mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-16 14:25:56 +00:00
Approximate hours taken: 0.5 Bug fix in modecheck_unify.m. The modecheck pass should module qualify cons_ids where possible, however it did not module qualify cons_ids which appear in the unify_rhs field of var-functor unifications. This fixes the problem. compiler/modecheck_unify.m: Changes detailed above.
1084 lines
37 KiB
Mathematica
1084 lines
37 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1995 University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: modecheck_unify.m.
|
|
% Main author: fjh.
|
|
%
|
|
% This module contains the code to modecheck a unification.
|
|
%
|
|
% Check that the unification doesn't attempt to unify two free variables
|
|
% (or in general two free sub-terms) unless one of them is dead. (Also we
|
|
% ought to split unifications up if necessary to avoid complicated
|
|
% sub-unifications.)
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module modecheck_unify.
|
|
:- interface.
|
|
|
|
:- import_module hlds_goal, mode_info, modes.
|
|
|
|
% Modecheck a unification
|
|
:- pred modecheck_unification( var, unify_rhs, unification, unify_context,
|
|
hlds_goal_info, how_to_check_goal, hlds_goal_expr,
|
|
mode_info, mode_info).
|
|
:- mode modecheck_unification(in, in, in, in, in, in, out,
|
|
mode_info_di, mode_info_uo) is det.
|
|
|
|
% Work out what kind of unification a var-var unification is.
|
|
:- pred categorize_unify_var_var(mode, mode, is_live, is_live, var, var,
|
|
determinism, unify_context, map(var, type), mode_info,
|
|
hlds_goal_expr, mode_info).
|
|
:- mode categorize_unify_var_var(in, in, in, in, in, in, in, in, in,
|
|
mode_info_di, out, mode_info_uo) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
:- import_module llds, prog_data, prog_util, type_util, module_qual, instmap.
|
|
:- import_module hlds_module, hlds_goal, hlds_pred, hlds_data, hlds_out.
|
|
:- import_module mode_debug, mode_util, mode_info, modes, mode_errors.
|
|
:- import_module inst_match, unify_proc, code_util, unique_modes.
|
|
:- import_module typecheck, modecheck_call.
|
|
:- import_module bool, list, std_util, int, map, set, require, varset.
|
|
:- import_module string, assoc_list.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
modecheck_unification(X, var(Y), _Unification0, UnifyContext, _GoalInfo, _,
|
|
Unify, ModeInfo0, ModeInfo) :-
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
|
|
mode_info_get_instmap(ModeInfo0, InstMap0),
|
|
instmap__lookup_var(InstMap0, X, InstOfX),
|
|
instmap__lookup_var(InstMap0, Y, InstOfY),
|
|
mode_info_var_is_live(ModeInfo0, X, LiveX),
|
|
mode_info_var_is_live(ModeInfo0, Y, LiveY),
|
|
(
|
|
( LiveX = live, LiveY = live ->
|
|
BothLive = live
|
|
;
|
|
BothLive = dead
|
|
),
|
|
abstractly_unify_inst(BothLive, InstOfX, InstOfY,
|
|
real_unify, ModuleInfo0, UnifyInst, Det1, ModuleInfo1)
|
|
->
|
|
Inst = UnifyInst,
|
|
Det = Det1,
|
|
mode_info_set_module_info(ModeInfo0, ModuleInfo1, ModeInfo1),
|
|
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
|
|
modecheck_set_var_inst(Y, Inst, ModeInfo2, ModeInfo3),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
mode_info_get_var_types(ModeInfo3, VarTypes),
|
|
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y,
|
|
Det, UnifyContext, VarTypes, ModeInfo3, Unify, ModeInfo)
|
|
;
|
|
set__list_to_set([X, Y], WaitingVars),
|
|
mode_info_error(WaitingVars, mode_error_unify_var_var(X, Y,
|
|
InstOfX, InstOfY), ModeInfo0, ModeInfo1),
|
|
% If we get an error, set the inst to not_reached
|
|
% to suppress follow-on errors
|
|
% But don't call categorize_unification, because
|
|
% that could cause an invalid call to
|
|
% `unify_proc__request_unify'
|
|
Inst = not_reached,
|
|
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
|
|
modecheck_set_var_inst(Y, Inst, ModeInfo2, ModeInfo),
|
|
% return any old garbage
|
|
Unification = assign(X, Y),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Modes = ModeOfX - ModeOfY,
|
|
Unify = unify(X, var(Y), Modes, Unification, UnifyContext)
|
|
).
|
|
|
|
modecheck_unification(X0, functor(ConsId0, ArgVars0), Unification0,
|
|
UnifyContext, GoalInfo0, HowToCheckGoal,
|
|
Goal, ModeInfo0, ModeInfo) :-
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
|
|
mode_info_get_var_types(ModeInfo0, VarTypes0),
|
|
map__lookup(VarTypes0, X0, TypeOfX),
|
|
module_info_get_predicate_table(ModuleInfo0, PredTable),
|
|
list__length(ArgVars0, Arity),
|
|
mode_info_get_predid(ModeInfo0, ThisPredId),
|
|
(
|
|
%
|
|
% is the function symbol apply/N or ''/N,
|
|
% representing a higher-order function call?
|
|
%
|
|
% (As an optimization, if HowToCheck = check_unique_modes,
|
|
% then don't bother checking, since they will have already
|
|
% been expanded.)
|
|
%
|
|
HowToCheckGoal \= check_unique_modes,
|
|
ConsId0 = cons(unqualified(ApplyName), _),
|
|
( ApplyName = "apply" ; ApplyName = "" ),
|
|
Arity >= 2,
|
|
ArgVars0 = [FuncVar | FuncArgVars]
|
|
->
|
|
%
|
|
% Convert the higher-order function call (apply/N)
|
|
% into a higher-order predicate call
|
|
% (i.e., replace `X = apply(F, A, B, C)'
|
|
% with `call(F, A, B, C, X)')
|
|
% and then mode-check it.
|
|
%
|
|
modecheck_higher_order_func_call(FuncVar, FuncArgVars, X0,
|
|
GoalInfo0, Goal, ModeInfo0, ModeInfo)
|
|
;
|
|
%
|
|
% is the function symbol a user-defined function, rather
|
|
% than a functor which represents a data constructor?
