Files
mercury/compiler/foreign.m
Julien Fischer 5f589e98fb Various cleanups for the modules in the compiler directory.
Estimated hours taken: 4
Branches: main

Various cleanups for the modules in the compiler directory.  The are
no changes to algorithms except the replacement of some if-then-elses
that would naturally be switches with switches and the replacement of
most of the calls to error/1.

compiler/*.m:
	Convert calls to error/1 to calls to unexpected/2 or sorry/2 as
	appropriate throughout most or the compiler.

	Fix inaccurate assertion failure messages, e.g. identifying the
	assertion failure as taking place in the wrong module.

	Add :- end_module declarations.

	Fix formatting problems and bring the positioning of comments
	into line with our current coding standards.

	Fix some overlong lines.

	Convert some more modules to 4-space indentation.  Fix some spots
	where previous conversions to 4-space indentation have stuffed
	the formatting of the code up.

	Fix a bunch of typos in comments.

	Use state variables in more places; use library predicates
	from the sv* modules where appropriate.

	Delete unnecessary and duplicate module imports.

	Misc. other small cleanups.
2005-11-17 15:57:34 +00:00

690 lines
26 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: foreign.m.
% Main authors: trd, dgj.
% This module defines predicates for interfacing with foreign languages. In
% particular, this module supports interfacing with languages other than the
% target of compilation.
% Parts of this code were originally written by dgj, and have since been moved
% here.
%-----------------------------------------------------------------------------%
:- module backend_libs__foreign.
:- interface.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module libs.globals.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_foreign.
:- import_module bool.
:- import_module io.
:- import_module list.
:- import_module std_util.
:- import_module string.
%-----------------------------------------------------------------------------%
% A type which is used to determine the string representation of a
% mercury type for various foreign languages.
%
:- type exported_type.
% Given a type which is not defined as a foreign type, get the
% exported_type representation of that type.
%
:- func non_foreign_type(mer_type) = exported_type.
% Does the foreign_type_body contain a definition usable
% when compiling to the given target.
%
:- pred have_foreign_type_for_backend(compilation_target::in,
foreign_type_body::in, bool::out) is det.
% Given an arbitary mercury type, get the exported_type representation
% of that type on the current backend.
%
:- func to_exported_type(module_info, mer_type) = exported_type.
% Does the implementation of the given foreign type body on
% the current backend use a user-defined comparison predicate.
%
:- func foreign_type_body_has_user_defined_eq_comp_pred(module_info,
foreign_type_body) = unify_compare is semidet.
% Find the current target backend from the module_info, and given
% a foreign_type_body, return the name of the foreign language type
% the identity of any user-defined unify/compare predicates, and the
% assertions applicable to that backend.
%
:- pred foreign_type_body_to_exported_type(module_info::in,
foreign_type_body::in, sym_name::out, maybe(unify_compare)::out,
list(foreign_type_assertion)::out) is det.
% Given the exported_type representation for a type, determine
% whether or not it is a foreign type, and if yes, return the foreign
% type's assertions.
%
:- func is_foreign_type(exported_type) = maybe(list(foreign_type_assertion)).
% Given a representation of a type, determine the string which
% corresponds to that type in the specified foreign language,
% for use with foreign language interfacing (`pragma export' or
% `pragma foreign_proc').
%
:- func to_type_string(foreign_language, exported_type) = string.
:- func to_type_string(foreign_language, module_info, mer_type) = string.
% Filter the decls for the given foreign language.
