Files
mercury/compiler/prog_util.m
Fergus Henderson b45be10117 (a) Move the tabling builtins, which are currently in private_builtin.m,
Estimated hours taken: 4

(a) Move the tabling builtins, which are currently in private_builtin.m,
into a different module which is only imported if the source contains
a tabling pragma.

(b) Improve the infrastructure for automatically importing modules to
make it easy to automatically import a module only if a certain option
is set.  The idea is to eventually use this to put the simplified HLDS
representation used for declarative debugging in a module which is
only imported if the appropriate declarative debugging option is
enabled.

compiler/modules.m:
	Change add_implicit_imports so that it takes the list of
	items, for (a) above, and an io__state pair, for (b) above.
	Change its callers to pass the new parameters.

	Add a new predicate get_implicit_dependencies
	(implemented using add_implicit_imports).

compiler/hlds_module.m:
compiler/module_qual.m:
	Call get_implicit_dependencies rather than duplicating the code.

compiler/make_hlds.m:
compiler/hlds_module.m:
	Pass the item_list to module_info_init, since it's needed by
	get_implicit_dependencies.

compiler/prog_util.m:
	Add new predicates mercury_table_builtin_module/1 (which
	returns the name of the "table_builtin" module) and
	any_mercury_builtin_module (which checks whether any of
	mercury_{table,public,private}_builtin_module hold).

compiler/termination.m:
	Call any_mercury_builtin_module rather than checking
	for mercury_{public,private}_builtin_module.

compiler/table_gen.m:
	Change the module for tabling builtins from private_builtin to
	table_builtin.

compiler/hlds_pred.m:
	Add table_builtin to the builtin_mod enumeration,
	and change the module for tabling builtins from
	private_builtin to table_builtin.

compiler/dead_proc_elim.m:
	Add a comment about the treatment of builtin modules.

compiler/mode_util.m:
	When stripping out builtin module qualifiers, only strip
	qualifiers from "builtin:", not from "private_builtin:".

library/table_builtin.m:
library/private_builtin.m:
	Move the tabling builtins from private_builtin.m
	into a new module table_builtin.m.

library/library.m:
	Add table_builtin.m to the list of imported modules.
	(Likewise for builtin.m and private_builtin.m; it's not
	strictly necessary for those, since they're implicitly
	imported anyway, but importing them explicitly is clearer.)

library/io.m:
	Change private_builtin to table_builtin in the call to
	private_builtin__report_tabling_stats.

doc/Mmakefile:
	Don't include the documentation for table_builtin.m
	in the library reference manual.
2000-09-21 00:21:06 +00:00

