Files
mercury/compiler/prog_io_util.m
Julien Fischer 2a477fb7e7 Split the parse tree (currently defined in prog_data.m) into two
Estimated hours taken: 3.5
Branches: main

Split the parse tree (currently defined in prog_data.m) into two
separate modules.  The reason for doing this is that while over 80%
of the modules in the compiler import prog_data, very few of them actually
require access to the types that define the parse tree (principally
the item type).  At the moment even small changes to these types can
result in recompiles that rebuild almost all of the compiler.  This change
shifts the item type (and related types) into a new module, prog_item,
that is only imported where these types are required (mostly at the
frontend of the compiler).  This should reduce the size of recompiles
required when the parse tree is modified.

This diff does not change any algorithms; it just shifts things around.

compiler/prog_data.m:
	Move the item type and any related types that are not needed
	after the HLDS has been built to the new prog_item module.

	Fix bitrot in comments.

	Fix formatting and layout of comments.

	Use unexpected/2 in place of error/1 in a spot.

compiler/prog_item.m:
	New file.  This module contains any parts of the parse tree
	that are not needed by the rest of the compiler after the
	HLDS has been built.

compiler/check_typeclass.m:
	s/list(instance_method)/instance_methods/

compiler/equiv_type.m:
compiler/hlds_module.m:
compiler/intermod.m:
compiler/make.module_dep_file.m:
compiler/make_hlds.m:
compiler/mercury_compile.m:
compiler/mercury_to_mercury.m:
compiler/module_qual.m:
compiler/modules.m:
compiler/parse_tree.m:
compiler/prog_io.m:
compiler/prog_io_dcg.m:
compiler/prog_io_goal.m:
compiler/prog_io_pragma.m:
compiler/prog_io_typeclass.m:
compiler/prog_io_util.m:
compiler/prog_out.m:
compiler/prog_util.m:
compiler/recompilation.check.m:
compiler/recompilation.usage.m:
compiler/recompilation.version.m:
compiler/trans_opt.m:
	Conform to the above changes.

compiler/notes/compiler_design.html:
	Mention the new module.
2005-11-23 04:44:10 +00:00

784 lines
28 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_util.m.
% Main author: fjh.
%
% This module defines the types used by prog_io and its subcontractors
% to return the results of parsing, and some utility predicates needed
% by several of prog_io's submodules.
%
% Most parsing predicates must check for errors. They return either the
% item(s) they were looking for, or an error indication.
%
% Most of the parsing predicates return a `maybe1(T)' or a `maybe2(T1, T2)',
% which will either be the `ok(ParseTree)' (or `ok(ParseTree1, ParseTree2)'),
% if the parse is successful, or `error(Message, Term)' if it is not.
% The `Term' there should be the term which is syntactically incorrect.
:- module parse_tree__prog_io_util.
:- interface.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_item.
:- import_module list.
:- import_module map.
:- import_module std_util.
:- import_module term.
:- type maybe2(T1, T2)
---> error(string, term)
; ok(T1, T2).
:- type maybe3(T1, T2, T3)
---> error(string, term)
; ok(T1, T2, T3).
:- type maybe1(T) == maybe1(T, generic).
:- type maybe1(T, U)
---> error(string, term(U))
; ok(T).
:- type maybe_functor == maybe_functor(generic).
:- type maybe_functor(T) == maybe2(sym_name, list(term(T))).
% ok(SymName, Args - MaybeFuncRetArg) ; error(Msg, Term).
:- type maybe_pred_or_func(T) == maybe2(sym_name, pair(list(T), maybe(T))).
:- type maybe_item_and_context == maybe2(item, prog_context).
:- type var2tvar == map(var, tvar).
:- type var2pvar == map(var, prog_var).
:- type parser(T) == pred(term, maybe1(T)).
:- mode parser == (pred(in, out) is det).
:- pred add_context(maybe1(item)::in, prog_context::in,
maybe_item_and_context::out) is det.
% Various predicates to parse small bits of syntax.
% These predicates simply fail if they encounter a syntax error.
:- pred parse_list_of_vars(term(T)::in, list(var(T))::out) is semidet.
% Parse a list of quantified variables, splitting it into
% state variables and ordinary logic variables, respectively.
%
:- pred parse_quantifier_vars(term(T)::in, list(var(T))::out,
list(var(T))::out) is semidet.
% Parse a list of quantified variables.
