Files
mercury/compiler/prog_io_goal.m
Tyson Dowd cbcb23d17b Enable --warn-interface-imports by default.
Estimated hours taken: 3

Enable --warn-interface-imports by default. This was turned off while
list and term were defined in mercury_builtin.m, since it caused many
warnings.

Fix all the unused interface imports that have been added since then.

compiler/options.m:
	Enable --warn-interface-imports by default.

compiler/module_qual.m:
	Fix formatting inconsistencies with module names in warning
	messages. (".m" was not appended to module names if there was
	only one module).

compiler/*.m:
library/*.m:
tests/invalid/type_loop.m:
tests/warnings/*.m:
	Remove usused interface imports, or move them into
	implementation (mostly bool, list and std_util).
1997-05-21 02:16:53 +00:00

391 lines
13 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_goal.m.
% Main author: fjh.
%
% This module defines the predicates that parse goals.
:- module prog_io_goal.
:- interface.
:- import_module prog_data, prog_io_util.
:- import_module list, term, varset.
% Convert a single term into a goal.
%
:- pred parse_goal(term, varset, goal, varset).
:- mode parse_goal(in, in, out, out) is det.
% Convert a term, possibly starting with `some [Vars]', into
% a list of variables and a goal. (If the term doesn't start
% with `some [Vars]', we return an empty list of variables.)
%
:- pred parse_some_vars_goal(term, varset, vars, goal, varset).
:- mode parse_some_vars_goal(in, in, out, out, out) is det.
% parse_lambda_expression/3 converts the first argument to a lambda/2
% expression into a list of variables, a list of their corresponding
% modes, and a determinism.
% The syntax of a lambda expression is
% `lambda([Var1::Mode1, ..., VarN::ModeN] is Det, Goal)'
% but this predicate just parses the first argument, i.e. the
% `[Var1::Mode1, ..., VarN::ModeN] is Det'
% part.
%
:- pred parse_lambda_expression(term, list(term), list(mode), determinism).
:- mode parse_lambda_expression(in, out, out, out) is semidet.
% parse_pred_expression/3 converts the first argument to a :-/2
% higher-order pred expression into a list of variables, a list
% of their corresponding modes, and a determinism. This is just
% a variant on parse_lambda_expression with a different syntax:
% `(pred(Var1::Mode1, ..., VarN::ModeN) is Det :- Goal)'.
%
:- pred parse_pred_expression(term, list(term), list(mode), determinism).
:- mode parse_pred_expression(in, out, out, out) is semidet.
% parse_func_expression/3 converts the first argument to a :-/2
% higher-order func expression into a list of variables, a list
% of their corresponding modes, and a determinism. The syntax
% of a higher-order func expression is
% `(func(Var1::Mode1, ..., VarN::ModeN) = (VarN1::ModeN1) is Det
% :- Goal)'.
%
:- pred parse_func_expression(term, list(term), list(mode), determinism).
:- mode parse_func_expression(in, out, out, out) is semidet.
% A QualifiedTerm is one of
% Name(Args)
% Module:Name(Args)
% (or if Args is empty, one of
% Name
% Module:Name)
% For backwards compatibility, we allow `__'
% as an alternative to `:'.
% sym_name_and_args takes a term and returns a sym_name and a list of
% argument terms.
% It fals if the input is not valid syntax for a QualifiedTerm.
:- pred sym_name_and_args(term, sym_name, list(term)).
:- mode sym_name_and_args(in, out, out) is semidet.
% parse_qualified_term takes a term and an error message,
% and returns a sym_name and a list of argument terms.
% Returns an error on ill-formed input.
:- pred parse_qualified_term(term, string, maybe_functor).
:- mode parse_qualified_term(in, in, out) is det.
% parse_qualified_term(DefaultModName, Term, Msg, Result).
% parse_qualified_term takes a default module name and a term,
% and returns a sym_name and a list of argument terms.
% Returns an error on ill-formed input or a module qualifier that
% doesn't match the DefaultModName, if DefaultModName is not ""
% and not "mercury_builtin".
% parse_qualified_term/3 calls parse_qualified_term/4, and is
% used when no default module name exists.
:- pred parse_qualified_term(string, term, string, maybe_functor).
:- mode parse_qualified_term(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds_data.
