mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-13 04:44:39 +00:00
Estimated hours taken: 2 Branches: main compiler/*.m: Import only one compiler module per line. Sort the blocks of imports. This makes it easier to merge in changes. In a couple of places, remove unnecessary imports.
763 lines
29 KiB
Mathematica
763 lines
29 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 2001-2003 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Authors: pjs, zs
|
|
%
|
|
% Module `matching' - performs bipartite graph maximal matching computation
|
|
% specialized for the stack slot optimization. The structure of the graph
|
|
% on which the algorithm operates is documented in the paper "Using the heap
|
|
% to eliminate stack accesses" by Zoltan Somogyi and Peter Stuckey.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module backend_libs__matching.
|
|
|
|
:- interface.
|
|
|
|
:- import_module parse_tree__prog_data.
|
|
|
|
:- import_module bool, list, set.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This structure stores the adjustable parameters of the matching
|
|
% operation.
|
|
%
|
|
% The first four fields give the relative costs of the four kinds
|
|
% of operations this optimization concerns itself with.
|
|
%
|
|
% one_path_op_ratio and one_path_op_ratio are tuning parameters;
|
|
% find_via_cell_vars will say that the optimization is inapplicable
|
|
% (i.e. that none of the candidates should be accessed via the cell)
|
|
% unless the ratios of benefit operations to cost operations and
|
|
% benefit nodes to cost nodes are at or above the percentage
|
|
% thresholds specified by these two fields respectively.
|
|
%
|
|
% The include_all_candidates field says whether this thresholding
|
|
% operation is to count the benefits obtainable from the candidate
|
|
% variables that do not happen to be accessed in the AfterFlush
|
|
% argument of find_via_cell_vars.
|
|
|
|
:- type matching_params
|
|
---> matching_params(
|
|
cell_var_store_cost :: int,
|
|
cell_var_load_cost :: int,
|
|
field_var_store_cost :: int,
|
|
field_var_load_cost :: int,
|
|
one_path_op_ratio :: int,
|
|
one_path_node_ratio :: int,
|
|
include_all_candidates :: bool
|
|
).
|
|
|
|
% find_via_cell_vars(CellVar, CandidateFieldVars, CellVarFlushedLater,
|
|
% BeforeFlush, AfterFlush, MatchingParams,
|
|
% RealizedBenefitNodes, RealizedCostNodes, ViaCellVars)
|
|
%
|
|
% CellVar gives a variable that corresponds to a memory cell, while
|
|
% CandidateArgVars gives a subset of the variables that are the fields
|
|
% of that cell. BeforeFlush gives the set of variables the program
|
|
% accesses in the segment before the first stack flush, while each
|
|
% element of AfterFlush corresponds to a segment, and gives the set
|
|
% of variables accessed in that segment.
|
|
%
|
|
% The output ViaCellVars, gives the subset of CandidateArgVars that
|
|
% should be accesed via CellVar. The outputs RealizedBenefitNodes
|
|
% and RealizedCostNodes give the benefit and cost nodes realized
|
|
% by this choice.
|
|
|
|
:- type benefit_node.
|
|
:- type cost_node.
|
|
|
|
:- pred find_via_cell_vars(prog_var::in, set(prog_var)::in, bool::in,
|
|
set(prog_var)::in, list(set(prog_var))::in, matching_params::in,
|
|
set(benefit_node)::out, set(cost_node)::out, set(prog_var)::out)
|
|
is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
% Uncomment if you want to dump performance information into the .err file.
|
|
% :- import_module unsafe.
|
|
|
|
:- import_module term.
|
|
:- import_module int, assoc_list, map, queue, std_util, require, io.
|
|
|
|
% The stack optimization graph is a bipartite graph, whose two node types
|
|
% are cost nodes and benefit nodes. Each node represents a copy of an
|
|
% operation, a load or a store. We have LoadCost copies of each load operation
|
|
% and StoreCost copies of each store operation, where LoadCost and StoreCost
|
|
% are parameters of find_via_cell_vars.
|
|
%
|
|
% We represent the stack optimization graph in the usual manner: as two maps,
|
|
% with each map one kind of node to the set of nodes of the other types to
|
|
% which it is adjacent.