%
:- pred parse_vars(term(T)::in, list(var(T))::out) is semidet.
% parse_vars_and_state_vars(Term, OrdinaryVars, DotStateVars,
% ColonStateVars):
%
% Similar to parse_vars, but also allow state variables to appear
% in the list. The outputs separate the parsed variables into ordinary
% variables, state variables listed as !.X, and state variables
% listed as !:X.
%
:- pred parse_vars_and_state_vars(term(T)::in, list(var(T))::out,
list(var(T))::out, list(var(T))::out) is semidet.
:- pred parse_name_and_arity(module_name::in, term(_T)::in,
sym_name::out, arity::out) is semidet.
:- pred parse_name_and_arity(term(_T)::in, sym_name::out, arity::out)
is semidet.
:- pred parse_pred_or_func_name_and_arity(module_name::in,
term(_T)::in, pred_or_func::out, sym_name::out, arity::out) is semidet.
:- pred parse_pred_or_func_name_and_arity(term(_T)::in, pred_or_func::out,
sym_name::out, arity::out) is semidet.
:- pred parse_pred_or_func_and_args(maybe(module_name)::in, term(_T)::in,
term(_T)::in, string::in, maybe_pred_or_func(term(_T))::out) is det.
:- pred parse_pred_or_func_and_args(term(_T)::in, pred_or_func::out,
sym_name::out, list(term(_T))::out) is semidet.
:- pred parse_type(term::in, maybe1(mer_type)::out) is det.
:- pred parse_types(list(term)::in, maybe1(list(mer_type))::out) is det.
:- pred unparse_type(mer_type::in, term::out) is det.
:- pred parse_purity_annotation(term(T)::in, purity::out, term(T)::out) is det.
:- type allow_constrained_inst_var
---> allow_constrained_inst_var
; no_allow_constrained_inst_var.
:- pred convert_mode_list(allow_constrained_inst_var::in, list(term)::in,
list(mer_mode)::out) is semidet.
:- pred convert_mode(allow_constrained_inst_var::in, term::in, mer_mode::out)
is semidet.
:- pred convert_inst_list(allow_constrained_inst_var::in, list(term)::in,
list(mer_inst)::out) is semidet.
:- pred convert_inst(allow_constrained_inst_var::in, term::in, mer_inst::out)
is semidet.
:- pred standard_det(string::in, determinism::out) is semidet.
% Convert a "disjunction" (bunch of terms separated by ';'s) to a list.
%
:- pred disjunction_to_list(term(T)::in, list(term(T))::out) is det.
% Convert a "conjunction" (bunch of terms separated by ','s) to a list.
%
:- pred conjunction_to_list(term(T)::in, list(term(T))::out) is det.
% list_to_conjunction(Context, First, Rest, Term):
% Convert a list to a "conjunction" (bunch of terms separated by ','s).
%
:- pred list_to_conjunction(prog_context::in, term(T)::in, list(term(T))::in,
term(T)::out) is det.
% Convert a "sum" (bunch of terms separated by '+' operators) to a list.
%
:- pred sum_to_list(term(T)::in, list(term(T))::out) is det.
% Parse a comma-separated list (misleading described as a "conjunction")
% of things.
%
:- pred parse_list(parser(T)::parser, term::in, maybe1(list(T))::out) is det.
:- pred map_parser(parser(T)::parser, list(term)::in, maybe1(list(T))::out)
is det.
:- pred list_term_to_term_list(term::in, list(term)::out) is semidet.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module parse_tree.prog_io.
:- import_module parse_tree.prog_io_goal.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_util.
:- import_module bool.
:- import_module set.
:- import_module std_util.
:- import_module string.
:- import_module term.
add_context(error(M, T), _, error(M, T)).
add_context(ok(Item), Context, ok(Item, Context)).
parse_name_and_arity(ModuleName, PredAndArityTerm, SymName, Arity) :-
PredAndArityTerm = term__functor(term__atom("/"),
[PredNameTerm, ArityTerm], _),
parse_implicitly_qualified_term(ModuleName,
PredNameTerm, PredNameTerm, "", ok(SymName, [])),
ArityTerm = term__functor(term__integer(Arity), [], _).
parse_name_and_arity(PredAndArityTerm, SymName, Arity) :-
parse_name_and_arity(unqualified(""),
PredAndArityTerm, SymName, Arity).