|
|
%
|
|
|
|
% As an optimization, if HowToCheck = check_unique_modes,
|
|
% then don't bother checking, since they will have already
|
|
% been expanded.
|
|
HowToCheckGoal \= check_unique_modes,
|
|
|
|
% Find the set of candidate predicates which have the
|
|
% specified name and arity (and module, if module-qualified)
|
|
ConsId0 = cons(PredName, _),
|
|
module_info_pred_info(ModuleInfo0, ThisPredId, PredInfo),
|
|
|
|
%
|
|
% We don't do this for compiler-generated predicates;
|
|
% they are assumed to have been generated with all
|
|
% functions already expanded.
|
|
% If we did this check for compiler-generated
|
|
% predicates, it would cause the wrong behaviour
|
|
% in the case where there is a user-defined function
|
|
% whose type is exactly the same as the type of
|
|
% a constructor. (Normally that would cause
|
|
% a type ambiguity error, but compiler-generated
|
|
% predicates are not type-checked.)
|
|
%
|
|
|
|
\+ code_util__compiler_generated(PredInfo),
|
|
(
|
|
PredName = unqualified(UnqualPName),
|
|
predicate_table_search_func_name_arity(PredTable,
|
|
UnqualPName, Arity, PredIds),
|
|
|
|
% Check if there any of the candidate functions,
|
|
% have argument/return types which subsume the actual
|
|
% argument/return types of this function call
|
|
|
|
pred_info_typevarset(PredInfo, TVarSet),
|
|
map__apply_to_list(ArgVars0, VarTypes0, ArgTypes0),
|
|
list__append(ArgTypes0, [TypeOfX], ArgTypes),
|
|
typecheck__find_matching_pred_id(PredIds, ModuleInfo0,
|
|
TVarSet, ArgTypes, PredId, QualifiedFuncName)
|
|
|
|
;
|
|
PredName = qualified(FuncModule, UnqualName),
|
|
predicate_table_search_func_m_n_a(PredTable,
|
|
FuncModule, UnqualName, Arity, [PredId]),
|
|
QualifiedFuncName = PredName
|
|
)
|
|
->
|
|
%
|
|
% Convert function calls into predicate calls:
|
|
% replace `X = f(A, B, C)'
|
|
% with `f(A, B, C, X)'
|
|
%
|
|
invalid_proc_id(ProcId),
|
|
list__append(ArgVars0, [X0], ArgVars),
|
|
FuncCallUnifyContext = call_unify_context(X0,
|
|
functor(ConsId0, ArgVars0), UnifyContext),
|
|
FuncCall = call(PredId, ProcId, ArgVars, not_builtin,
|
|
yes(FuncCallUnifyContext), QualifiedFuncName),
|
|
%
|
|
% now modecheck it
|
|
%
|
|
modecheck_goal_expr(FuncCall, GoalInfo0, Goal, ModeInfo0, ModeInfo)
|
|
|
|
;
|
|
|
|
%
|
|
% We replace any unifications with higher-order pred constants
|
|
% by lambda expressions. For example, we replace
|
|
%
|
|
% X = list__append(Y) % Y::in, X::out
|
|
%
|
|
% with
|
|
%
|
|
% X = lambda [A1::in, A2::out] (list__append(Y, A1, A2))
|
|
%
|
|
% We do this because it makes two things easier.
|
|
% Firstly, we need to check that the lambda-goal doesn't
|
|
% bind any non-local variables (e.g. `Y' in above example).
|
|
% This would require a bit of moderately tricky special-case code
|
|
% if we didn't expand them.
|
|
% Secondly, the polymorphism pass (polymorphism.m) is a lot easier
|
|
% if we don't have to handle higher-order pred consts.
|
|
% If it turns out that the predicate was non-polymorphic,
|
|
% lambda.m will (I hope) turn the lambda expression
|
|
% back into a higher-order pred constant again.
|
|
%
|
|
|
|
% check if variable has a higher-order type
|
|
type_is_higher_order(TypeOfX, PredOrFunc, PredArgTypes),
|
|
ConsId0 = cons(PName, _),
|
|
% but in case we are redoing mode analysis, make sure
|
|
% we don't mess with the address constants for type_info
|
|
% fields created by polymorphism.m
|
|
Unification0 \= construct(_, code_addr_const(_, _), _, _),
|
|
Unification0 \= deconstruct(_, code_addr_const(_, _), _, _, _)
|
|
->
|
|
%
|
|
% Create the new lambda-quantified variables
|
|
%
|
|
mode_info_get_varset(ModeInfo0, VarSet0),
|
|
make_fresh_vars(PredArgTypes, VarSet0, VarTypes0,
|
|
LambdaVars, VarSet, VarTypes),
|
|
list__append(ArgVars0, LambdaVars, Args),
|
|
mode_info_set_varset(VarSet, ModeInfo0, ModeInfo1),
|
|
mode_info_set_var_types(VarTypes, ModeInfo1, ModeInfo2),
|
|
|
|
%
|
|
% Build up the hlds_goal_expr for the call that will form
|
|
% the lambda goal
|
|
%
|
|
|
|
module_info_pred_info(ModuleInfo0, ThisPredId, ThisPredInfo),
|
|
pred_info_typevarset(ThisPredInfo, TVarSet),
|
|
map__apply_to_list(Args, VarTypes, ArgTypes),
|
|
get_pred_id_and_proc_id(PName, PredOrFunc, TVarSet, ArgTypes,
|
|
ModuleInfo0, PredId, ProcId),
|
|
module_info_pred_proc_info(ModuleInfo0, PredId, ProcId,
|
|
PredInfo, ProcInfo),
|
|
|
|
% module-qualify the pred name (is this necessary?)