|
|
|
|
:- type stack_slot_graph
|
|
---> stack_slot_graph(
|
|
map(cost_node, set(benefit_node)),
|
|
map(benefit_node, set(cost_node))
|
|
).
|
|
|
|
:- type cost_operation
|
|
---> cell_var_load(int) % segment number, >= 2
|
|
; cell_var_store. % in initial segment
|
|
|
|
:- type benefit_operation
|
|
---> field_var_load(prog_var) % in initial segment
|
|
; field_var_store(prog_var). % in initial segment
|
|
|
|
% The integers differentiate the different copies of an operation.
|
|
:- type cost_node ---> cost_node(cost_operation, int).
|
|
:- type benefit_node ---> benefit_node(benefit_operation, int).
|
|
|
|
% The field_costs_benefits structure records, for a given field variable,
|
|
% the nodes of the cost we incur and the benefits we gain if we access that
|
|
% field variable via the cell instead of via the stack.
|
|
|
|
:- type field_costs_benefits
|
|
---> field_costs_benefits(
|
|
prog_var,
|
|
set(cost_node),
|
|
set(benefit_node)
|
|
).
|
|
|
|
% Matchings are sets of edges, in which each node in the graph can occur at
|
|
% most once. We represent the matching by mapping each node that is an endpoint
|
|
% of an edge in the matching to the node at the other end of the edge.
|
|
% If a node is not in the matching, it will not occur in the relevant map.
|
|
|
|
:- type matching
|
|
---> matching(
|
|
map(cost_node, benefit_node),
|
|
map(benefit_node, cost_node)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Uncomment if you want to dump performance information into the .err file.
|
|
% :- pragma promise_pure(find_via_cell_vars/15).
|
|
|
|
find_via_cell_vars(CellVar, CandidateFieldVars, CellVarFlushedLater,
|
|
BeforeFlush, AfterFlush, MatchingParams,
|
|
RealizedBenefitNodes, RealizedCostNodes, ViaCellVars) :-
|
|
InclAllCand = MatchingParams ^ include_all_candidates,
|
|
(
|
|
InclAllCand = no,
|
|
AllSegmentVars = set__union_list([BeforeFlush | AfterFlush]),
|
|
set__intersect(CandidateFieldVars, AllSegmentVars,
|
|
OccurringCandidateFieldVars),
|
|
set__difference(CandidateFieldVars, OccurringCandidateFieldVars,
|
|
NonOccurringCandidateFieldVars)
|
|
;
|
|
InclAllCand = yes,
|
|
OccurringCandidateFieldVars = CandidateFieldVars,
|
|
NonOccurringCandidateFieldVars = set__init
|
|
),
|
|
set__to_sorted_list(OccurringCandidateFieldVars,
|
|
OccurringCandidateFieldVarList),
|
|
list__filter_map(
|
|
simplify_segment(CellVar, OccurringCandidateFieldVars),
|
|
AfterFlush, FilteredAfterFlush),
|
|
NumberedAfterFlush = number_segments(2, FilteredAfterFlush),
|
|
CostsBenefits = list__map(
|
|
find_costs_benefits(CellVar, BeforeFlush, NumberedAfterFlush,
|
|
CellVarFlushedLater, MatchingParams),
|
|
OccurringCandidateFieldVarList),
|
|
list__foldl(gather_benefits, CostsBenefits, set__init, BenefitNodes),
|
|
list__foldl(gather_costs, CostsBenefits, set__init, CostNodes),
|
|
set__to_sorted_list(BenefitNodes, BenefitNodeList),
|
|
set__to_sorted_list(CostNodes, CostNodeList),
|
|
Graph = create_graph(CostsBenefits),
|
|
MaximalMatching = maximal_matching(BenefitNodeList, Graph),
|
|
MaximalMatching = matching(MaximalMatchingCostToBenefit, _),
|
|
UnMatchedCostNodes = get_unmatched_cost_nodes(CostNodeList,