% The first return value is the list of matches, the second is
% the list of mis-matches.
%
:- pred filter_decls(foreign_language::in, foreign_decl_info::in,
foreign_decl_info::out, foreign_decl_info::out) is det.
% Filter the module imports for the given foreign language.
% The first return value is the list of matches, the second is
% the list of mis-matches.
%
:- pred filter_imports(foreign_language::in,
foreign_import_module_info::in, foreign_import_module_info::out,
foreign_import_module_info::out) is det.
% Filter the bodys for the given foreign language.
% The first return value is the list of matches, the second is
% the list of mis-matches.
%
:- pred filter_bodys(foreign_language::in, foreign_body_info::in,
foreign_body_info::out, foreign_body_info::out) is det.
% Given some foreign code, generate some suitable proxy code for
% calling the code via one of the given languages.
% This might mean, for example, generating a call to a
% forwarding function in C.
% The foreign language argument specifies which language is the
% target language, the other inputs are the name, types, input
% variables and so on for a piece of pragma foreign code.
% The outputs are the new attributes and implementation for this
% code.
% XXX This implementation is currently incomplete, so in future
% this interface may change.
%
:- pred extrude_pragma_implementation(list(foreign_language)::in,
list(pragma_var)::in, sym_name::in, pred_or_func::in, prog_context::in,
module_info::in, module_info::out,
pragma_foreign_proc_attributes::in, pragma_foreign_proc_attributes::out,
pragma_foreign_code_impl::in, pragma_foreign_code_impl::out) is det.
% make_pragma_import turns pragma imports into pragma foreign_code.
% Given the pred and proc info for this predicate, the name
% of the function to import, the context of the import pragma
% and the module_info, create a pragma_foreign_code_impl
% which imports the foreign function, and return the varset,
% pragma_vars, argument types and other information about the
% generated predicate body.
%
:- pred make_pragma_import(pred_info::in, proc_info::in, string::in,
prog_context::in, pragma_foreign_code_impl::out,
prog_varset::out, list(pragma_var)::out, list(mer_type)::out, arity::out,
pred_or_func::out, module_info::in, module_info::out, io::di, io::uo)
is det.
% The name of the #define which can be used to guard declarations with
% to prevent entities being declared twice.
%
:- func decl_guard(sym_name) = string.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs.name_mangle.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.code_model.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_pred.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module parse_tree.error_util.
:- import_module parse_tree.modules.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.prog_util.
:- import_module assoc_list.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module std_util.
:- import_module string.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
filter_decls(WantedLang, Decls0, LangDecls, NotLangDecls) :-
IsWanted = (pred(foreign_decl_code(Lang, _, _, _)::in) is semidet :-
WantedLang = Lang),
list__filter(IsWanted, Decls0, LangDecls, NotLangDecls).
filter_imports(WantedLang, Imports0, LangImports, NotLangImports) :-
IsWanted = (pred(foreign_import_module(Lang, _, _)::in) is semidet :-
WantedLang = Lang),
list__filter(IsWanted, Imports0, LangImports, NotLangImports).
filter_bodys(WantedLang, Bodys0, LangBodys, NotLangBodys) :-
IsWanted = (pred(foreign_body_code(Lang, _, _)::in) is semidet :-
WantedLang = Lang),
list__filter(IsWanted, Bodys0, LangBodys, NotLangBodys).
extrude_pragma_implementation([], _PragmaVars, _PredName, _PredOrFunc,
_Context, !ModuleInfo, !NewAttributes, !Impl) :-
unexpected(this_file, "no suitable target languages available").
extrude_pragma_implementation([TargetLang | TargetLangs], _PragmaVars,
_PredName, _PredOrFunc, _Context, !ModuleInfo, !Attributes, !Impl) :-
% We just use the first target language for now, it might be nice