459 lines
18 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% main author: fjh
% various utility predicates acting on the parse tree data
% structure defined in prog_data.m.
:- module prog_util.
:- interface.
:- import_module prog_data, term.
:- import_module std_util, list.
%-----------------------------------------------------------------------------%
% Returns the name of the module containing public builtins;
% originally this was "mercury_builtin", but it later became
% just "builtin", and it may eventually be renamed "std:builtin".
% This module is automatically imported, as if via `import_module'.
:- pred mercury_public_builtin_module(sym_name).
:- mode mercury_public_builtin_module(out) is det.
% Returns the name of the module containing private builtins;
% traditionally this was "mercury_builtin", but it later became
% "private_builtin", and it may eventually be renamed
% "std:private_builtin".
% This module is automatically imported, as if via `use_module'.
:- pred mercury_private_builtin_module(sym_name).
:- mode mercury_private_builtin_module(out) is det.
% Returns the name of the module containing builtins for tabling;
% originally these were in "private_builtin", but they
% may soon be moved into a separate module.
% This module is automatically imported iff tabling is enabled.
:- pred mercury_table_builtin_module(sym_name).
:- mode mercury_table_builtin_module(out) is det.
% Succeeds iff the specified module is one of the three
% builtin modules listed above which are automatically imported.
:- pred any_mercury_builtin_module(sym_name).
:- mode any_mercury_builtin_module(in) is semidet.
%-----------------------------------------------------------------------------%
% Given a symbol name, return its unqualified name.
:- pred unqualify_name(sym_name, string).
:- mode unqualify_name(in, out) is det.
% sym_name_get_module_name(SymName, DefaultModName, ModName):
% Given a symbol name, return the module qualifier(s).
% If the symbol is unqualified, then return the specified default
% module name.
:- pred sym_name_get_module_name(sym_name, module_name, module_name).
:- mode sym_name_get_module_name(in, in, out) is det.
% string_to_sym_name(String, Separator, SymName):
% Convert a string, possibly prefixed with
% module qualifiers (separated by Separator),
% into a symbol name.
%
:- pred string_to_sym_name(string, string, sym_name).
:- mode string_to_sym_name(in, in, out) is det.
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
:- pred match_sym_name(sym_name, sym_name).
:- mode match_sym_name(in, in) is semidet.
% remove_sym_name_prefix(SymName0, Prefix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given prefix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the prefix removed
:- pred remove_sym_name_prefix(sym_name, string, sym_name).
:- mode remove_sym_name_prefix(in, in, out) is semidet.
:- mode remove_sym_name_prefix(out, in, in) is det.
% remove_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given suffix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix removed
:- pred remove_sym_name_suffix(sym_name, string, sym_name).
:- mode remove_sym_name_suffix(in, in, out) is semidet.
% add_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix added
:- pred add_sym_name_suffix(sym_name, string, sym_name).
:- mode add_sym_name_suffix(in, in, out) is det.
% insert_module_qualifier(ModuleName, SymName0, SymName):
% prepend the specified ModuleName onto the module
% qualifiers in SymName0, giving SymName.
:- pred insert_module_qualifier(string, sym_name, sym_name).
:- mode insert_module_qualifier(in, in, out) is det.
% Given a possible module qualified sym_name and a list of
% argument types and a context, construct a term. This is
% used to construct types.
:- pred construct_qualified_term(sym_name, list(term(T)), term(T)).
:- mode construct_qualified_term(in, in, out) is det.
:- pred construct_qualified_term(sym_name, list(term(T)), prog_context, term(T)).
:- mode construct_qualified_term(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name(module_name, string, maybe(pred_or_func),
string, new_pred_id, sym_name).
:- mode make_pred_name(in, in, in, in, in, out) is det.
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name_with_context(module_name, string, pred_or_func,
string, int, int, sym_name).
:- mode make_pred_name_with_context(in, in, in, in, in, in, out) is det.
:- type new_pred_id
---> counter(int, int) % Line number, Counter
; type_subst(tvarset, type_subst)
.
%-----------------------------------------------------------------------------%
% A pred declaration may contains just types, as in
% :- pred list__append(list(T), list(T), list(T)).
% or it may contain both types and modes, as in
% :- pred list__append(list(T)::in, list(T)::in,
% list(T)::output).
%
% This predicate takes the argument list of a pred declaration,
% splits it into two separate lists for the types and (if present)
% the modes.