|
|
MaximalMatchingCostToBenefit),
|
|
MarkedBenefitNodes = reachable_by_alternating_path(UnMatchedCostNodes,
|
|
Graph, MaximalMatching),
|
|
ViaCellOccurringVars0 =
|
|
compute_via_cell_vars(CostsBenefits, MarkedBenefitNodes),
|
|
list__filter(realized_costs_benefits(ViaCellOccurringVars0),
|
|
CostsBenefits, RealizedCostsBenefits),
|
|
list__foldl(gather_benefits, RealizedCostsBenefits,
|
|
set__init, RealizedBenefitNodes),
|
|
list__foldl(gather_costs, RealizedCostsBenefits,
|
|
set__init, RealizedCostNodes),
|
|
RealizedBenefitOps =
|
|
set__map(project_benefit_op, RealizedBenefitNodes),
|
|
RealizedCostOps =
|
|
set__map(project_cost_op, RealizedCostNodes),
|
|
set__to_sorted_list(RealizedBenefitNodes, RealizedBenefitNodeList),
|
|
set__to_sorted_list(RealizedCostNodes, RealizedCostNodeList),
|
|
set__to_sorted_list(RealizedBenefitOps, RealizedBenefitOpList),
|
|
set__to_sorted_list(RealizedCostOps, RealizedCostOpList),
|
|
list__length(RealizedBenefitNodeList, RealizedBenefitNodeCount),
|
|
list__length(RealizedBenefitOpList, RealizedBenefitOpCount),
|
|
list__length(RealizedCostNodeList, RealizedCostNodeCount),
|
|
list__length(RealizedCostOpList, RealizedCostOpCount),
|
|
OpRatio = MatchingParams ^ one_path_op_ratio,
|
|
NodeRatio = MatchingParams ^ one_path_node_ratio,
|
|
(
|
|
RealizedBenefitOpCount * 100 >=
|
|
RealizedCostOpCount * OpRatio,
|
|
RealizedBenefitNodeCount * 100 >=
|
|
RealizedCostNodeCount * NodeRatio
|
|
->
|
|
ViaCellOccurringVars = ViaCellOccurringVars0
|
|
% Uncomment if you want to dump performance information into
|
|
% the .err file.
|
|
% Nullified = no
|
|
;
|
|
ViaCellOccurringVars = set__init
|
|
% Uncomment if you want to dump performance information into
|
|
% the .err file.
|
|
% Nullified = yes
|
|
),
|
|
ViaCellVars = set__union(ViaCellOccurringVars,
|
|
NonOccurringCandidateFieldVars).
|
|
% Uncomment if you want to dump performance information into
|
|
% the .err file.
|
|
% impure unsafe_perform_io(dump_results(CellVar, CandidateFieldVars,
|
|
% OccurringCandidateFieldVarList, ViaCellOccurringVars0,
|
|
% Nullified, BeforeFlush, NumberedAfterFlush,
|
|
% RealizedBenefitNodeList, RealizedBenefitOpList,
|
|
% RealizedCostNodeList, RealizedCostOpList)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Simplify_segment fails if the CellVar is in the SegmentVars since the cost
|
|
% of executing such segments doesn't depend on whether we access field vars
|
|
% via the cell var or via the stack. If CellVar is not in SegmentVars,
|
|
% them simplify_segment succeeds after removing the non-candidate variables
|
|
% from SegmentVars0.
|
|
|
|
:- pred simplify_segment(prog_var::in, set(prog_var)::in, set(prog_var)::in,
|
|
set(prog_var)::out) is semidet.
|
|
|
|
simplify_segment(CellVar, CandidateArgVars, SegmentVars0, SegmentVars) :-
|
|
\+ set__member(CellVar, SegmentVars0),
|
|
SegmentVars = set__intersect(SegmentVars0, CandidateArgVars).
|
|
|
|
:- func number_segments(int, list(set(prog_var))) =
|
|
assoc_list(int, set(prog_var)).
|
|
|
|
number_segments(_N, []) = [].
|
|
number_segments(N, [Segment | Segments]) =
|
|
[N - Segment | number_segments(N + 1, Segments)].