|
|
pred_info_module(PredInfo, PredModule),
|
|
unqualify_name(PName, UnqualPName),
|
|
QualifiedPName = qualified(PredModule, UnqualPName),
|
|
|
|
CallUnifyContext = call_unify_context(X0,
|
|
functor(ConsId0, ArgVars0), UnifyContext),
|
|
LambdaGoalExpr = call(PredId, ProcId, Args, not_builtin,
|
|
yes(CallUnifyContext), QualifiedPName),
|
|
|
|
%
|
|
% construct a goal_info for the lambda goal, making sure
|
|
% to set up the nonlocals field in the goal_info correctly
|
|
%
|
|
goal_info_get_nonlocals(GoalInfo0, NonLocals),
|
|
set__insert_list(NonLocals, LambdaVars, OutsideVars),
|
|
set__list_to_set(Args, InsideVars),
|
|
set__intersect(OutsideVars, InsideVars, LambdaNonLocals),
|
|
goal_info_init(LambdaGoalInfo0),
|
|
goal_info_set_nonlocals(LambdaGoalInfo0, LambdaNonLocals,
|
|
LambdaGoalInfo),
|
|
LambdaGoal = LambdaGoalExpr - LambdaGoalInfo,
|
|
|
|
%
|
|
% work out the modes of the introduced lambda variables
|
|
% and the determinism of the lambda goal
|
|
%
|
|
proc_info_argmodes(ProcInfo, ArgModes),
|
|
( list__drop(Arity, ArgModes, LambdaModes0) ->
|
|
LambdaModes = LambdaModes0
|
|
;
|
|
error("modecheck_unification: list__drop failed")
|
|
),
|
|
proc_info_declared_determinism(ProcInfo, MaybeDet),
|
|
( MaybeDet = yes(Det) ->
|
|
LambdaDet = Det
|
|
;
|
|
error("Sorry, not implemented: determinism inference for higher-order predicate terms")
|
|
),
|
|
|
|
%
|
|
% construct the lambda expression, and then go ahead
|
|
% and modecheck this unification in its new form
|
|
%
|
|
Functor0 = lambda_goal(PredOrFunc, LambdaVars, LambdaModes,
|
|
LambdaDet, LambdaGoal),
|
|
modecheck_unification( X0, Functor0, Unification0, UnifyContext,
|
|
GoalInfo0, HowToCheckGoal, Goal,
|
|
ModeInfo2, ModeInfo)
|
|
;
|
|
%
|
|
% It's not a higher-order pred unification - just
|
|
% call modecheck_unify_functor to do the ordinary thing.
|
|
%
|
|
mode_info_get_instmap(ModeInfo0, InstMap0),
|
|
modecheck_unify_functor(X0, TypeOfX,
|
|
ConsId0, ArgVars0, Unification0, ExtraGoals, Mode,
|
|
ConsId, ArgVars, Unification, ModeInfo0, ModeInfo),
|
|
%
|
|
% Optimize away construction of unused terms by
|
|
% replacing the unification with `true'.
|
|
%
|
|
(
|
|
Unification = construct(ConstructTarget, _, _, _),
|
|
mode_info_var_is_live(ModeInfo, ConstructTarget, dead)
|
|
->
|
|
Goal = conj([])
|
|
;
|
|
Functor = functor(ConsId, ArgVars),
|
|
Unify = unify(X, Functor, Mode, Unification,
|
|
UnifyContext),
|
|
X = X0,
|
|
%
|
|
% modecheck_unification sometimes needs to introduce
|
|
% new goals to handle complicated sub-unifications
|
|
% in deconstructions. But this should never happen
|
|
% during unique mode analysis.
|
|
% (If it did, the code would be wrong since it
|
|
% wouldn't have the correct determinism annotations.)
|
|
%
|
|
(
|
|
HowToCheckGoal = check_unique_modes,
|
|
ExtraGoals \= [] - []
|
|
->
|
|
error("unique_modes.m: re-modecheck of unification encountered complicated sub-unifies")
|
|
;
|
|
true
|
|
),
|
|
|
|
handle_extra_goals(Unify, ExtraGoals, GoalInfo0,
|
|
[X0|ArgVars0], [X|ArgVars],
|
|
InstMap0, ModeInfo, Goal)
|
|
)
|
|
).
|
|
|
|
modecheck_unification(X, lambda_goal(PredOrFunc, Vars, Modes0, Det, Goal0),
|
|
Unification0, UnifyContext, _GoalInfo, HowToCheckGoal,
|
|
unify(X, RHS, Mode, Unification, UnifyContext),
|
|
ModeInfo0, ModeInfo) :-
|
|
%
|
|
% First modecheck the lambda goal itself:
|
|
%
|
|
% initialize the initial insts of the lambda variables,
|
|
% lock the non-local vars,
|
|
% mark the non-clobbered lambda variables as live,
|
|
% modecheck the goal,
|
|
% check that the final insts are correct,
|
|
% unmark the live vars,
|
|
% unlock the non-local vars,
|
|
% restore the original instmap.
|
|
%
|
|
% XXX or should we merge the original and the final instmaps???
|
|
%
|
|
% The reason that we need to merge the original and final instmaps
|
|
% is as follows. The lambda goal will not have bound any variables
|
|
% (since they were locked), but it may have added some information
|
|
% or lost some uniqueness. We cannot use the final instmap,
|
|
% because that may have too much information. If we use the
|
|
% initial instmap, variables will be considered as unique
|
|
% even if they become shared or clobbered in the lambda goal!
|
|
%
|
|
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
|
|
|
|
( HowToCheckGoal = check_modes ->
|
|
% This only needs to be done once.
|
|
mode_info_get_types_of_vars(ModeInfo0, Vars, VarTypes),
|
|
propagate_type_info_mode_list(VarTypes, ModuleInfo0,
|
|
Modes0, Modes)
|
|
;
|
|
Modes = Modes0
|
|
),
|
|
|
|
% initialize the initial insts of the lambda variables
|
|
mode_list_get_initial_insts(Modes, ModuleInfo0, VarInitialInsts),
|
|
assoc_list__from_corresponding_lists(Vars, VarInitialInsts, VarInstAL),
|
|
instmap_delta_from_assoc_list(VarInstAL, VarInstMapDelta),
|
|
mode_info_get_instmap(ModeInfo0, InstMap0),
|
|
instmap__apply_instmap_delta(InstMap0, VarInstMapDelta, InstMap1),
|
|
mode_info_set_instmap(InstMap1, ModeInfo0, ModeInfo1),
|
|
|
|
% mark the non-clobbered lambda variables as live
|
|
get_arg_lives(Modes, ModuleInfo0, ArgLives),
|
|
get_live_vars(Vars, ArgLives, LiveVarsList),
|
|
set__list_to_set(LiveVarsList, LiveVars),
|
|
mode_info_add_live_vars(LiveVars, ModeInfo1, ModeInfo2),
|
|
|
|
% lock the non-locals
|
|
% (a lambda goal is not allowed to bind any of the non-local
|
|
% variables, since it could get called more than once)
|
|
Goal0 = _ - GoalInfo0,
|
|
goal_info_get_nonlocals(GoalInfo0, NonLocals0),
|
|
set__delete_list(NonLocals0, Vars, NonLocals),
|
|
mode_info_lock_vars(NonLocals, ModeInfo2, ModeInfo3),
|
|
|
|
mode_checkpoint(enter, "lambda goal", ModeInfo3, ModeInfo4),
|
|
% if we're being called from unique_modes.m, then we need to
|
|
% call unique_modes__check_goal rather than modecheck_goal.