% to try a few others if the backend supports multiple ones.
ForeignLanguage = foreign_language(!.Attributes),
% If the foreign language is available as a target language,
% we don't need to do anything.
( list__member(ForeignLanguage, [TargetLang | TargetLangs]) ->
true
;
set_foreign_language(TargetLang, !Attributes),
extrude_pragma_implementation_2(TargetLang, ForeignLanguage,
!ModuleInfo, !Impl)
).
:- pred extrude_pragma_implementation_2(
foreign_language::in, foreign_language::in,
module_info::in, module_info::out,
pragma_foreign_code_impl::in, pragma_foreign_code_impl::out) is det.
% This isn't finished yet, and we probably won't implement it for C
% calling MC++. For C calling normal C++ we would generate a proxy
% function in C++ (implemented in a piece of C++ body code) with C
% linkage, and import that function. The backend would spit the C++
% body code into a separate file.
% The code would look a little like this:
% NewName = make_pred_name(ForeignLanguage, PredName),
% ( PredOrFunc = predicate ->
% ReturnCode = ""
% ;
% ReturnCode = "ReturnVal = "
% ),
% C_ExtraCode = "Some Extra Code To Run",
% create_pragma_import_c_code(PragmaVars, ModuleInfo0, "", VarString),
% module_add_foreign_body_code(cplusplus,
% C_ExtraCode, Context, ModuleInfo0, ModuleInfo),
% Impl = import(NewName, ReturnCode, VarString, no)
extrude_pragma_implementation_2(c, managed_cplusplus, _, _, _, _) :-
unimplemented_combination(c, managed_cplusplus).
extrude_pragma_implementation_2(c, csharp, _, _, _, _) :-
unimplemented_combination(c, csharp).
extrude_pragma_implementation_2(c, il, _, _, _, _) :-
unimplemented_combination(c, il).
extrude_pragma_implementation_2(c, java, _, _, _, _) :-
unimplemented_combination(c, java).
extrude_pragma_implementation_2(c, c, !ModuleInfo, !Impl).
% Don't do anything - C and MC++ are embedded inside MC++
% without any changes.
extrude_pragma_implementation_2(managed_cplusplus, managed_cplusplus,
!ModuleInfo, !Impl).
extrude_pragma_implementation_2(managed_cplusplus, c, !ModuleInfo, !Impl).
extrude_pragma_implementation_2(managed_cplusplus, csharp, _, _, _, _) :-
unimplemented_combination(managed_cplusplus, csharp).
extrude_pragma_implementation_2(managed_cplusplus, il, _, _, _, _) :-
unimplemented_combination(managed_cplusplus, il).
extrude_pragma_implementation_2(managed_cplusplus, java, _, _, _, _) :-
unimplemented_combination(managed_cplusplus, java).
extrude_pragma_implementation_2(csharp, csharp, !ModuleInfo, !Impl).
extrude_pragma_implementation_2(csharp, c, _, _, _, _) :-
unimplemented_combination(csharp, c).
extrude_pragma_implementation_2(csharp, managed_cplusplus, _, _, _, _) :-
unimplemented_combination(csharp, managed_cplusplus).
extrude_pragma_implementation_2(csharp, il, _, _, _, _) :-
unimplemented_combination(csharp, il).
extrude_pragma_implementation_2(csharp, java, _, _, _, _) :-
unimplemented_combination(csharp, java).
extrude_pragma_implementation_2(il, il, !ModuleInfo, !Impl).
extrude_pragma_implementation_2(il, c, _, _, _, _) :-
unimplemented_combination(il, c).
extrude_pragma_implementation_2(il, managed_cplusplus, _, _, _, _) :-
unimplemented_combination(il, managed_cplusplus).
extrude_pragma_implementation_2(il, csharp, _, _, _, _) :-
unimplemented_combination(il, csharp).
extrude_pragma_implementation_2(il, java, _, _, _, _) :-
unimplemented_combination(il, java).
extrude_pragma_implementation_2(java, java,
!ModuleInfo, !Impl).
extrude_pragma_implementation_2(java, c, _, _, _, _) :-
unimplemented_combination(java, c).
extrude_pragma_implementation_2(java, managed_cplusplus, _, _, _, _) :-
unimplemented_combination(java, managed_cplusplus).
extrude_pragma_implementation_2(java, csharp, _, _, _, _) :-
unimplemented_combination(java, csharp).
extrude_pragma_implementation_2(java, il, _, _, _, _) :-
unimplemented_combination(java, il).
:- pred unimplemented_combination(foreign_language::in, foreign_language::in)
is erroneous.
unimplemented_combination(Lang1, Lang2) :-
sorry(this_file, "unimplemented: calling "