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% find_costs_benefits computes the costs and benefits of accessing the given
|
|
% field variable FieldVar via the cell variable CellVar.
|
|
|
|
:- func find_costs_benefits(prog_var, set(prog_var),
|
|
assoc_list(int, set(prog_var)), bool, matching_params, prog_var)
|
|
= field_costs_benefits.
|
|
|
|
find_costs_benefits(CellVar, BeforeFlush, AfterFlush, CellVarFlushedLater,
|
|
MatchingParams, FieldVar) = FieldCostsBenefits :-
|
|
find_cell_var_loads_for_field(AfterFlush, FieldVar, [], CostOps0),
|
|
(
|
|
CellVarFlushedLater = yes,
|
|
CostOps = CostOps0
|
|
;
|
|
CellVarFlushedLater = no,
|
|
CostOps = [cell_var_store | CostOps0]
|
|
),
|
|
BenefitOps0 = [field_var_store(FieldVar)],
|
|
( set__member(CellVar, BeforeFlush) ->
|
|
BenefitOps = BenefitOps0
|
|
;
|
|
BenefitOps = [field_var_load(FieldVar) | BenefitOps0]
|
|
),
|
|
|
|
CellVarStoreCost = MatchingParams ^ cell_var_store_cost,
|
|
CellVarLoadCost = MatchingParams ^ cell_var_load_cost,
|
|
CostNodeLists = list__map(
|
|
replicate_cost_op(CellVarStoreCost, CellVarLoadCost),
|
|
CostOps),
|
|
list__condense(CostNodeLists, CostNodes),
|
|
set__list_to_set(CostNodes, CostNodeSet),
|
|
FieldVarStoreCost = MatchingParams ^ field_var_store_cost,
|
|
FieldVarLoadCost = MatchingParams ^ field_var_load_cost,
|
|
BenefitNodeLists = list__map(
|
|
replicate_benefit_op(FieldVarStoreCost, FieldVarLoadCost),
|
|
BenefitOps),
|
|
list__condense(BenefitNodeLists, BenefitNodes),
|
|
set__list_to_set(BenefitNodes, BenefitNodeSet),
|
|
FieldCostsBenefits = field_costs_benefits(FieldVar,
|
|
CostNodeSet, BenefitNodeSet).
|
|
|
|
:- pred find_cell_var_loads_for_field(assoc_list(int, set(prog_var))::in,
|
|
prog_var::in, list(cost_operation)::in, list(cost_operation)::out)
|
|
is det.
|
|
|
|
find_cell_var_loads_for_field([], _, CostOps, CostOps).
|
|
find_cell_var_loads_for_field([SegmentNum - SegmentVars | AfterFlush],
|
|
FieldVar, CostOps0, CostOps) :-
|
|
( set__member(FieldVar, SegmentVars) ->
|
|
CostOps1 = [cell_var_load(SegmentNum) | CostOps0]
|
|
;
|
|
CostOps1 = CostOps0
|
|
),
|
|
find_cell_var_loads_for_field(AfterFlush, FieldVar, CostOps1, CostOps).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- func replicate_cost_op(int, int, cost_operation) = list(cost_node).
|
|
|
|
replicate_cost_op(_StoreCost, LoadCost, cell_var_load(Segment)) =
|
|
make_cost_op_copies(LoadCost, cell_var_load(Segment)).
|
|
replicate_cost_op(StoreCost, _LoadCost, cell_var_store) =
|
|
make_cost_op_copies(StoreCost, cell_var_store).
|
|
|
|
:- func make_cost_op_copies(int, cost_operation) = list(cost_node).
|
|
|
|
make_cost_op_copies(Cur, Op) =
|
|
( Cur > 0 ->
|
|
[cost_node(Op, Cur) | make_cost_op_copies(Cur - 1, Op)]
|
|
;
|
|
[]
|
|
).
|
|
|
|
:- func replicate_benefit_op(int, int, benefit_operation) = list(benefit_node).
|
|
|
|
replicate_benefit_op(_StoreCost, LoadCost, field_var_load(FieldVar)) =
|
|
make_benefit_op_copies(LoadCost, field_var_load(FieldVar)).
|
|
replicate_benefit_op(StoreCost, _LoadCost, field_var_store(FieldVar)) =
|
|
make_benefit_op_copies(StoreCost, field_var_store(FieldVar)).
|
|
|
|
:- func make_benefit_op_copies(int, benefit_operation) = list(benefit_node).
|
|
|
|
make_benefit_op_copies(Cur, Op) =
|
|
( Cur > 0 ->
|
|
[benefit_node(Op, Cur) | make_benefit_op_copies(Cur - 1, Op)]
|
|
;
|
|
[]
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Accumulate all the benefit nodes.