|
|
( HowToCheckGoal = check_unique_modes ->
|
|
unique_modes__check_goal(Goal0, Goal, ModeInfo4, ModeInfo5)
|
|
;
|
|
modecheck_goal(Goal0, Goal, ModeInfo4, ModeInfo5)
|
|
),
|
|
mode_list_get_final_insts(Modes, ModuleInfo0, FinalInsts),
|
|
modecheck_final_insts(Vars, FinalInsts, ModeInfo5, ModeInfo6),
|
|
mode_checkpoint(exit, "lambda goal", ModeInfo6, ModeInfo7),
|
|
|
|
mode_info_remove_live_vars(LiveVars, ModeInfo7, ModeInfo8),
|
|
mode_info_unlock_vars(NonLocals, ModeInfo8, ModeInfo9),
|
|
mode_info_set_instmap(InstMap0, ModeInfo9, ModeInfo10),
|
|
|
|
%
|
|
% Now modecheck the unification of X with the lambda-expression.
|
|
%
|
|
|
|
set__to_sorted_list(NonLocals, ArgVars),
|
|
modecheck_unify_lambda(X, PredOrFunc, ArgVars, Modes,
|
|
Det, Unification0, Mode, Unification,
|
|
ModeInfo10, ModeInfo),
|
|
RHS = lambda_goal(PredOrFunc, Vars, Modes, Det, Goal).
|
|
|
|
:- pred modecheck_unify_lambda(var, pred_or_func, list(var),
|
|
list(mode), determinism, unification,
|
|
pair(mode), unification, mode_info, mode_info).
|
|
:- mode modecheck_unify_lambda(in, in, in, in, in, in,
|
|
out, out, mode_info_di, mode_info_uo) is det.
|
|
|
|
modecheck_unify_lambda(X, PredOrFunc, ArgVars, LambdaModes, LambdaDet,
|
|
Unification0, Mode, Unification, ModeInfo0, ModeInfo) :-
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
|
|
mode_info_get_instmap(ModeInfo0, InstMap0),
|
|
instmap__lookup_var(InstMap0, X, InstOfX),
|
|
InstOfY = ground(unique, yes(LambdaPredInfo)),
|
|
LambdaPredInfo = pred_inst_info(PredOrFunc, LambdaModes, LambdaDet),
|
|
(
|
|
abstractly_unify_inst(dead, InstOfX, InstOfY, real_unify,
|
|
ModuleInfo0, UnifyInst, _Det, ModuleInfo1)
|
|
->
|
|
Inst = UnifyInst,
|
|
mode_info_set_module_info(ModeInfo0, ModuleInfo1, ModeInfo1),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
% the lambda expression just maps its argument variables
|
|
% from their current insts to the same inst
|
|
instmap__lookup_vars(ArgVars, InstMap0, ArgInsts),
|
|
inst_lists_to_mode_list(ArgInsts, ArgInsts, ArgModes),
|
|
categorize_unify_var_lambda(ModeOfX, ArgModes,
|
|
X, ArgVars, PredOrFunc,
|
|
Unification0, ModeInfo1,
|
|
Unification, ModeInfo2),
|
|
modecheck_set_var_inst(X, Inst, ModeInfo2, ModeInfo)
|
|
;
|
|
set__list_to_set([X], WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_var_lambda(X, InstOfX, InstOfY),
|
|
ModeInfo0, ModeInfo1
|
|
),
|
|
% If we get an error, set the inst to not_reached
|
|
% to avoid cascading errors
|
|
% But don't call categorize_unification, because
|
|
% that could cause an invalid call to
|
|
% `unify_proc__request_unify'
|
|
Inst = not_reached,
|
|
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
% return any old garbage
|
|
Unification = Unification0
|
|
).
|
|
|
|
:- pred modecheck_unify_functor(var, (type), cons_id, list(var), unification,
|
|
pair(list(hlds_goal)), pair(mode), cons_id, list(var),
|
|
unification, mode_info, mode_info).
|
|
:- mode modecheck_unify_functor(in, in, in, in, in, out, out, out, out, out,
|
|
mode_info_di, mode_info_uo) is det.
|
|
|
|
modecheck_unify_functor(X, TypeOfX, ConsId0, ArgVars0, Unification0,
|
|
ExtraGoals, Mode, ConsId, ArgVars, Unification,
|
|
ModeInfo0, ModeInfo) :-
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
|
|
list__length(ArgVars0, Arity),
|
|
(
|
|
% module qualify cons_ids
|
|
ConsId0 = cons(unqualified(Name), _),
|
|
type_to_type_id(TypeOfX, TypeId, _),
|
|
TypeId = qualified(TypeModule, _) - _
|
|
->
|
|
ConsId = cons(qualified(TypeModule, Name), Arity)
|
|
;
|
|
ConsId = ConsId0
|
|
),
|
|
mode_info_get_instmap(ModeInfo0, InstMap0),
|
|
instmap__lookup_var(InstMap0, X, InstOfX),
|
|
instmap__lookup_vars(ArgVars0, InstMap0, InstArgs),
|
|
mode_info_var_is_live(ModeInfo0, X, LiveX),
|
|
mode_info_var_list_is_live(ArgVars0, ModeInfo0, LiveArgs),
|
|
InstOfY = bound(unique, [functor(ConsId, InstArgs)]),
|
|
(
|
|
% The occur check: X = f(X) is considered a mode error
|
|
% unless X is ground. (Actually it wouldn't be that
|
|
% hard to generate code for it - it always fails! -
|
|
% but it's most likely to be a programming error,
|
|
% so it's better to report it.)