parse_pred_or_func_name_and_arity(ModuleName, PorFPredAndArityTerm,
PredOrFunc, SymName, Arity) :-
PorFPredAndArityTerm = term__functor(term__atom(PredOrFuncStr), Args, _),
( PredOrFuncStr = "pred", PredOrFunc = predicate
; PredOrFuncStr = "func", PredOrFunc = function
),
Args = [Arg],
parse_name_and_arity(ModuleName, Arg, SymName, Arity).
parse_pred_or_func_name_and_arity(PorFPredAndArityTerm,
PredOrFunc, SymName, Arity) :-
parse_pred_or_func_name_and_arity(unqualified(""),
PorFPredAndArityTerm, PredOrFunc, SymName, Arity).
parse_pred_or_func_and_args(Term, PredOrFunc, SymName, ArgTerms) :-
parse_pred_or_func_and_args(no, Term, Term, "",
ok(SymName, ArgTerms0 - MaybeRetTerm)),
(
MaybeRetTerm = yes(RetTerm),
PredOrFunc = function,
list__append(ArgTerms0, [RetTerm], ArgTerms)
;
MaybeRetTerm = no,
PredOrFunc = predicate,
ArgTerms = ArgTerms0
).
parse_pred_or_func_and_args(MaybeModuleName, PredAndArgsTerm, ErrorTerm,
Msg, PredAndArgsResult) :-
(
PredAndArgsTerm = term__functor(term__atom("="),
[FuncAndArgsTerm, FuncResultTerm], _)
->
FunctorTerm = FuncAndArgsTerm,
MaybeFuncResult = yes(FuncResultTerm)
;
FunctorTerm = PredAndArgsTerm,
MaybeFuncResult = no
),
(
MaybeModuleName = yes(ModuleName),
parse_implicitly_qualified_term(ModuleName, FunctorTerm,
ErrorTerm, Msg, Result)
;
MaybeModuleName = no,
parse_qualified_term(FunctorTerm, ErrorTerm, Msg, Result)
),
(
Result = ok(SymName, Args),
PredAndArgsResult = ok(SymName, Args - MaybeFuncResult)
;
Result = error(ErrorMsg, Term),
PredAndArgsResult = error(ErrorMsg, Term)
).
parse_list_of_vars(term__functor(term__atom("[]"), [], _), []).
parse_list_of_vars(term__functor(term__atom("[|]"), [Head, Tail], _),
[V | Vs]) :-
Head = term__variable(V),
parse_list_of_vars(Tail, Vs).
% XXX kind inference: We currently give all types kind `star'.
% This will be different when we have a kind system.
%
parse_type(Term, Result) :-
(
Term = term__variable(Var0)
->
term__coerce_var(Var0, Var),
Result = ok(variable(Var, star))
;
parse_builtin_type(Term, BuiltinType)
->
Result = ok(builtin(BuiltinType))
;
parse_higher_order_type(Term, HOArgs, MaybeRet, Purity, EvalMethod)
->
Result = ok(higher_order(HOArgs, MaybeRet, Purity, EvalMethod))
;
Term = term__functor(term__atom("{}"), Args, _)
->
parse_types(Args, ArgsResult),
(
ArgsResult = ok(ArgTypes),
Result = ok(tuple(ArgTypes, star))
;
ArgsResult = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
)
;
% We don't support apply/N types yet, so we just detect them
% and report an error message.
Term = term__functor(term__atom(""), _, _)
->
Result = error("ill-formed type", Term)
;
% We don't support kind annotations yet, and we don't report
% an error either. Perhaps we should?
parse_qualified_term(Term, Term, "type", NameResult),
(
NameResult = ok(SymName, ArgTerms),
parse_types(ArgTerms, ArgsResult),
(
ArgsResult = ok(ArgTypes),
Result = ok(defined(SymName, ArgTypes, star))
;
ArgsResult = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
)
;
NameResult = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
)
).
parse_types(Terms, Result) :-
parse_types_2(Terms, [], Result).
:- pred parse_types_2(list(term)::in, list(mer_type)::in,
maybe1(list(mer_type))::out) is det.
parse_types_2([], RevTypes, ok(Types)) :-
list__reverse(RevTypes, Types).
parse_types_2([Term | Terms], RevTypes, Result) :-
parse_type(Term, Result0),
(
Result0 = ok(Type),
parse_types_2(Terms, [Type | RevTypes], Result)
;
Result0 = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
).