|
|
|
|
:- pred gather_benefits(field_costs_benefits::in, set(benefit_node)::in,
|
|
set(benefit_node)::out) is det.
|
|
|
|
gather_benefits(field_costs_benefits(_, _, FieldBenefits),
|
|
Benefits0, Benefits) :-
|
|
set__union(Benefits0, FieldBenefits, Benefits).
|
|
|
|
% Accumulate all the cost nodes.
|
|
|
|
:- pred gather_costs(field_costs_benefits::in, set(cost_node)::in,
|
|
set(cost_node)::out) is det.
|
|
|
|
gather_costs(field_costs_benefits(_, FieldCosts, _), Costs0, Costs) :-
|
|
set__union(Costs0, FieldCosts, Costs).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Create the stack slot optimization graph described in the paper.
|
|
|
|
:- func create_graph(list(field_costs_benefits)) = stack_slot_graph.
|
|
|
|
create_graph(CostsBenefits) = Graph :-
|
|
list__foldl2(create_graph_links, CostsBenefits,
|
|
map__init, CostToBenefitsMap, map__init, BenefitToCostsMap),
|
|
Graph = stack_slot_graph(CostToBenefitsMap, BenefitToCostsMap).
|
|
|
|
:- pred create_graph_links(field_costs_benefits::in,
|
|
map(cost_node, set(benefit_node))::in,
|
|
map(cost_node, set(benefit_node))::out,
|
|
map(benefit_node, set(cost_node))::in,
|
|
map(benefit_node, set(cost_node))::out) is det.
|
|
|
|
create_graph_links(field_costs_benefits(_FieldVar, Costs, Benefits),
|
|
CostToBenefitsMap0, CostToBenefitsMap,
|
|
BenefitToCostsMap0, BenefitToCostsMap) :-
|
|
list__foldl(add_cost_benefit_links(Benefits),
|
|
set__to_sorted_list(Costs),
|
|
CostToBenefitsMap0, CostToBenefitsMap),
|
|
list__foldl(add_benefit_cost_links(Costs),
|
|
set__to_sorted_list(Benefits),
|
|
BenefitToCostsMap0, BenefitToCostsMap).
|
|
|
|
:- pred add_cost_benefit_links(set(benefit_node)::in, cost_node::in,
|
|
map(cost_node, set(benefit_node))::in,
|
|
map(cost_node, set(benefit_node))::out) is det.
|
|
|
|
add_cost_benefit_links(Benefits, Cost, CostToBenefitsMap0, CostToBenefitsMap) :-
|
|
( map__search(CostToBenefitsMap0, Cost, CostBenefits0) ->
|
|
set__union(CostBenefits0, Benefits, CostBenefits),
|
|
map__det_update(CostToBenefitsMap0, Cost, CostBenefits,
|
|
CostToBenefitsMap)
|
|
;
|
|
map__det_insert(CostToBenefitsMap0, Cost, Benefits,
|
|
CostToBenefitsMap)
|
|
).
|
|
|
|
:- pred add_benefit_cost_links(set(cost_node)::in, benefit_node::in,
|
|
map(benefit_node, set(cost_node))::in,
|
|
map(benefit_node, set(cost_node))::out) is det.
|
|
|
|
add_benefit_cost_links(Costs, Benefit, BenefitToCostsMap0, BenefitToCostsMap) :-
|
|
( map__search(BenefitToCostsMap0, Benefit, BenefitCosts0) ->
|
|
set__union(BenefitCosts0, Costs, BenefitCosts),
|
|
map__det_update(BenefitToCostsMap0, Benefit, BenefitCosts,
|
|
BenefitToCostsMap)
|
|
;
|
|
map__det_insert(BenefitToCostsMap0, Benefit, Costs,
|
|
BenefitToCostsMap)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Find a maximal matching in the given graph.
|
|
|
|
:- func maximal_matching(list(benefit_node), stack_slot_graph) = matching.
|
|
|
|
maximal_matching(BenefitNodes, Graph) = Matching :-
|
|
Matching0 = matching(map__init, map__init),
|
|
maximize_matching(BenefitNodes, Graph, Matching0, Matching).
|
|
|
|
:- pred maximize_matching(list(benefit_node)::in, stack_slot_graph::in,
|
|
matching::in, matching::out) is det.