++ foreign_language_string(Lang2) ++ " foreign code from "
++ foreign_language_string(Lang1)).
% XXX We haven't implemented these functions yet.
% What is here is only a guide.
%
:- func make_pred_name(foreign_language, sym_name) = string.
make_pred_name(Lang, SymName) =
"mercury_" ++ simple_foreign_language_string(Lang) ++ "__" ++
make_pred_name_rest(Lang, SymName).
:- func make_pred_name_rest(foreign_language, sym_name) = string.
make_pred_name_rest(c, _SymName) = "some_c_name".
make_pred_name_rest(managed_cplusplus, qualified(ModuleSpec, Name)) =
make_pred_name_rest(managed_cplusplus, ModuleSpec) ++ "__" ++ Name.
make_pred_name_rest(managed_cplusplus, unqualified(Name)) = Name.
make_pred_name_rest(csharp, _SymName) = "some_csharp_name".
make_pred_name_rest(il, _SymName) = "some_il_name".
make_pred_name_rest(java, _SymName) = "some_java_name".
make_pragma_import(PredInfo, ProcInfo, C_Function, Context, PragmaImpl, VarSet,
PragmaVars, ArgTypes, Arity, PredOrFunc, !ModuleInfo, !IO) :-
% Lookup some information we need from the pred_info and proc_info.
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
pred_info_arg_types(PredInfo, ArgTypes),
proc_info_argmodes(ProcInfo, Modes),
proc_info_interface_code_model(ProcInfo, CodeModel),
% Build a list of argument variables, together with their names, modes,
% and types.
varset__init(VarSet0),
list__length(Modes, Arity),
varset__new_vars(VarSet0, Arity, Vars, VarSet),
create_pragma_vars(Vars, Modes, 0, PragmaVars),
assoc_list__from_corresponding_lists(PragmaVars, ArgTypes,
PragmaVarsAndTypes),
% Construct parts of the C_code string for calling a C_function. This C
% code fragment invokes the specified C function with the appropriate
% arguments from the list constructed above, passed in the appropriate
% manner (by value, or by passing the address to simulate
% pass-by-reference), and assigns the return value (if any) to the
% appropriate place. As this phase occurs before polymorphism, we don't
% know about the type-infos yet. polymorphism.m is responsible for adding
% the type-info arguments to the list of variables.
proc_info_declared_determinism(ProcInfo, MaybeDeclaredDetism),
handle_return_value(Context, MaybeDeclaredDetism, CodeModel, PredOrFunc,
PragmaVarsAndTypes, ArgPragmaVarsAndTypes, Return, !ModuleInfo, !IO),
assoc_list__keys(ArgPragmaVarsAndTypes, ArgPragmaVars),
create_pragma_import_c_code(ArgPragmaVars, !.ModuleInfo, "", Variables),
% Make an import implementation.
PragmaImpl = import(C_Function, Return, Variables, yes(Context)).
% handle_return_value(Contxt, DeclaredDetism, CodeModel, PredOrFunc, Args0,
% M, Args, C_Code0):
%
% Figures out what to do with the C function's return value, based on
% Mercury procedure's code model, whether it is a predicate or a function,
% and (if it is a function) the type and mode of the function result.
% Constructs a C code fragment `C_Code0' which is a string of the form
% "<Something> =" that assigns the return value to the appropriate place,
% if there is a return value, or is an empty string, if there is no return
% value. Returns in Args all of Args0 that must be passed as arguments
% (i.e. all of them, or all of them except the return value).
%
% Causes an error message to be emitted if the code_model is not compatible
% with the use of pragma import (ie. it is model_non).
%
:- pred handle_return_value(prog_context::in, maybe(determinism)::in,
code_model::in, pred_or_func::in,
assoc_list(pragma_var, mer_type)::in,
assoc_list(pragma_var, mer_type)::out,
string::out, module_info::in, module_info::out, io::di, io::uo) is det.
handle_return_value(Context, MaybeDeclaredDetism, CodeModel, PredOrFunc,
!Args, C_Code0, !ModuleInfo, !IO) :-
(
CodeModel = model_det,
(
PredOrFunc = function,
pred_args_to_func_args(!Args, RetArg),
RetArg = pragma_var(_, RetArgName, RetMode) - RetType,
mode_to_arg_mode(!.ModuleInfo, RetMode, RetType, RetArgMode),
RetArgMode = top_out,
\+ type_util__is_dummy_argument_type(!.ModuleInfo, RetType)
->
C_Code0 = RetArgName ++ " = "
;
C_Code0 = ""
)
;
CodeModel = model_semi,