|
|
|
|
list__member(X, ArgVars0),
|
|
\+ inst_is_ground(ModuleInfo0, InstOfX)
|
|
->
|
|
set__list_to_set([X], WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_var_functor(X, ConsId, ArgVars0,
|
|
InstOfX, InstArgs),
|
|
ModeInfo0, ModeInfo1
|
|
),
|
|
Inst = not_reached,
|
|
% If we get an error, set the inst to not_reached
|
|
% to avoid cascading errors
|
|
% But don't call categorize_unification, because
|
|
% that could cause an invalid call to
|
|
% `unify_proc__request_unify'
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
|
|
( bind_args(Inst, ArgVars0, ModeInfo2, ModeInfo3) ->
|
|
ModeInfo = ModeInfo3
|
|
;
|
|
error("bind_args failed")
|
|
),
|
|
% return any old garbage
|
|
Unification = Unification0,
|
|
ArgVars = ArgVars0,
|
|
ExtraGoals = [] - []
|
|
;
|
|
abstractly_unify_inst_functor(LiveX, InstOfX, ConsId,
|
|
InstArgs, LiveArgs, real_unify, ModuleInfo0,
|
|
UnifyInst, ModuleInfo1)
|
|
->
|
|
Inst = UnifyInst,
|
|
mode_info_set_module_info(ModeInfo0, ModuleInfo1, ModeInfo1),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
( get_mode_of_args(Inst, InstArgs, ModeArgs0) ->
|
|
ModeArgs = ModeArgs0
|
|
;
|
|
error("get_mode_of_args failed")
|
|
),
|
|
(
|
|
inst_expand(ModuleInfo1, InstOfX, InstOfX1),
|
|
get_arg_insts(InstOfX1, ConsId, Arity, InstOfXArgs),
|
|
get_mode_of_args(Inst, InstOfXArgs, ModeOfXArgs0)
|
|
->
|
|
ModeOfXArgs = ModeOfXArgs0
|
|
;
|
|
error("get_(inst/mode)_of_args failed")
|
|
),
|
|
mode_info_get_var_types(ModeInfo1, VarTypes),
|
|
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ModeArgs,
|
|
X, ConsId, ArgVars0, VarTypes,
|
|
Unification0, ModeInfo1,
|
|
Unification1, ModeInfo2),
|
|
split_complicated_subunifies(Unification1, ArgVars0,
|
|
Unification, ArgVars, ExtraGoals,
|
|
ModeInfo2, ModeInfo3),
|
|
modecheck_set_var_inst(X, Inst, ModeInfo3, ModeInfo4),
|
|
( bind_args(Inst, ArgVars, ModeInfo4, ModeInfo5) ->
|
|
ModeInfo = ModeInfo5
|
|
;
|
|
error("bind_args failed")
|
|
)
|
|
;
|
|
set__list_to_set([X | ArgVars0], WaitingVars), % conservative
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_var_functor(X, ConsId, ArgVars0,
|
|
InstOfX, InstArgs),
|
|
ModeInfo0, ModeInfo1
|
|
),
|
|
% If we get an error, set the inst to not_reached
|
|
% to avoid cascading errors
|
|
% But don't call categorize_unification, because
|
|
% that could cause an invalid call to
|
|
% `unify_proc__request_unify'
|
|
Inst = not_reached,
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
|
|
( bind_args(Inst, ArgVars0, ModeInfo2, ModeInfo3) ->
|
|
ModeInfo = ModeInfo3
|
|
;
|
|
error("bind_args failed")
|
|
),
|
|
% return any old garbage
|
|
Unification = Unification0,
|
|
ArgVars = ArgVars0,
|
|
ExtraGoals = [] - []
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred modecheck_higher_order_func_call(var, list(var), var, hlds_goal_info,
|
|
hlds_goal_expr, mode_info, mode_info).
|
|
:- mode modecheck_higher_order_func_call(in, in, in, in, out,
|
|
mode_info_di, mode_info_uo) is det.
|
|
|
|
modecheck_higher_order_func_call(FuncVar, Args0, RetVar, GoalInfo0, Goal) -->
|
|
mode_checkpoint(enter, "higher-order function call"),
|
|
mode_info_set_call_context(higher_order_call(function)),
|
|
|
|
=(ModeInfo0),
|
|
{ mode_info_get_instmap(ModeInfo0, InstMap0) },
|
|
|
|
{ list__append(Args0, [RetVar], Args1) },
|
|
modecheck_higher_order_call(function, FuncVar, Args1,
|
|
Types, Modes, Det, Args, ExtraGoals),
|
|
|
|
=(ModeInfo),
|
|
{ Call = higher_order_call(FuncVar, Args, Types, Modes, Det) },
|
|
{ handle_extra_goals(Call, ExtraGoals, GoalInfo0, Args1, Args,
|
|
InstMap0, ModeInfo, Goal) },
|
|
|
|
mode_info_unset_call_context,
|
|
mode_checkpoint(exit, "higher-order function call").
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% The argument unifications in a construction or deconstruction
|
|
% unification must be simple assignments, they cannot be
|
|
% complicated unifications. If they are, we split them out
|
|
% into separate unifications by introducing fresh variables here.
|
|
|
|
:- pred split_complicated_subunifies(unification, list(var),
|
|
unification, list(var), pair(list(hlds_goal)),
|
|
mode_info, mode_info).
|
|
:- mode split_complicated_subunifies(in, in, out, out, out,
|
|
mode_info_di, mode_info_uo) is det.
|
|
|
|
split_complicated_subunifies(Unification0, ArgVars0,
|
|
Unification, ArgVars, ExtraGoals) -->
|
|
(
|
|
{ Unification0 = deconstruct(X, ConsId, ArgVars0, ArgModes0,
|
|
Det) }
|
|
->
|
|
(
|
|
split_complicated_subunifies_2(ArgVars0, ArgModes0,
|
|
ArgVars1, ArgModes, ExtraGoals1)
|
|
->
|
|
{ ArgVars = ArgVars1 },
|
|
{ Unification = deconstruct(X, ConsId, ArgVars,
|
|
ArgModes, Det) },
|
|
{ ExtraGoals = ExtraGoals1 }
|
|
;
|
|
{ error("split_complicated_subunifies_2 failed") }
|
|
)
|
|
;
|
|
{ Unification = Unification0 },
|
|
{ ArgVars = ArgVars0 },
|
|
{ ExtraGoals = [] - [] }
|
|
).