:- type maybe_modes == maybe(list(mode)).
:- pred split_types_and_modes(list(type_and_mode), list(type), maybe_modes).
:- mode split_types_and_modes(in, out, out) is det.
:- pred split_type_and_mode(type_and_mode, type, maybe(mode)).
:- mode split_type_and_mode(in, out, out) is det.
%-----------------------------------------------------------------------------%
% Perform a substitution on a goal.
:- pred prog_util__rename_in_goal(goal, prog_var, prog_var, goal).
:- mode prog_util__rename_in_goal(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module mercury_to_mercury, (inst).
:- import_module bool, string, int, map, varset.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% We may eventually want to put the standard library into a package "std":
% mercury_public_builtin_module(M) :-
% M = qualified(unqualified("std"), "builtin"))).
% mercury_private_builtin_module(M) :-
% M = qualified(unqualified("std"), "private_builtin"))).
mercury_public_builtin_module(unqualified("builtin")).
mercury_private_builtin_module(unqualified("private_builtin")).
mercury_table_builtin_module(unqualified("table_builtin")).
any_mercury_builtin_module(Module) :-
( mercury_public_builtin_module(Module)
; mercury_private_builtin_module(Module)
; mercury_table_builtin_module(Module)
).
unqualify_name(unqualified(PredName), PredName).
unqualify_name(qualified(_ModuleName, PredName), PredName).
sym_name_get_module_name(unqualified(_), ModuleName, ModuleName).
sym_name_get_module_name(qualified(ModuleName, _PredName), _, ModuleName).
construct_qualified_term(qualified(Module, Name), Args, Context, Term) :-
construct_qualified_term(Module, [], Context, ModuleTerm),
UnqualifiedTerm = term__functor(term__atom(Name), Args, Context),
Term = term__functor(term__atom(":"),
[ModuleTerm, UnqualifiedTerm], Context).
construct_qualified_term(unqualified(Name), Args, Context, Term) :-
Term = term__functor(term__atom(Name), Args, Context).
construct_qualified_term(SymName, Args, Term) :-
term__context_init(Context),
construct_qualified_term(SymName, Args, Context, Term).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
split_types_and_modes(TypesAndModes, Types, MaybeModes) :-
split_types_and_modes_2(TypesAndModes, yes, Types, Modes, Result),
(
Result = yes
->
MaybeModes = yes(Modes)
;
MaybeModes = no
).
:- pred split_types_and_modes_2(list(type_and_mode), bool,
list(type), list(mode), bool).
:- mode split_types_and_modes_2(in, in, out, out, out) is det.
% T = type, M = mode, TM = combined type and mode
split_types_and_modes_2([], Result, [], [], Result).
split_types_and_modes_2([TM|TMs], Result0, [T|Ts], [M|Ms], Result) :-
split_type_and_mode(TM, Result0, T, M, Result1),
split_types_and_modes_2(TMs, Result1, Ts, Ms, Result).
% if a pred declaration specifies modes for some but
% not all of the arguments, then the modes are ignored
% - should this be an error instead?
% trd: this should never happen because prog_io.m will detect
% these cases
:- pred split_type_and_mode(type_and_mode, bool, type, mode, bool).
:- mode split_type_and_mode(in, in, out, out, out) is det.
split_type_and_mode(type_only(T), _, T, (free -> free), no).
split_type_and_mode(type_and_mode(T,M), R, T, M, R).
split_type_and_mode(type_only(T), T, no).
split_type_and_mode(type_and_mode(T,M), T, yes(M)).
%-----------------------------------------------------------------------------%
prog_util__rename_in_goal(Goal0 - Context, OldVar, NewVar, Goal - Context) :-
prog_util__rename_in_goal_expr(Goal0, OldVar, NewVar, Goal).
:- pred prog_util__rename_in_goal_expr(goal_expr, prog_var, prog_var,
goal_expr).
:- mode prog_util__rename_in_goal_expr(in, in, in, out) is det.
prog_util__rename_in_goal_expr((GoalA0, GoalB0), OldVar, NewVar,
(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr((GoalA0 & GoalB0), OldVar, NewVar,
(GoalA & GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(true, _Var, _NewVar, true).
prog_util__rename_in_goal_expr((GoalA0; GoalB0), OldVar, NewVar,
(GoalA; GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(fail, _Var, _NewVar, fail).
prog_util__rename_in_goal_expr(not(Goal0), OldVar, NewVar, not(Goal)) :-
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(some(Vars0, Goal0), OldVar, NewVar,
some(Vars, Goal)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(all(Vars0, Goal0), OldVar, NewVar,
all(Vars, Goal)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(implies(GoalA0, GoalB0), OldVar, NewVar,
implies(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(equivalent(GoalA0, GoalB0), OldVar, NewVar,
equivalent(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(if_then(Vars0, Cond0, Then0), OldVar, NewVar,
if_then(Vars, Cond, Then)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Cond0, OldVar, NewVar, Cond),
prog_util__rename_in_goal(Then0, OldVar, NewVar, Then).
prog_util__rename_in_goal_expr(if_then_else(Vars0, Cond0, Then0, Else0),