% We treat semidet functions the same as semidet predicates, which
% means that for Mercury functions the Mercury return value becomes
% the last argument, and the C return value is a bool that is used to
% indicate success or failure.
C_Code0 = "SUCCESS_INDICATOR = "
;
CodeModel = model_non,
(
MaybeDeclaredDetism = yes(DeclaredDetism),
DetismStr = determinism_to_string(DeclaredDetism)
;
MaybeDeclaredDetism = no,
DetismStr = "multi or nondet"
),
ErrorPieces = [
words("Error: `pragma_import' declaration for"),
words("a procedure that has a determinism of"),
fixed(DetismStr), suffix(".")
],
write_error_pieces(Context, 0, ErrorPieces, !IO),
module_info_incr_errors(!ModuleInfo),
% The following are just dummy values - they will never actually
% be used.
C_Code0 = "\n#error ""cannot import nondet procedure""\n"
),
list__filter(include_import_arg(!.ModuleInfo), !Args).
% include_import_arg(M, Arg):
%
% Succeeds iff Arg should be included in the arguments of the C function.
% Fails if `Arg' has a type such as `io__state' that is just a dummy
% argument that should not be passed to C.
%
:- pred include_import_arg(module_info::in, pair(pragma_var, mer_type)::in)
is semidet.
include_import_arg(ModuleInfo, pragma_var(_Var, _Name, Mode) - Type) :-
mode_to_arg_mode(ModuleInfo, Mode, Type, ArgMode),
ArgMode \= top_unused,
\+ type_util__is_dummy_argument_type(ModuleInfo, Type).
% create_pragma_vars(Vars, Modes, ArgNum0, PragmaVars):
%
% Given list of vars and modes, and an initial argument number, allocate
% names to all the variables, and construct a single list containing the
% variables, names, and modes.
%
:- pred create_pragma_vars(list(prog_var)::in, list(mer_mode)::in, int::in,
list(pragma_var)::out) is det.
create_pragma_vars([], [], _Num, []).
create_pragma_vars([Var | Vars], [Mode | Modes], ArgNum0,
[PragmaVar | PragmaVars]) :-
% Figure out a name for the C variable which will hold this argument.
ArgNum = ArgNum0 + 1,
string__int_to_string(ArgNum, ArgNumString),
string__append("Arg", ArgNumString, ArgName),
PragmaVar = pragma_var(Var, ArgName, Mode),
create_pragma_vars(Vars, Modes, ArgNum, PragmaVars).
create_pragma_vars([_ | _], [], _, _) :-
unexpected(this_file, "create_pragma_vars: length mis-match").
create_pragma_vars([], [_ | _], _, _) :-
unexpected(this_file, "create_pragma_vars: length mis-match").
% create_pragma_import_c_code(PragmaVars, M, !C_Code):
%
% This predicate creates the C code fragments for each argument in
% PragmaVars, and appends them to C_Code0, returning C_Code.
%
:- pred create_pragma_import_c_code(list(pragma_var)::in, module_info::in,
string::in, string::out) is det.
create_pragma_import_c_code([], _ModuleInfo, !C_Code).
create_pragma_import_c_code([PragmaVar | PragmaVars], ModuleInfo, !C_Code) :-
PragmaVar = pragma_var(_Var, ArgName, Mode),
% Construct the C code fragment for passing this argument, and append it
% to !.C_Code. Note that C handles output arguments by passing the
% variable's address, so if the mode is output, we need to put an `&'
% before the variable name.
( mode_is_output(ModuleInfo, Mode) ->
!:C_Code = !.C_Code ++ "&"
;
true
),
!:C_Code = !.C_Code ++ ArgName,
(
PragmaVars = [_ | _],
!:C_Code = !.C_Code ++ ", "
;
PragmaVars = []
),
create_pragma_import_c_code(PragmaVars, ModuleInfo, !C_Code).
%-----------------------------------------------------------------------------%
have_foreign_type_for_backend(c, ForeignTypeBody,
( ForeignTypeBody ^ c = yes(_) -> yes ; no )).
have_foreign_type_for_backend(il, ForeignTypeBody,
( ForeignTypeBody ^ il = yes(_) -> yes ; no )).
have_foreign_type_for_backend(java, ForeignTypeBody,
( ForeignTypeBody ^ java = yes(_) -> yes ; no )).
have_foreign_type_for_backend(asm, ForeignTypeBody, Result) :-
have_foreign_type_for_backend(c, ForeignTypeBody, Result).
:- type exported_type
---> foreign(sym_name, list(foreign_type_assertion))
% A type defined by a pragma foreign_type, and the assertions
% on that foreign_type.
; mercury(mer_type).
% Any other mercury type.
non_foreign_type(Type) = mercury(Type).