:- pred parse_builtin_type(term::in, builtin_type::out) is semidet.
parse_builtin_type(Term, BuiltinType) :-
Term = term__functor(term__atom(Name), [], _),
builtin_type_to_string(BuiltinType, Name).
% If there are any ill-formed types in the argument then we just fail.
% The predicate parse_type will then try to parse the term as an ordinary
% defined type and will produce the required error message.
%
:- pred parse_higher_order_type(term::in, list(mer_type)::out,
maybe(mer_type)::out, purity::out, lambda_eval_method::out) is semidet.
parse_higher_order_type(Term0, ArgTypes, MaybeRet, Purity, EvalMethod) :-
parse_purity_annotation(Term0, Purity, Term1),
( Term1 = term__functor(term__atom("="), [FuncAndArgs0, Ret], _) ->
parse_lambda_eval_method(FuncAndArgs0, EvalMethod, FuncAndArgs),
FuncAndArgs = term__functor(term__atom("func"), Args, _),
parse_type(Ret, ok(RetType)),
MaybeRet = yes(RetType)
;
parse_lambda_eval_method(Term1, EvalMethod, PredTerm),
PredTerm = term__functor(term__atom("pred"), Args, _),
MaybeRet = no
),
parse_types(Args, ok(ArgTypes)).
parse_purity_annotation(Term0, Purity, Term) :-
(
Term0 = term__functor(term__atom(PurityName), [Term1], _),
purity_name(Purity0, PurityName)
->
Purity = Purity0,
Term = Term1
;
Purity = purity_pure,
Term = Term0
).
unparse_type(variable(TVar, _), term__variable(Var)) :-
Var = term__coerce_var(TVar).
unparse_type(defined(SymName, Args, _), Term) :-
unparse_type_list(Args, ArgTerms),
unparse_qualified_term(SymName, ArgTerms, Term).
unparse_type(builtin(BuiltinType), Term) :-
Context = term__context_init,
builtin_type_to_string(BuiltinType, Name),
Term = term__functor(term__atom(Name), [], Context).
unparse_type(higher_order(Args, MaybeRet, Purity, EvalMethod), Term) :-
Context = term__context_init,
unparse_type_list(Args, ArgTerms),
(
MaybeRet = yes(Ret),
Term0 = term__functor(term__atom("func"), ArgTerms, Context),
maybe_add_lambda_eval_method(EvalMethod, Term0, Term1),
unparse_type(Ret, RetTerm),
Term2 = term__functor(term__atom("="), [Term1, RetTerm], Context)
;
MaybeRet = no,
Term0 = term__functor(term__atom("pred"), ArgTerms, Context),
maybe_add_lambda_eval_method(EvalMethod, Term0, Term2)
),
maybe_add_purity_annotation(Purity, Term2, Term).
unparse_type(tuple(Args, _), Term) :-
Context = term__context_init,
unparse_type_list(Args, ArgTerms),
Term = term__functor(term__atom("{}"), ArgTerms, Context).
unparse_type(apply_n(TVar, Args, _), Term) :-
Context = term__context_init,
Var = term__coerce_var(TVar),
unparse_type_list(Args, ArgTerms),
Term = term__functor(term__atom(""), [term__variable(Var) | ArgTerms],
Context).
unparse_type(kinded(_, _), _) :-
unexpected(this_file, "prog_io_util: kind annotation").
:- pred unparse_type_list(list(mer_type)::in, list(term)::out) is det.
unparse_type_list(Types, Terms) :-
list__map(unparse_type, Types, Terms).
:- pred unparse_qualified_term(sym_name::in, list(term)::in, term::out) is det.
unparse_qualified_term(unqualified(Name), Args, Term) :-
Context = term__context_init,
Term = term__functor(term__atom(Name), Args, Context).
unparse_qualified_term(qualified(Qualifier, Name), Args, Term) :-
Context = term__context_init,
unparse_qualified_term(Qualifier, [], QualTerm),
Term0 = term__functor(term__atom(Name), Args, Context),
Term = term__functor(term__atom("."), [QualTerm, Term0], Context).
:- pred maybe_add_lambda_eval_method(lambda_eval_method::in, term::in,
term::out) is det.
maybe_add_lambda_eval_method(lambda_normal, Term, Term).
maybe_add_lambda_eval_method(lambda_aditi_bottom_up, Term0, Term) :-
Context = term__context_init,
Term = term__functor(term__atom("aditi_bottom_up"), [Term0], Context).