|
|
|
|
:- pred split_complicated_subunifies_2(list(var), list(uni_mode),
|
|
list(var), list(uni_mode), pair(list(hlds_goal)),
|
|
mode_info, mode_info).
|
|
:- mode split_complicated_subunifies_2(in, in, out, out, out,
|
|
mode_info_di, mode_info_uo) is semidet.
|
|
|
|
split_complicated_subunifies_2([], [], [], [], [] - []) --> [].
|
|
split_complicated_subunifies_2([Var0 | Vars0], [UniMode0 | UniModes0],
|
|
Vars, UniModes, ExtraGoals, ModeInfo0, ModeInfo) :-
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo),
|
|
UniMode0 = (InitialInstX - InitialInstY -> FinalInstX - FinalInstY),
|
|
ModeX = (InitialInstX -> FinalInstX),
|
|
ModeY = (InitialInstY -> FinalInstY),
|
|
mode_info_get_var_types(ModeInfo0, VarTypes0),
|
|
map__lookup(VarTypes0, Var0, VarType),
|
|
(
|
|
mode_to_arg_mode(ModuleInfo, ModeX, VarType, top_in),
|
|
mode_to_arg_mode(ModuleInfo, ModeY, VarType, top_in)
|
|
->
|
|
split_complicated_subunifies_2(Vars0, UniModes0,
|
|
Vars1, UniModes1, ExtraGoals0,
|
|
ModeInfo0, ModeInfo1),
|
|
ExtraGoals0 = BeforeGoals - AfterGoals0,
|
|
|
|
% introduce a new variable `Var'
|
|
mode_info_get_varset(ModeInfo1, VarSet1),
|
|
mode_info_get_var_types(ModeInfo1, VarTypes1),
|
|
varset__new_var(VarSet1, Var, VarSet),
|
|
map__set(VarTypes1, Var, VarType, VarTypes),
|
|
mode_info_set_varset(VarSet, ModeInfo1, ModeInfo2),
|
|
mode_info_set_var_types(VarTypes, ModeInfo2, ModeInfo3),
|
|
|
|
% change the main unification to use `Var' instead of Var0
|
|
UniMode = (InitialInstX - free -> InitialInstX - InitialInstX),
|
|
UniModes = [UniMode | UniModes1],
|
|
Vars = [Var | Vars1],
|
|
|
|
% create code to do a unification between `Var' and `Var0'
|
|
ModeVar0 = (InitialInstY -> FinalInstY),
|
|
ModeVar = (InitialInstX -> FinalInstX),
|
|
|
|
mode_info_get_module_info(ModeInfo3, ModuleInfo0),
|
|
(
|
|
abstractly_unify_inst(dead, InitialInstX, InitialInstY,
|
|
real_unify, ModuleInfo0, _, Det1, ModuleInfo1)
|
|
->
|
|
mode_info_set_module_info(ModeInfo3, ModuleInfo1,
|
|
ModeInfo4),
|
|
Det = Det1
|
|
;
|
|
ModeInfo4 = ModeInfo3,
|
|
Det = semidet
|
|
% XXX warning - it might be det in some cases.
|
|
% should we report an error here? should this
|
|
% ever happen?
|
|
),
|
|
mode_info_get_mode_context(ModeInfo4, ModeContext),
|
|
mode_context_to_unify_context(ModeContext, ModeInfo4,
|
|
UnifyContext),
|
|
categorize_unify_var_var(ModeVar0, ModeVar,
|
|
live, dead, Var0, Var, Det, UnifyContext,
|
|
VarTypes, ModeInfo4, AfterGoal, ModeInfo),
|
|
|
|
% compute the goal_info nonlocal vars & instmap delta
|
|
% for the newly created goal
|
|
set__list_to_set([Var0, Var], NonLocals),
|
|
( InitialInstY = FinalInstY ->
|
|
InstMapAL0 = []
|
|
;
|
|
InstMapAL0 = [Var0 - FinalInstY]
|
|
),
|
|
InstMapAL = [Var - FinalInstX | InstMapAL0],
|
|
instmap_delta_from_assoc_list(InstMapAL, InstMapDelta),
|
|
goal_info_init(GoalInfo0),
|
|
goal_info_set_nonlocals(GoalInfo0, NonLocals,
|
|
GoalInfo1),
|
|
goal_info_set_instmap_delta(GoalInfo1, InstMapDelta, GoalInfo),
|
|
|
|
% insert the unification between `Var' and `Var0' at
|
|
% the start of the AfterGoals
|
|
AfterGoals = [AfterGoal - GoalInfo | AfterGoals0],
|
|
ExtraGoals = BeforeGoals - AfterGoals
|
|
;
|
|
Vars = [Var0 | Vars1],
|
|
UniModes = [UniMode0 | UniModes1],
|
|
split_complicated_subunifies_2(Vars0, UniModes0,
|
|
Vars1, UniModes1, ExtraGoals, ModeInfo0, ModeInfo)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% categorize_unify_var_var works out which category a unification
|
|
% between a variable and another variable expression is - whether it is
|
|
% an assignment, a simple test or a complicated unify.
|
|
|
|
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y, Det,
|
|
UnifyContext, VarTypes, ModeInfo0, Unify, ModeInfo) :-
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
|
|
(
|
|
mode_is_output(ModuleInfo0, ModeOfX)
|
|
->
|
|
Unification = assign(X, Y),
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
mode_is_output(ModuleInfo0, ModeOfY)
|
|
->
|
|
Unification = assign(Y, X),
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
mode_is_unused(ModuleInfo0, ModeOfX),
|
|
mode_is_unused(ModuleInfo0, ModeOfY)
|
|
->
|
|
% For free-free unifications, we pretend for a moment that they
|
|
% are an assignment to the dead variable - they will then
|
|
% be optimized away.
|
|
( LiveX = dead ->
|
|
Unification = assign(X, Y)
|
|
; LiveY = dead ->
|
|
Unification = assign(Y, X)
|
|
;
|
|
error("categorize_unify_var_var: free-free unify!")