to_exported_type(ModuleInfo, Type) = ExportType :-
module_info_get_type_table(ModuleInfo, Types),
(
type_to_ctor_and_args(Type, TypeCtor, _),
map__search(Types, TypeCtor, TypeDefn)
->
hlds_data__get_type_defn_body(TypeDefn, Body),
( Body = foreign_type(ForeignTypeBody) ->
foreign_type_body_to_exported_type(ModuleInfo, ForeignTypeBody,
ForeignTypeName, _, Assertions),
ExportType = foreign(ForeignTypeName, Assertions)
;
ExportType = mercury(Type)
)
;
ExportType = mercury(Type)
).
foreign_type_body_has_user_defined_eq_comp_pred(ModuleInfo, Body) =
UserEqComp :-
foreign_type_body_to_exported_type(ModuleInfo, Body, _,
MaybeUserEqComp, _),
MaybeUserEqComp = yes(UserEqComp).
foreign_type_body_to_exported_type(ModuleInfo, ForeignTypeBody, Name,
MaybeUserEqComp, Assertions) :-
ForeignTypeBody = foreign_type_body(MaybeIL, MaybeC, MaybeJava),
module_info_get_globals(ModuleInfo, Globals),
globals__get_target(Globals, Target),
(
Target = c,
(
MaybeC = yes(Data),
Data = foreign_type_lang_data(c(NameStr), MaybeUserEqComp,
Assertions),
Name = unqualified(NameStr)
;
MaybeC = no,
unexpected(this_file, "to_exported_type: no C type")
)
;
Target = il,
(
MaybeIL = yes(Data),
Data = foreign_type_lang_data(il(_, _, Name), MaybeUserEqComp,
Assertions)
;
MaybeIL = no,
unexpected(this_file, "to_exported_type: no IL type")
)
;
Target = java,
(
MaybeJava = yes(Data),
Data = foreign_type_lang_data(java(NameStr), MaybeUserEqComp,
Assertions),
Name = unqualified(NameStr)
;
MaybeJava = no,
unexpected(this_file, "to_exported_type: no Java type")
)
;
Target = asm,
(
MaybeC = yes(Data),
Data = foreign_type_lang_data(c(NameStr), MaybeUserEqComp,
Assertions),
Name = unqualified(NameStr)
;
MaybeC = no,
unexpected(this_file, "to_exported_type: no C type")
)
).
is_foreign_type(foreign(_, Assertions)) = yes(Assertions).
is_foreign_type(mercury(_)) = no.
to_type_string(Lang, ModuleInfo, Type) =
to_type_string(Lang, to_exported_type(ModuleInfo, Type)).
to_type_string(c, foreign(ForeignType, _)) = Result :-
( ForeignType = unqualified(Result0) ->
Result = Result0
;
unexpected(this_file, "to_type_string: qualified C type")
).
to_type_string(csharp, foreign(ForeignType, _)) = Result :-
sym_name_to_string(ForeignType, ".", Result).
to_type_string(managed_cplusplus, foreign(ForeignType, _)) = Result ++ " *" :-
sym_name_to_string(ForeignType, "::", Result).
to_type_string(il, foreign(ForeignType, _)) = Result :-
sym_name_to_string(ForeignType, ".", Result).
to_type_string(java, foreign(ForeignType, _)) = Result :-
sym_name_to_string(ForeignType, ".", Result).
% XXX does this do the right thing for high level data?
to_type_string(c, mercury(Type)) = Result :-
( Type = builtin(BuiltinType) ->
(
BuiltinType = int,
Result = "MR_Integer"
;
BuiltinType = float,
Result = "MR_Float"
;
BuiltinType = string,
Result = "MR_String"
;
BuiltinType = character,
Result = "MR_Char"
)
;
Result = "MR_Word"
).
to_type_string(csharp, mercury(_Type)) = _ :-
sorry(this_file, "to_type_string for csharp").
to_type_string(managed_cplusplus, mercury(Type)) = TypeString :-
( Type = variable(_, _) ->
TypeString = "MR_Box"
;
TypeString = to_type_string(c, mercury(Type))
).
to_type_string(il, mercury(_Type)) = _ :-
sorry(this_file, "to_type_string for il").
to_type_string(java, mercury(Type)) = Result :-
( Type = builtin(BuiltinType) ->
(
BuiltinType = int,
Result = "int"
;
BuiltinType = float,
Result = "double"
;
BuiltinType = string,
Result = "java.lang.String"
;
BuiltinType = character,
Result = "char"
)
;
Result = "java.lang.Object"
).
%-----------------------------------------------------------------------------%
decl_guard(ModuleName) = UppercaseModuleName ++ "_DECL_GUARD" :-
MangledModuleName = sym_name_mangle(ModuleName),
string__to_upper(MangledModuleName, UppercaseModuleName).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "foreign.m".
%-----------------------------------------------------------------------------%
:- end_module foreign.
%-----------------------------------------------------------------------------%