:- import_module int, string, std_util.
% Parse a goal.
%
% We could do some error-checking here, but all errors are picked up
% in either the type-checker or parser anyway.
parse_goal(Term, VarSet0, Goal, VarSet) :-
% first, get the goal context
(
Term = term__functor(_, _, Context)
;
Term = term__variable(_),
term__context_init(Context)
),
% We just check if it matches the appropriate pattern
% for one of the builtins. If it doesn't match any of the
% builtins, then it's just a predicate call.
(
% check for builtins...
Term = term__functor(term__atom(Name), Args, Context),
parse_goal_2(Name, Args, VarSet0, GoalExpr, VarSet1)
->
Goal = GoalExpr - Context,
VarSet = VarSet1
;
% it's not a builtin
(
% check for predicate calls
sym_name_and_args(Term, SymName, Args)
->
VarSet = VarSet0,
Goal = call(SymName, Args) - Context
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/1 - the typechecker
% will catch calls to numbers and strings.
Goal = call(unqualified("call"), [Term]) - Context,
VarSet = VarSet0
)
).
%-----------------------------------------------------------------------------%
:- pred parse_goal_2(string, list(term), varset, goal_expr, varset).
:- mode parse_goal_2(in, in, in, out, out) is semidet.
parse_goal_2("true", [], V, true, V).
parse_goal_2("fail", [], V, fail, V).
parse_goal_2("=", [A, B], V, unify(A, B), V).
/******
Since (A -> B) has different semantics in standard Prolog
(A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
for the moment we'll just disallow it.
parse_goal_2("->", [A0, B0], V0, if_then(Vars, A, B), V) :-
parse_some_vars_goal(A0, V0, Vars, A, V1),
parse_goal(B0, V1, B, V).
******/
parse_goal_2(",", [A0, B0], V0, (A, B), V) :-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
parse_goal_2(";", [A0, B0], V0, R, V) :-
(
A0 = term__functor(term__atom("->"), [X0, Y0], _Context)
->
parse_some_vars_goal(X0, V0, Vars, X, V1),
parse_goal(Y0, V1, Y, V2),
parse_goal(B0, V2, B, V),
R = if_then_else(Vars, X, Y, B)
;
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V),
R = (A;B)
).
/****
For consistency we also disallow if-then
parse_goal_2("if",
[term__functor(term__atom("then"), [A0, B0], _)], V0,
if_then(Vars, A, B), V) :-
parse_some_vars_goal(A0, V0, Vars, A, V1),
parse_goal(B0, V1, B, V).
****/
parse_goal_2("else", [
term__functor(term__atom("if"), [
term__functor(term__atom("then"), [A0, B0], _)
], _),
C0
], V0,
if_then_else(Vars, A, B, C), V) :-
parse_some_vars_goal(A0, V0, Vars, A, V1),
parse_goal(B0, V1, B, V2),
parse_goal(C0, V2, C, V).
parse_goal_2("not", [A0], V0, not(A), V) :-
parse_goal(A0, V0, A, V).
parse_goal_2("\\+", [A0], V0, not(A), V) :-
parse_goal(A0, V0, A, V).
parse_goal_2("all", [Vars0, A0], V0, all(Vars, A), V):-
term__vars(Vars0, Vars),
parse_goal(A0, V0, A, V).
% handle implication
parse_goal_2("<=", [A0, B0], V0, implies(B, A), V):-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
parse_goal_2("=>", [A0, B0], V0, implies(A, B), V):-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
% handle equivalence
parse_goal_2("<=>", [A0, B0], V0, equivalent(A, B), V):-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
parse_goal_2("some", [Vars0, A0], V0, some(Vars, A), V):-
term__vars(Vars0, Vars),
parse_goal(A0, V0, A, V).
% The following is a temporary hack to handle `is' in
% the parser - we ought to handle it in the code generation -
% but then `is/2' itself is a bit of a hack
%
parse_goal_2("is", [A, B], V, unify(A, B), V).
%-----------------------------------------------------------------------------%
parse_some_vars_goal(A0, VarSet0, Vars, A, VarSet) :-
(
A0 = term__functor(term__atom("some"), [Vars0, A1], _Context)
->
term__vars(Vars0, Vars),
parse_goal(A1, VarSet0, A, VarSet)
;
Vars = [],
parse_goal(A0, VarSet0, A, VarSet)
).
%-----------------------------------------------------------------------------%
parse_lambda_expression(LambdaExpressionTerm, Vars, Modes, Det) :-
LambdaExpressionTerm = term__functor(term__atom("is"),
[LambdaArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_args(LambdaArgsTerm, Vars, Modes).
:- pred parse_lambda_args(term, list(term), list(mode)).
:- mode parse_lambda_args(in, out, out) is semidet.