|
|
),
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
map__lookup(VarTypes, X, Type),
|
|
(
|
|
type_is_atomic(Type, ModuleInfo0)
|
|
->
|
|
Unification = simple_test(X, Y),
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
mode_get_insts(ModuleInfo0, ModeOfX, IX, FX),
|
|
mode_get_insts(ModuleInfo0, ModeOfY, IY, FY),
|
|
determinism_components(Det, CanFail, _),
|
|
UniMode = ((IX - IY) -> (FX - FY)),
|
|
Unification = complicated_unify(UniMode, CanFail),
|
|
(
|
|
type_is_higher_order(Type, PredOrFunc, _)
|
|
->
|
|
% we do not want to report this as an error
|
|
% if it occurs in a compiler-generated
|
|
% predicate - instead, we delay the error
|
|
% until runtime so that it only occurs if
|
|
% the compiler-generated predicate gets called
|
|
mode_info_get_predid(ModeInfo0, PredId),
|
|
module_info_pred_info(ModuleInfo0, PredId,
|
|
PredInfo),
|
|
( code_util__compiler_generated(PredInfo) ->
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
set__init(WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_pred(X, error_at_var(Y), Type, PredOrFunc),
|
|
ModeInfo0, ModeInfo)
|
|
)
|
|
;
|
|
type_to_type_id(Type, TypeId, _)
|
|
->
|
|
unify_proc__request_unify(TypeId - UniMode, Det,
|
|
ModuleInfo0, ModuleInfo),
|
|
mode_info_set_module_info(ModeInfo0, ModuleInfo,
|
|
ModeInfo)
|
|
;
|
|
ModeInfo = ModeInfo0
|
|
)
|
|
)
|
|
),
|
|
%
|
|
% Optimize away unifications with dead variables
|
|
% and simple tests that cannot fail
|
|
% by replacing them with `true'.
|
|
% (The optimization of simple tests is necessary
|
|
% because otherwise determinism analysis assumes they can fail.
|
|
% The optimization of assignments to dead variables may be
|
|
% necessary to stop the code generator from getting confused.)
|
|
%
|
|
(
|
|
Unification = assign(AssignTarget, _),
|
|
mode_info_var_is_live(ModeInfo, AssignTarget, dead)
|
|
->
|
|
Unify = conj([])
|
|
;
|
|
Unification = simple_test(_, _),
|
|
Det = det
|
|
->
|
|
Unify = conj([])
|
|
;
|
|
Unify = unify(X, var(Y), ModeOfX - ModeOfY, Unification,
|
|
UnifyContext)
|
|
).
|
|
|
|
% categorize_unify_var_lambda works out which category a unification
|
|
% between a variable and a lambda expression is - whether it is a construction
|
|
% unification or a deconstruction. It also works out whether it will
|
|
% be deterministic or semideterministic.
|
|
|
|
:- pred categorize_unify_var_lambda(mode, list(mode),
|
|
var, list(var), pred_or_func,
|
|
unification, mode_info, unification, mode_info).
|
|
:- mode categorize_unify_var_lambda(in, in, in, in, in,
|
|
in, mode_info_di, out, mode_info_uo) is det.
|
|
|
|
categorize_unify_var_lambda(ModeOfX, ArgModes0, X, ArgVars, PredOrFunc,
|
|
Unification0, ModeInfo0, Unification, ModeInfo) :-
|
|
% if we are re-doing mode analysis, preserve the existing cons_id
|
|
( Unification0 = construct(_, ConsId0, _, _) ->
|
|
ConsId = ConsId0
|
|
; Unification0 = deconstruct(_, ConsId1, _, _, _) ->
|
|
ConsId = ConsId1
|
|
;
|
|
% the real cons_id will be computed by polymorphism.m;
|
|
% we just put in a dummy one for now
|
|
list__length(ArgVars, Arity),
|
|
ConsId = cons(unqualified("__LambdaGoal__"), Arity)
|
|
),
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo),
|
|
mode_util__modes_to_uni_modes(ArgModes0, ArgModes0,
|
|
ModuleInfo, ArgModes),
|
|
(
|
|
mode_is_output(ModuleInfo, ModeOfX)
|
|
->
|
|
Unification = construct(X, ConsId, ArgVars, ArgModes),
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
% If it's a deconstruction, it is a mode error
|
|
set__init(WaitingVars),
|
|
mode_info_get_var_types(ModeInfo0, VarTypes0),
|
|
map__lookup(VarTypes0, X, Type),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_pred(X,
|
|
error_at_lambda(ArgVars, ArgModes0),
|
|
Type, PredOrFunc),
|
|
ModeInfo0, ModeInfo),
|
|
% return any old garbage
|
|
Unification = Unification0
|
|
).
|
|
|
|
% categorize_unify_var_functor works out which category a unification
|
|
% between a variable and a functor is - whether it is a construction
|
|
% unification or a deconstruction. It also works out whether it will
|
|
% be deterministic or semideterministic.
|
|
|
|
:- pred categorize_unify_var_functor(mode, list(mode), list(mode), var,
|
|
cons_id, list(var), map(var, type), unification, mode_info,
|
|
unification, mode_info).
|
|
:- mode categorize_unify_var_functor(in, in, in, in, in, in, in, in,
|
|
mode_info_di, out, mode_info_uo) is det.
|
|
|
|
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ArgModes0,
|
|
X, NewConsId, ArgVars, VarTypes, Unification0, ModeInfo0,
|
|
Unification, ModeInfo) :-
|
|
mode_info_get_module_info(ModeInfo0, ModuleInfo),
|
|
map__lookup(VarTypes, X, TypeOfX),
|
|
% if we are re-doing mode analysis, preserve the existing cons_id
|
|
( Unification0 = construct(_, ConsId0, _, _) ->
|
|
ConsId = ConsId0
|
|
; Unification0 = deconstruct(_, ConsId1, _, _, _) ->
|
|
ConsId = ConsId1
|
|
;
|
|
ConsId = NewConsId
|
|
),
|
|
mode_util__modes_to_uni_modes(ModeOfXArgs, ArgModes0,
|
|
ModuleInfo, ArgModes),
|
|
(
|
|
mode_is_output(ModuleInfo, ModeOfX)
|
|
->
|
|
Unification = construct(X, ConsId, ArgVars, ArgModes),
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
% It's a deconstruction.
