nondet frames without knowing all the #defined macros
% that expand to mktempframe and variants thereof. The performance
% impact of being too conservative is probably not too bad.
goal_may_alloc_temp_frame_2(call_foreign_proc(_, _, _, _, _, _, _), yes).
goal_may_alloc_temp_frame_2(scope(_, Goal), May) :-
Goal = hlds_goal(_, GoalInfo),
CodeModel = goal_info_get_code_model(GoalInfo),
(
CodeModel = model_non,
May = yes
;
( CodeModel = model_det
; CodeModel = model_semi
),
goal_may_alloc_temp_frame(Goal, May)
).
goal_may_alloc_temp_frame_2(negation(Goal), May) :-
goal_may_alloc_temp_frame(Goal, May).
goal_may_alloc_temp_frame_2(conj(_ConjType, Goals), May) :-
goal_list_may_alloc_temp_frame(Goals, May).
goal_may_alloc_temp_frame_2(disj(Goals), May) :-
goal_list_may_alloc_temp_frame(Goals, May).
goal_may_alloc_temp_frame_2(switch(_Var, _Det, Cases), May) :-
cases_may_alloc_temp_frame(Cases, May).
goal_may_alloc_temp_frame_2(if_then_else(_Vars, C, T, E), May) :-
( goal_may_alloc_temp_frame(C, yes) ->
May = yes
; goal_may_alloc_temp_frame(T, yes) ->
May = yes
;
goal_may_alloc_temp_frame(E, May)
).
goal_may_alloc_temp_frame_2(shorthand(_), _) :-
% These should have been expanded out by now.
unexpected($module, $pred, "shorthand").
:- pred goal_list_may_alloc_temp_frame(list(hlds_goal)::in, bool::out) is det.
goal_list_may_alloc_temp_frame([], no).
goal_list_may_alloc_temp_frame([Goal | Goals], May) :-
( goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
goal_list_may_alloc_temp_frame(Goals, May)
).
:- pred cases_may_alloc_temp_frame(list(case)::in, bool::out) is det.
cases_may_alloc_temp_frame([], no).
cases_may_alloc_temp_frame([case(_, _, Goal) | Cases], May) :-
( goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
cases_may_alloc_temp_frame(Cases, May)
).
%-----------------------------------------------------------------------------%
neg_rval(Rval, NegRval) :-
( neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(logical_not, Rval)
).
:- pred neg_rval_2(rval::in, rval::out) is semidet.
neg_rval_2(const(Const), const(NegConst)) :-
(
Const = llconst_true,
NegConst = llconst_false
;
Const = llconst_false,
NegConst = llconst_true
).
neg_rval_2(unop(logical_not, Rval), Rval).
neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
neg_op(Op, NegOp).
:- pred neg_op(binary_op::in, binary_op::out) is semidet.
neg_op(eq, ne).
neg_op(ne, eq).
neg_op(int_lt, int_ge).
neg_op(int_le, int_gt).
neg_op(int_gt, int_le).
neg_op(int_ge, int_lt).
neg_op(str_eq, str_ne).
neg_op(str_ne, str_eq).
neg_op(str_lt, str_ge).
neg_op(str_le, str_gt).
neg_op(str_gt, str_le).
neg_op(str_ge, str_lt).
neg_op(float_eq, float_ne).
neg_op(float_ne, float_eq).
neg_op(float_lt, float_ge).
neg_op(float_le, float_gt).
neg_op(float_gt, float_le).
neg_op(float_ge, float_lt).
negate_the_test([], _) :-
unexpected($module, $pred, "empty list").
negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = llds_instr(if_val(Test, Target), Comment) ->
neg_rval(Test, NewTest),
Instrs = [llds_instr(if_val(NewTest, Target), Comment)]
;
negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
lvals_in_lvals([]) = [].
lvals_in_lvals([First | Rest]) = FirstLvals ++ RestLvals :-
FirstLvals = lvals_in_lval(First),
RestLvals = lvals_in_lvals(Rest).