parse_lambda_args(Term, Vars, Modes) :-
( Term = term__functor(term__atom("."), [Head, Tail], _Context) ->
parse_lambda_arg(Head, Var, Mode),
Vars = [Var | Vars1],
Modes = [Mode | Modes1],
parse_lambda_args(Tail, Vars1, Modes1)
; Term = term__functor(term__atom("[]"), [], _) ->
Vars = [],
Modes = []
;
Vars = [Var],
Modes = [Mode],
parse_lambda_arg(Term, Var, Mode)
).
:- pred parse_lambda_arg(term, term, mode).
:- mode parse_lambda_arg(in, out, out) is semidet.
parse_lambda_arg(Term, VarTerm, Mode) :-
Term = term__functor(term__atom("::"), [VarTerm, ModeTerm], _),
convert_mode(ModeTerm, Mode).
%-----------------------------------------------------------------------------%
parse_pred_expression(PredTerm, Vars, Modes, Det) :-
PredTerm = term__functor(term__atom("is"), [PredArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
parse_pred_expr_args(PredArgsList, Vars, Modes).
parse_func_expression(FuncTerm, Vars, Modes, Det) :-
%
% parse a func expression with specified modes and determinism
%
FuncTerm = term__functor(term__atom("is"), [EqTerm, DetTerm], _),
EqTerm = term__functor(term__atom("="), [FuncArgsTerm, RetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
FuncArgsTerm = term__functor(term__atom("func"), FuncArgsList, _),
parse_pred_expr_args(FuncArgsList, Vars0, Modes0),
parse_lambda_arg(RetTerm, RetVar, RetMode),
list__append(Vars0, [RetVar], Vars),
list__append(Modes0, [RetMode], Modes).
parse_func_expression(FuncTerm, Vars, Modes, Det) :-
%
% parse a func expression with unspecified modes and determinism
%
FuncTerm = term__functor(term__atom("="), [FuncArgsTerm, RetVar], _),
FuncArgsTerm = term__functor(term__atom("func"), Vars0, _),
%
% the argument modes default to `in',
% the return mode defaults to `out',
% and the determinism defaults to `det'.
%
InMode = user_defined_mode(qualified("mercury_builtin", "in"), []),
OutMode = user_defined_mode(qualified("mercury_builtin", "out"), []),
list__length(Vars0, NumVars),
list__duplicate(NumVars, InMode, Modes0),
RetMode = OutMode,
Det = det,
list__append(Modes0, [RetMode], Modes),
list__append(Vars0, [RetVar], Vars).
:- pred parse_pred_expr_args(list(term), list(term), list(mode)).
:- mode parse_pred_expr_args(in, out, out) is semidet.
parse_pred_expr_args([], [], []).
parse_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
parse_lambda_arg(Term, Arg, Mode),
parse_pred_expr_args(Terms, Args, Modes).
%-----------------------------------------------------------------------------%
sym_name_and_args(Term, SymName, Args) :-
parse_qualified_term(Term, "", ok(SymName, Args)).
parse_qualified_term(Term, Msg, Result) :-
parse_qualified_term("", Term, Msg, Result).
parse_qualified_term(DefaultModName, Term, Msg, Result) :-
(
Term = term__functor(term__atom(":"), [ModuleTerm, NameArgsTerm],
_Context)
->
(
NameArgsTerm = term__functor(term__atom(Name), Args, _Context2)
->
(
ModuleTerm = term__functor(term__atom(Module), [], _Context3)
->
(
( Module = DefaultModName
; DefaultModName = ""
; DefaultModName = "mercury_builtin"
)
->
Result = ok(qualified(Module, Name), Args)
;
Result = error("module qualifier in definition does not match preceding `:- module' declaration", Term)
)
;
Result = error("module name identifier expected before ':' in qualified symbol name", Term)
)
;
Result = error("identifier expected after ':' in qualified symbol name", Term)
)
;
(
Term = term__functor(term__atom(Name), Args, _Context4)
->
(
string__sub_string_search(Name, "__", LeftLength),
LeftLength > 0
->
string__left(Name, LeftLength, Module),
string__length(Name, NameLength),
RightLength is NameLength - LeftLength - 2,
string__right(Name, RightLength, Name2),
(
( Module = DefaultModName
; DefaultModName = ""
; DefaultModName = "mercury_builtin"
)
->
Result = ok(qualified(Module, Name2), Args)
;
Result = error("module qualifier (name before `__') in definition does not match preceding `:- module' declaration", Term)
)
;
DefaultModName = ""
->
Result = ok(unqualified(Name), Args)
;
Result = ok(qualified(DefaultModName, Name), Args)
)
;
string__append("atom expected in ", Msg, ErrorMsg),
Result = error(ErrorMsg, Term)
)
).
%-----------------------------------------------------------------------------%