|
|
|
|
maximize_matching(BenefitNodes, Graph, Matching0, Matching) :-
|
|
( Path = find_augmenting_path(BenefitNodes, Graph, Matching0) ->
|
|
Matching1 = update_matches(Path, Matching0),
|
|
maximize_matching(BenefitNodes, Graph, Matching1, Matching)
|
|
;
|
|
Matching = Matching0
|
|
).
|
|
|
|
:- func update_matches(edge_list, matching) = matching.
|
|
|
|
update_matches([], Matching0) = Matching0.
|
|
update_matches([BenefitNode - CostNode | Path], Matching0) = Matching :-
|
|
Matching0 = matching(CostToBenefitMap0, BenefitToCostMap0),
|
|
map__set(CostToBenefitMap0, CostNode, BenefitNode, CostToBenefitMap1),
|
|
map__set(BenefitToCostMap0, BenefitNode, CostNode, BenefitToCostMap1),
|
|
Matching1 = matching(CostToBenefitMap1, BenefitToCostMap1),
|
|
Matching = update_matches(Path, Matching1).
|
|
|
|
:- func find_augmenting_path(list(benefit_node), stack_slot_graph, matching)
|
|
= edge_list is semidet.
|
|
|
|
find_augmenting_path(BenefitNodes, Graph, Matching) = Path :-
|
|
Matching = matching(_, MatchingBenefitToCost),
|
|
UnMatchedBenefitNodes = get_unmatched_benefit_nodes(BenefitNodes,
|
|
MatchingBenefitToCost),
|
|
Path = find_first_path_bf(UnMatchedBenefitNodes, Graph, Matching).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Breadth-first search for an augmenting path.
|
|
|
|
% Build an initial queue of all the unmatched benefit nodes, with empty paths.
|
|
% Take the first element of the queue and see what nodes are reachable
|
|
% from there. If one is unmatched return the path, otherwise add these nodes
|
|
% to the queue if they haven't been visited before.
|
|
|
|
:- type edge_list == assoc_list(benefit_node, cost_node).
|
|
|
|
:- type benefit_node_and_edge_list == pair(benefit_node, edge_list).
|
|
|
|
:- func find_first_path_bf(list(benefit_node), stack_slot_graph, matching)
|
|
= edge_list is semidet.
|
|
|
|
find_first_path_bf(BenefitNodes, Graph, Matching) = Path :-
|
|
Queue = initial_queue(BenefitNodes, queue__init),
|
|
Path = augpath_bf(Queue, BenefitNodes, Graph, Matching).
|
|
|
|
:- func initial_queue(list(benefit_node), queue(benefit_node_and_edge_list))
|
|
= queue(benefit_node_and_edge_list).
|
|
|
|
initial_queue([], Q) = Q.
|
|
initial_queue([N | Ns], Q0) = Q :-
|
|
Q1 = queue__put(Q0, N - []),
|
|
Q = initial_queue(Ns, Q1).
|
|
|
|
:- func augpath_bf(queue(benefit_node_and_edge_list), list(benefit_node),
|
|
stack_slot_graph, matching) = edge_list is semidet.
|
|
|
|
augpath_bf(Queue0, Seen0, Graph, Matching) = Path :-
|
|
queue__get(Queue0, NodePath, Queue1),
|
|
NodePath = BenefitNode - Path0,
|
|
Graph = stack_slot_graph(_, BenefitToCostsMap),
|
|
map__lookup(BenefitToCostsMap, BenefitNode, AdjCostNodes),
|
|
Matching = matching(CostToBenefitMap, _),
|
|
CostMatches = map_adjs_to_matched_cost(
|
|
set__to_sorted_list(AdjCostNodes), CostToBenefitMap),
|
|
( find_unmatched_cost(CostMatches) = UnmatchedCostNode ->
|
|
Path = [BenefitNode - UnmatchedCostNode | Path0]
|
|
;
|
|
add_alternates(CostMatches, Seen0, Seen, BenefitNode, Path0,
|
|
Queue1, Queue2),
|
|
Path = augpath_bf(Queue2, Seen, Graph, Matching)
|
|
).
|
|
|
|
:- func find_unmatched_cost(assoc_list(cost_node, maybe(benefit_node)))
|
|
= cost_node is semidet.