:- pred maybe_add_purity_annotation(purity::in, term::in, term::out) is det.
maybe_add_purity_annotation(purity_pure, Term, Term).
maybe_add_purity_annotation(purity_semipure, Term0, Term) :-
Context = term__context_init,
Term = term__functor(term__atom("semipure"), [Term0], Context).
maybe_add_purity_annotation(purity_impure, Term0, Term) :-
Context = term__context_init,
Term = term__functor(term__atom("impure"), [Term0], Context).
convert_mode_list(_, [], []).
convert_mode_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_mode(AllowConstrainedInstVar, H0, H),
convert_mode_list(AllowConstrainedInstVar, T0, T).
convert_mode(AllowConstrainedInstVar, Term, Mode) :-
(
Term = term__functor(term__atom(">>"), [InstA, InstB], _)
->
convert_inst(AllowConstrainedInstVar, InstA, ConvertedInstA),
convert_inst(AllowConstrainedInstVar, InstB, ConvertedInstB),
Mode = (ConvertedInstA -> ConvertedInstB)
;
% Handle higher-order predicate modes:
% a mode of the form
% pred(<Mode1>, <Mode2>, ...) is <Det>
% is an abbreviation for the inst mapping
% ( pred(<Mode1>, <Mode2>, ...) is <Det>
% -> pred(<Mode1>, <Mode2>, ...) is <Det>
% )
Term = term__functor(term__atom("is"), [PredTerm, DetTerm], _),
PredTerm = term__functor(term__atom("pred"), ArgModesTerms, _)
->
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes),
PredInstInfo = pred_inst_info(predicate, ArgModes, Detism),
Inst = ground(shared, higher_order(PredInstInfo)),
Mode = (Inst -> Inst)
;
% Handle higher-order function modes:
% a mode of the form
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% is an abbreviation for the inst mapping
% ( func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% -> func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% )
Term = term__functor(term__atom("is"), [EqTerm, DetTerm], _),
EqTerm = term__functor(term__atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term__functor(term__atom("func"), ArgModesTerms, _)
->
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list__append(ArgModes0, [RetMode], ArgModes),
FuncInstInfo = pred_inst_info(function, ArgModes, Detism),
Inst = ground(shared, higher_order(FuncInstInfo)),
Mode = (Inst -> Inst)
;
parse_qualified_term(Term, Term, "mode definition", R),
R = ok(Name, Args), % should improve error reporting
convert_inst_list(AllowConstrainedInstVar, Args, ConvertedArgs),
Mode = user_defined_mode(Name, ConvertedArgs)
).
convert_inst_list(_, [], []).
convert_inst_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_inst(AllowConstrainedInstVar, H0, H),
convert_inst_list(AllowConstrainedInstVar, T0, T).
convert_inst(_, term__variable(V0), inst_var(V)) :-
term__coerce_var(V0, V).
convert_inst(AllowConstrainedInstVar, Term, Result) :-
Term = term__functor(term__atom(Name), Args0, _Context),
(
convert_simple_builtin_inst(Name, Args0, Result0)
->
Result = Result0
;
% The syntax for a higher-order pred inst is
%
% pred(<Mode1>, <Mode2>, ...) is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% and <Detism> is a determinism.
Name = "is", Args0 = [PredTerm, DetTerm],
PredTerm = term__functor(term__atom("pred"), ArgModesTerm, _)
->
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes),
PredInst = pred_inst_info(predicate, ArgModes, Detism),
Result = ground(shared, higher_order(PredInst))
;
% The syntax for a higher-order func inst is
%
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% <RetMode> is a mode, and <Detism> is a determinism.
Name = "is", Args0 = [EqTerm, DetTerm],
EqTerm = term__functor(term__atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term__functor(term__atom("func"), ArgModesTerm, _)
->
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list__append(ArgModes0, [RetMode], ArgModes),
FuncInst = pred_inst_info(function, ArgModes, Detism),
Result = ground(shared, higher_order(FuncInst))
; Name = "bound", Args0 = [Disj] ->
% `bound' insts
parse_bound_inst_list(AllowConstrainedInstVar, Disj, shared, Result)
; Name = "bound_unique", Args0 = [Disj] ->
% `bound_unique' is for backwards compatibility - use `unique' instead.