OldVar, NewVar, if_then_else(Vars, Cond, Then, Else)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Cond0, OldVar, NewVar, Cond),
prog_util__rename_in_goal(Then0, OldVar, NewVar, Then),
prog_util__rename_in_goal(Else0, OldVar, NewVar, Else).
prog_util__rename_in_goal_expr(call(SymName, Terms0, Purity), OldVar, NewVar,
call(SymName, Terms, Purity)) :-
term__substitute_list(Terms0, OldVar, term__variable(NewVar),
Terms).
prog_util__rename_in_goal_expr(unify(TermA0, TermB0, Purity), OldVar, NewVar,
unify(TermA, TermB, Purity)) :-
term__substitute(TermA0, OldVar, term__variable(NewVar),
TermA),
term__substitute(TermB0, OldVar, term__variable(NewVar),
TermB).
:- pred prog_util__rename_in_vars(list(prog_var), prog_var, prog_var,
list(prog_var)).
:- mode prog_util__rename_in_vars(in, in, in, out) is det.
prog_util__rename_in_vars([], _, _, []).
prog_util__rename_in_vars([Var0 | Vars0], OldVar, NewVar, [Var | Vars]) :-
( Var0 = OldVar ->
Var = NewVar
;
Var = Var0
),
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars).
%-----------------------------------------------------------------------------%
% This would be simpler if we had a string__rev_sub_string_search/3 pred.
% With that, we could search for underscores right-to-left,
% and construct the resulting symbol directly.
% Instead, we search for them left-to-right, and then call
% insert_module_qualifier to fix things up.
string_to_sym_name(String, ModuleSeparator, Result) :-
(
string__sub_string_search(String, ModuleSeparator, LeftLength),
LeftLength > 0
->
string__left(String, LeftLength, ModuleName),
string__length(String, StringLength),
string__length(ModuleSeparator, SeparatorLength),
RightLength is StringLength - LeftLength - SeparatorLength,
string__right(String, RightLength, Name),
string_to_sym_name(Name, ModuleSeparator, NameSym),
insert_module_qualifier(ModuleName, NameSym, Result)
;
Result = unqualified(String)
).
insert_module_qualifier(ModuleName, unqualified(PlainName),
qualified(unqualified(ModuleName), PlainName)).
insert_module_qualifier(ModuleName, qualified(ModuleQual0, PlainName),
qualified(ModuleQual, PlainName)) :-
insert_module_qualifier(ModuleName, ModuleQual0, ModuleQual).
%-----------------------------------------------------------------------------%
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
match_sym_name(qualified(Module1, Name), qualified(Module2, Name)) :-
match_sym_name(Module1, Module2).
match_sym_name(unqualified(Name), unqualified(Name)).
match_sym_name(unqualified(Name), qualified(_, Name)).
%-----------------------------------------------------------------------------%
remove_sym_name_prefix(qualified(Module, Name0), Prefix,
qualified(Module, Name)) :-
string__append(Prefix, Name, Name0).
remove_sym_name_prefix(unqualified(Name0), Prefix, unqualified(Name)) :-
string__append(Prefix, Name, Name0).
remove_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string__remove_suffix(Name0, Suffix, Name).
remove_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string__remove_suffix(Name0, Suffix, Name).
add_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string__append(Name0, Suffix, Name).
add_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string__append(Name0, Suffix, Name).
%-----------------------------------------------------------------------------%
make_pred_name_with_context(ModuleName, Prefix,
PredOrFunc, PredName, Line, Counter, SymName) :-
make_pred_name(ModuleName, Prefix, yes(PredOrFunc), PredName,
counter(Line, Counter), SymName).
make_pred_name(ModuleName, Prefix, MaybePredOrFunc, PredName,
NewPredId, SymName) :-
(
MaybePredOrFunc = yes(PredOrFunc),
(
PredOrFunc = predicate,
PFS = "pred"
;
PredOrFunc = function,
PFS = "func"
)
;
MaybePredOrFunc = no,
PFS = "pred_or_func"
),
(
NewPredId = counter(Line, Counter),
string__format("%d__%d", [i(Line), i(Counter)], PredIdStr)
;
NewPredId = type_subst(VarSet, TypeSubst),
SubstToString = lambda([SubstElem::in, SubstStr::out] is det, (
SubstElem = Var - Type,
varset__lookup_name(VarSet, Var, VarName),
mercury_type_to_string(VarSet, Type, TypeString),
string__append_list([VarName, " = ", TypeString],
SubstStr)
)),
list_to_string(SubstToString, TypeSubst, PredIdStr)
),
string__format("%s__%s__%s__%s",
[s(Prefix), s(PFS), s(PredName), s(PredIdStr)], Name),
SymName = qualified(ModuleName, Name).
:- pred list_to_string(pred(T, string), list(T), string).
:- mode list_to_string(pred(in, out) is det, in, out) is det.
list_to_string(Pred, List, String) :-
list_to_string_2(Pred, List, Strings, ["]"]),
string__append_list(["[" | Strings], String).
:- pred list_to_string_2(pred(T, string), list(T), list(string), list(string)).
:- mode list_to_string_2(pred(in, out) is det, in, out, in) is det.
list_to_string_2(_, []) --> [].
list_to_string_2(Pred, [T | Ts]) -->
{ call(Pred, T, String) },
[String],
( { Ts = [] } ->
[]
;
[", "],
list_to_string_2(Pred, Ts)
).
%-----------------------------------------------------------------------------%