|
|
|
|
find_unmatched_cost([CostNode - MaybeBenefitNode | Matches]) = Unmatched :-
|
|
( MaybeBenefitNode = no ->
|
|
Unmatched = CostNode
|
|
;
|
|
Unmatched = find_unmatched_cost(Matches)
|
|
).
|
|
|
|
% For each node CostNode adjacent to BenefitNode, we have determined whether
|
|
% they are matched (that information is in MaybeAdjBenefitNode).
|
|
% If AdjBenefitNode has not been visited before (it is not in Seen0),
|
|
% we add it to the queue with the path extended by the last arc
|
|
% (BenefitNode - CostNode)
|
|
|
|
:- pred add_alternates(assoc_list(cost_node, maybe(benefit_node))::in,
|
|
list(benefit_node)::in, list(benefit_node)::out, benefit_node::in,
|
|
edge_list::in, queue(benefit_node_and_edge_list)::in,
|
|
queue(benefit_node_and_edge_list)::out) is det.
|
|
|
|
add_alternates([], Seen, Seen, _, _, Queue, Queue).
|
|
add_alternates([CostNode - MaybeAdjBenefitNode | CostMatches], Seen0, Seen,
|
|
BenefitNode, Path, Queue0, Queue) :-
|
|
(
|
|
MaybeAdjBenefitNode = yes(AdjBenefitNode),
|
|
not list__member(AdjBenefitNode, Seen0)
|
|
->
|
|
Seen1 = [AdjBenefitNode | Seen0],
|
|
Queue1 = queue__put(Queue0,
|
|
AdjBenefitNode - [BenefitNode - CostNode | Path])
|
|
;
|
|
Seen1 = Seen0,
|
|
Queue1 = Queue0
|
|
),
|
|
add_alternates(CostMatches, Seen1, Seen, BenefitNode, Path,
|
|
Queue1, Queue).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Find all the benefit nodes reachable from the cost nodes in the first
|
|
% argument via alternating paths. The SelectedCostNodes are not matched,
|
|
% so first we look for matched benefit nodes adjacent to them, since those
|
|
% nodes are reachable. We then look at the cost nodes matched to those benefit
|
|
% nodes, since the benefit nodes reachable from there are also reachable from
|
|
% the original cost nodes.
|
|
%
|
|
% To ensure termination, we follow the matched link from a benefit node
|
|
% only when that benefit node is first put into the reachable set.
|
|
|
|
:- func reachable_by_alternating_path(list(cost_node), stack_slot_graph,
|
|
matching) = set(benefit_node).
|
|
|
|
reachable_by_alternating_path(SelectedCostNodes, Graph, Matching)
|
|
= ReachableBenefitNodes :-
|
|
reachable_by_alternating_path(SelectedCostNodes, Graph, Matching,
|
|
set__init, ReachableBenefitNodes).
|
|
|
|
:- pred reachable_by_alternating_path(list(cost_node)::in,
|
|
stack_slot_graph::in, matching::in, set(benefit_node)::in,
|
|
set(benefit_node)::out) is det.
|
|
|
|
reachable_by_alternating_path(SelectedCostNodes, Graph, Matching,
|
|
BenefitNodes0, BenefitNodes) :-
|
|
( SelectedCostNodes = [] ->
|
|
BenefitNodes = BenefitNodes0
|
|
;
|
|
Graph = stack_slot_graph(CostToBenefitsMap, _),
|
|
list__foldl(adjacents(CostToBenefitsMap), SelectedCostNodes,
|
|
set__init, AdjBenefitNodes),
|
|
set__union(AdjBenefitNodes, BenefitNodes0, BenefitNodes1),
|
|
set__difference(BenefitNodes0, AdjBenefitNodes,
|
|
NewBenefitNodes),
|
|
set__to_sorted_list(NewBenefitNodes, NewBenefitNodeList),
|
|
Matching = matching(_, BenefitToCostMap),
|
|
LinkedCostNodes = list__map(map__lookup(BenefitToCostMap),
|
|
NewBenefitNodeList),
|
|
reachable_by_alternating_path(LinkedCostNodes, Graph, Matching,
|
|
BenefitNodes1, BenefitNodes)
|
|
).
|
|
|
|
:- pred adjacents(map(cost_node, set(benefit_node))::in, cost_node::in,
|
|
set(benefit_node)::in, set(benefit_node)::out) is det.