parse_bound_inst_list(AllowConstrainedInstVar, Disj, unique, Result)
; Name = "unique", Args0 = [Disj] ->
parse_bound_inst_list(AllowConstrainedInstVar, Disj, unique, Result)
; Name = "mostly_unique", Args0 = [Disj] ->
parse_bound_inst_list(AllowConstrainedInstVar, Disj, mostly_unique,
Result)
; Name = "=<", Args0 = [VarTerm, InstTerm] ->
AllowConstrainedInstVar = allow_constrained_inst_var,
VarTerm = term__variable(Var),
% Do not allow nested constrained_inst_vars.
convert_inst(no_allow_constrained_inst_var, InstTerm, Inst),
Result = constrained_inst_vars(set__make_singleton_set(
term__coerce_var(Var)), Inst)
;
% Anything else must be a user-defined inst.
parse_qualified_term(Term, Term, "inst", ok(QualifiedName, Args1)),
(
mercury_public_builtin_module(BuiltinModule),
sym_name_get_module_name(QualifiedName, unqualified(""),
BuiltinModule),
% If the term is qualified with the `builtin' module
% then it may be one of the simple builtin insts.
% We call convert_inst recursively to check for this.
unqualify_name(QualifiedName, UnqualifiedName),
convert_simple_builtin_inst(UnqualifiedName, Args1, Result0),
% However, if the inst is a user_inst defined inside
% the `builtin' module then we need to make sure it is
% properly module-qualified.
Result0 \= defined_inst(user_inst(_, _))
->
Result = Result0
;
convert_inst_list(AllowConstrainedInstVar, Args1, Args),
Result = defined_inst(user_inst(QualifiedName, Args))
)
).
% A "simple" builtin inst is one that has no arguments and no special
% syntax.
%
:- pred convert_simple_builtin_inst(string::in, list(term)::in, mer_inst::out)
is semidet.
convert_simple_builtin_inst(Name, [], Inst) :-
convert_simple_builtin_inst_2(Name, Inst).
:- pred convert_simple_builtin_inst_2(string::in, mer_inst::out) is semidet.
% `free' insts
convert_simple_builtin_inst_2("free", free).
% `any' insts
convert_simple_builtin_inst_2("any", any(shared)).
convert_simple_builtin_inst_2("unique_any", any(unique)).
convert_simple_builtin_inst_2("mostly_unique_any", any(mostly_unique)).
convert_simple_builtin_inst_2("clobbered_any", any(clobbered)).
convert_simple_builtin_inst_2("mostly_clobbered_any", any(mostly_clobbered)).
% `ground' insts
convert_simple_builtin_inst_2("ground", ground(shared, none)).
convert_simple_builtin_inst_2("unique", ground(unique, none)).
convert_simple_builtin_inst_2("mostly_unique", ground(mostly_unique, none)).
convert_simple_builtin_inst_2("clobbered", ground(clobbered, none)).
convert_simple_builtin_inst_2("mostly_clobbered",
ground(mostly_clobbered, none)).
% `not_reached' inst
convert_simple_builtin_inst_2("not_reached", not_reached).
standard_det("det", det).
standard_det("cc_nondet", cc_nondet).
standard_det("cc_multi", cc_multidet).
standard_det("nondet", nondet).
standard_det("multi", multidet).
standard_det("multidet", multidet).
standard_det("semidet", semidet).
standard_det("erroneous", erroneous).
standard_det("failure", failure).
:- pred parse_bound_inst_list(allow_constrained_inst_var::in, term::in,
uniqueness::in, mer_inst::out) is semidet.
parse_bound_inst_list(AllowConstrainedInstVar, Disj, Uniqueness,
bound(Uniqueness, Functors)) :-
disjunction_to_list(Disj, List),
convert_bound_inst_list(AllowConstrainedInstVar, List, Functors0),
list__sort(Functors0, Functors),
% Check that the list doesn't specify the same functor twice.
\+ (
list__append(_, SubList, Functors),
SubList = [F1, F2 | _],
F1 = functor(ConsId, _),
F2 = functor(ConsId, _)
).
:- pred convert_bound_inst_list(allow_constrained_inst_var::in, list(term)::in,
list(bound_inst)::out) is semidet.
convert_bound_inst_list(_, [], []).
convert_bound_inst_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_bound_inst(AllowConstrainedInstVar, H0, H),
convert_bound_inst_list(AllowConstrainedInstVar, T0, T).