lvals_in_rval(lval(Lval)) = [Lval | lvals_in_lval(Lval)].
lvals_in_rval(var(_)) = [].
lvals_in_rval(mkword(_, Rval)) = lvals_in_rval(Rval).
lvals_in_rval(const(_)) = [].
lvals_in_rval(unop(_, Rval)) = lvals_in_rval(Rval).
lvals_in_rval(binop(_, Rval1, Rval2)) =
lvals_in_rval(Rval1) ++ lvals_in_rval(Rval2).
lvals_in_rval(mem_addr(MemRef)) = lvals_in_mem_ref(MemRef).
lvals_in_lval(reg(_, _)) = [].
lvals_in_lval(stackvar(_)) = [].
lvals_in_lval(parent_stackvar(_)) = [].
lvals_in_lval(framevar(_)) = [].
lvals_in_lval(succip) = [].
lvals_in_lval(maxfr) = [].
lvals_in_lval(curfr) = [].
lvals_in_lval(succip_slot(Rval)) = lvals_in_rval(Rval).
lvals_in_lval(redofr_slot(Rval)) = lvals_in_rval(Rval).
lvals_in_lval(redoip_slot(Rval)) = lvals_in_rval(Rval).
lvals_in_lval(succfr_slot(Rval)) = lvals_in_rval(Rval).
lvals_in_lval(prevfr_slot(Rval)) = lvals_in_rval(Rval).
lvals_in_lval(hp) = [].
lvals_in_lval(sp) = [].
lvals_in_lval(parent_sp) = [].
lvals_in_lval(field(_, Rval1, Rval2)) =
lvals_in_rval(Rval1) ++ lvals_in_rval(Rval2).
lvals_in_lval(lvar(_)) = [].
lvals_in_lval(temp(_, _)) = [].
lvals_in_lval(mem_ref(Rval)) = lvals_in_rval(Rval).
lvals_in_lval(global_var_ref(_)) = [].
:- func lvals_in_mem_ref(mem_ref) = list(lval).
lvals_in_mem_ref(stackvar_ref(Rval)) = lvals_in_rval(Rval).
lvals_in_mem_ref(framevar_ref(Rval)) = lvals_in_rval(Rval).
lvals_in_mem_ref(heap_ref(Rval1, _, Rval2)) =
lvals_in_rval(Rval1) ++ lvals_in_rval(Rval2).
%-----------------------------------------------------------------------------%
build_input_arg_list(ProcInfo, VarLvals) :-
proc_info_get_headvars(ProcInfo, HeadVars),
proc_info_arg_info(ProcInfo, ArgInfos),
assoc_list.from_corresponding_lists(HeadVars, ArgInfos, VarArgInfos),
build_input_arg_list_2(VarArgInfos, VarLvals).
:- pred build_input_arg_list_2(assoc_list(prog_var, arg_info)::in,
assoc_list(prog_var, lval)::out) is det.
build_input_arg_list_2([], []).
build_input_arg_list_2([V - Arg | Rest0], VarArgs) :-
Arg = arg_info(Loc, Mode),
(
Mode = top_in,
arg_loc_to_register(Loc, Reg),
VarArgs = [V - Reg | VarArgs0]
;
( Mode = top_out
; Mode = top_unused
),
VarArgs = VarArgs0
),
build_input_arg_list_2(Rest0, VarArgs0).
%-----------------------------------------------------------------------------%
size_of_cell_args([]) = 0.
size_of_cell_args([CellArg | CellArgs]) = Size + Sizes :-
(
( CellArg = cell_arg_full_word(_, _)
; CellArg = cell_arg_take_addr(_, _)
; CellArg = cell_arg_skip
),
Size = 1
;
CellArg = cell_arg_double_word(_),
Size = 2
),
Sizes = size_of_cell_args(CellArgs).
%-----------------------------------------------------------------------------%
:- end_module ll_backend.code_util.
%-----------------------------------------------------------------------------%