|
|
(
|
|
% If the variable was already known to be bound
|
|
% to a single particular functor, then the
|
|
% unification either always succeeds or always
|
|
% fails. In the latter case, the final inst will
|
|
% be `not_reached' or `bound([])'. So if both
|
|
% the initial and final inst are `bound([_])',
|
|
% then the unification must be deterministic.
|
|
mode_get_insts(ModuleInfo, ModeOfX,
|
|
InitialInst0, FinalInst0),
|
|
inst_expand(ModuleInfo, InitialInst0, InitialInst),
|
|
inst_expand(ModuleInfo, FinalInst0, FinalInst),
|
|
InitialInst = bound(_, [_]),
|
|
FinalInst = bound(_, [_])
|
|
->
|
|
CanFail = cannot_fail,
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
% If the type has only one constructor,
|
|
% then the unification cannot fail
|
|
type_constructors(TypeOfX, ModuleInfo, Constructors),
|
|
Constructors = [_]
|
|
->
|
|
CanFail = cannot_fail,
|
|
ModeInfo = ModeInfo0
|
|
;
|
|
% Otherwise, it can fail
|
|
CanFail = can_fail,
|
|
( type_is_higher_order(TypeOfX, PredOrFunc, _) ->
|
|
set__init(WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_pred(X,
|
|
error_at_functor(ConsId, ArgVars),
|
|
TypeOfX, PredOrFunc),
|
|
ModeInfo0, ModeInfo)
|
|
;
|
|
ModeInfo = ModeInfo0
|
|
)
|
|
),
|
|
Unification = deconstruct(X, ConsId, ArgVars, ArgModes, CanFail)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred bind_args(inst, list(var), mode_info, mode_info).
|
|
:- mode bind_args(in, in, mode_info_di, mode_info_uo) is semidet.
|
|
|
|
bind_args(not_reached, _) -->
|
|
{ instmap__init_unreachable(InstMap) },
|
|
mode_info_set_instmap(InstMap).
|
|
bind_args(ground(Uniq, no), Args) -->
|
|
ground_args(Uniq, Args).
|
|
bind_args(bound(_Uniq, List), Args) -->
|
|
( { List = [] } ->
|
|
% the code is unreachable
|
|
{ instmap__init_unreachable(InstMap) },
|
|
mode_info_set_instmap(InstMap)
|
|
;
|
|
{ List = [functor(_, InstList)] },
|
|
bind_args_2(Args, InstList)
|
|
).
|
|
|
|
:- pred bind_args_2(list(var), list(inst), mode_info, mode_info).
|
|
:- mode bind_args_2(in, in, mode_info_di, mode_info_uo) is semidet.
|
|
|
|
bind_args_2([], []) --> [].
|
|
bind_args_2([Arg | Args], [Inst | Insts]) -->
|
|
modecheck_set_var_inst(Arg, Inst),
|
|
bind_args_2(Args, Insts).
|
|
|
|
:- pred ground_args(uniqueness, list(var), mode_info, mode_info).
|
|
:- mode ground_args(in, in, mode_info_di, mode_info_uo) is det.
|
|
|
|
ground_args(_Uniq, []) --> [].
|
|
ground_args(Uniq, [Arg | Args]) -->
|
|
modecheck_set_var_inst(Arg, ground(Uniq, no)),
|
|
ground_args(Uniq, Args).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% get_mode_of_args(FinalInst, InitialArgInsts, ArgModes):
|
|
% for a var-functor unification,
|
|
% given the final inst of the var
|
|
% and the initial insts of the functor arguments,
|
|
% compute the modes of the functor arguments
|
|
|
|
:- pred get_mode_of_args(inst, list(inst), list(mode)).
|
|
:- mode get_mode_of_args(in, in, out) is semidet.
|
|
|
|
get_mode_of_args(not_reached, ArgInsts, ArgModes) :-
|
|
mode_set_args(ArgInsts, not_reached, ArgModes).
|
|
get_mode_of_args(any(Uniq), ArgInsts, ArgModes) :-
|
|
mode_set_args(ArgInsts, any(Uniq), ArgModes).
|
|
get_mode_of_args(ground(Uniq, no), ArgInsts, ArgModes) :-
|
|
mode_set_args(ArgInsts, ground(Uniq, no), ArgModes).
|
|
get_mode_of_args(bound(_Uniq, List), ArgInstsA, ArgModes) :-
|
|
( List = [] ->
|
|
% the code is unreachable
|
|
mode_set_args(ArgInstsA, not_reached, ArgModes)
|
|
;
|
|
List = [functor(_Name, ArgInstsB)],
|
|
get_mode_of_args_2(ArgInstsA, ArgInstsB, ArgModes)
|
|
).
|
|
|
|
:- pred get_mode_of_args_2(list(inst), list(inst), list(mode)).
|
|
:- mode get_mode_of_args_2(in, in, out) is semidet.
|
|
|
|
get_mode_of_args_2([], [], []).
|
|
get_mode_of_args_2([InstA | InstsA], [InstB | InstsB], [Mode | Modes]) :-
|
|
Mode = (InstA -> InstB),
|
|
get_mode_of_args_2(InstsA, InstsB, Modes).
|
|
|
|
:- pred mode_set_args(list(inst), inst, list(mode)).
|
|
:- mode mode_set_args(in, in, out) is det.
|
|
|
|
mode_set_args([], _, []).
|
|
mode_set_args([Inst | Insts], FinalInst, [Mode | Modes]) :-
|
|
Mode = (Inst -> FinalInst),
|
|
mode_set_args(Insts, FinalInst, Modes).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred make_fresh_vars(list(type), varset, map(var, type),
|
|
list(var), varset, map(var, type)).
|
|
:- mode make_fresh_vars(in, in, in, out, out, out) is det.
|
|
|
|
make_fresh_vars([], VarSet, VarTypes, [], VarSet, VarTypes).
|
|
make_fresh_vars([Type|Types], VarSet0, VarTypes0,
|
|
[Var|Vars], VarSet, VarTypes) :-
|
|
varset__new_var(VarSet0, Var, VarSet1),
|
|
map__det_insert(VarTypes0, Var, Type, VarTypes1),
|
|
make_fresh_vars(Types, VarSet1, VarTypes1, Vars, VarSet, VarTypes).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|