:- pred convert_bound_inst(allow_constrained_inst_var::in, term::in,
bound_inst::out) is semidet.
convert_bound_inst(AllowConstrainedInstVar, InstTerm, functor(ConsId, Args)) :-
InstTerm = term__functor(Functor, Args0, _),
( Functor = term__atom(_) ->
parse_qualified_term(InstTerm, InstTerm, "inst", ok(SymName, Args1)),
list__length(Args1, Arity),
ConsId = cons(SymName, Arity)
;
Args1 = Args0,
list__length(Args1, Arity),
ConsId = make_functor_cons_id(Functor, Arity)
),
convert_inst_list(AllowConstrainedInstVar, Args1, Args).
disjunction_to_list(Term, List) :-
binop_term_to_list(";", Term, List).
conjunction_to_list(Term, List) :-
binop_term_to_list(",", Term, List).
list_to_conjunction(_, Term, [], Term).
list_to_conjunction(Context, First, [Second | Rest], Term) :-
list_to_conjunction(Context, Second, Rest, Tail),
Term = term__functor(term__atom(","), [First, Tail], Context).
sum_to_list(Term, List) :-
binop_term_to_list("+", Term, List).
% general predicate to convert terms separated by any specified
% operator into a list
:- pred binop_term_to_list(string::in, term(T)::in, list(term(T))::out) is det.
binop_term_to_list(Op, Term, List) :-
binop_term_to_list_2(Op, Term, [], List).
:- pred binop_term_to_list_2(string::in, term(T)::in, list(term(T))::in,
list(term(T))::out) is det.
binop_term_to_list_2(Op, Term, !List) :-
( Term = term__functor(term__atom(Op), [L, R], _Context) ->
binop_term_to_list_2(Op, R, !List),
binop_term_to_list_2(Op, L, !List)
;
!:List = [Term | !.List]
).
parse_list(Parser, Term, Result) :-
conjunction_to_list(Term, List),
map_parser(Parser, List, Result).
map_parser(_, [], ok([])).
map_parser(Parser, [X | Xs], Result) :-
call(Parser, X, X_Result),
map_parser(Parser, Xs, Xs_Result),
combine_list_results(X_Result, Xs_Result, Result).
% If a list of things contains multiple errors, then we only
% report the first one.
%
:- pred combine_list_results(maybe1(T)::in, maybe1(list(T))::in,
maybe1(list(T))::out) is det.
combine_list_results(error(Msg, Term), _, error(Msg, Term)).
combine_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
combine_list_results(ok(X), ok(Xs), ok([X | Xs])).
%-----------------------------------------------------------------------------%
parse_quantifier_vars(functor(atom("[]"), [], _), [], []).
parse_quantifier_vars(functor(atom("[|]"), [H, T], _), !:SVs, !:Vs) :-
parse_quantifier_vars(T, !:SVs, !:Vs),
(
H = functor(atom("!"), [variable(SV)], _),
!:SVs = [SV | !.SVs]
;
H = variable(V),
!:Vs = [V | !.Vs]
).
parse_vars(functor(atom("[]"), [], _), []).
parse_vars(functor(atom("[|]"), [H, T], _), !:Vs) :-
parse_vars(T, !:Vs),
H = variable(V),
!:Vs = [V | !.Vs].
parse_vars_and_state_vars(functor(atom("[]"), [], _), [], [], []).
parse_vars_and_state_vars(functor(atom("[|]"), [H, T], _), !:Os, !:Ds, !:Cs) :-
parse_vars_and_state_vars(T, !:Os, !:Ds, !:Cs),
(
H = functor(atom("!"), [variable(V)], _),
!:Ds = [V | !.Ds],
!:Cs = [V | !.Cs]
;
H = functor(atom("!."), [variable(V)], _),
!:Ds = [V | !.Ds]
;
H = functor(atom("!:"), [variable(V)], _),
!:Cs = [V | !.Cs]
;
H = variable(V),
!:Os = [V | !.Os]
).
%-----------------------------------------------------------------------------%
list_term_to_term_list(Methods, MethodList) :-
(
Methods = term__functor(term__atom("[|]"), [Head, Tail0], _),
list_term_to_term_list(Tail0, Tail),
MethodList = [Head|Tail]
;
Methods = term__functor(term__atom("[]"), [], _),
MethodList = []
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "prog_io_util.m".
%-----------------------------------------------------------------------------%
:- end_module parse_tree__prog_io_util.
%-----------------------------------------------------------------------------%