|
|
|
|
adjacents(CostToBenefitsMap, CostNode, BenefitNodes0, BenefitNodes) :-
|
|
map__lookup(CostToBenefitsMap, CostNode, AdjBenefitNodes),
|
|
set__union(BenefitNodes0, AdjBenefitNodes, BenefitNodes).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Given a list of cost nodes adjacent to a benefit node, find out for each of
|
|
% those cost nodes whether it is linked to a benefit node by the given
|
|
% matching, and if yes, to which one.
|
|
|
|
:- func map_adjs_to_matched_cost(list(cost_node), map(cost_node, benefit_node))
|
|
= assoc_list(cost_node, maybe(benefit_node)).
|
|
|
|
map_adjs_to_matched_cost(AdjCostNodes, CostToBenefitMap) = CostMatches :-
|
|
CostMatches = list__map(adj_to_matched_cost(CostToBenefitMap),
|
|
AdjCostNodes).
|
|
|
|
:- func adj_to_matched_cost(map(cost_node, benefit_node), cost_node) =
|
|
pair(cost_node, maybe(benefit_node)).
|
|
|
|
adj_to_matched_cost(CostToBenefitMap, CostNode) = Match :-
|
|
( map__search(CostToBenefitMap, CostNode, BenefitNode) ->
|
|
Match = CostNode - yes(BenefitNode)
|
|
;
|
|
Match = CostNode - no
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- func compute_via_cell_vars(list(field_costs_benefits), set(benefit_node))
|
|
= set(prog_var).
|
|
|
|
compute_via_cell_vars([], _MarkedBenefits) = set__init.
|
|
compute_via_cell_vars([FieldCostsBenefits | FieldsCostsBenefits],
|
|
MarkedBenefits) = ViaCellVars :-
|
|
ViaCellVars1 = compute_via_cell_vars(FieldsCostsBenefits,
|
|
MarkedBenefits),
|
|
FieldCostsBenefits = field_costs_benefits(FieldVar, _, FieldBenefits),
|
|
set__intersect(FieldBenefits, MarkedBenefits, MarkedFieldBenefits),
|
|
( set__empty(MarkedFieldBenefits) ->
|
|
set__insert(ViaCellVars1, FieldVar, ViaCellVars)
|
|
; set__equal(MarkedFieldBenefits, FieldBenefits) ->
|
|
ViaCellVars = ViaCellVars1
|
|
;
|
|
error("compute_via_cell_vars: theorem violation: intersection neither empty nor full")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Get the set of benefit nodes in the first argument that are not matched
|
|
% by a cost node in the given matching.
|
|
|
|
:- func get_unmatched_benefit_nodes(list(benefit_node),
|
|
map(benefit_node, cost_node)) = list(benefit_node).
|
|
|
|
get_unmatched_benefit_nodes([], _) = [].
|
|
get_unmatched_benefit_nodes([Node | Nodes], MatchingBC) = UnmatchedNodes :-
|
|
UnmatchedNodes1 = get_unmatched_benefit_nodes(Nodes, MatchingBC),
|
|
( map__search(MatchingBC, Node, _Match) ->
|
|
UnmatchedNodes = UnmatchedNodes1
|
|
;
|
|
UnmatchedNodes = [Node | UnmatchedNodes1]
|
|
).
|
|
|
|
% Get the set of cost nodes in the first argument that are not matched
|
|
% by a benefit node in the given matching.
|
|
|
|
:- func get_unmatched_cost_nodes(list(cost_node),
|
|
map(cost_node, benefit_node)) = list(cost_node).
|
|
|
|
get_unmatched_cost_nodes([], _) = [].
|
|
get_unmatched_cost_nodes([Node | Nodes], MatchingCB) = UnmatchedNodes :-
|
|
UnmatchedNodes1 = get_unmatched_cost_nodes(Nodes, MatchingCB),
|
|
( map__search(MatchingCB, Node, _Match) ->
|
|
UnmatchedNodes = UnmatchedNodes1
|
|
;
|
|
UnmatchedNodes = [Node | UnmatchedNodes1]
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Dump the results of the matching process to standard output to assist in
|
|
% tracking down any correctness and performance problems with this module.
|
|
% Using this predicate requires uncommenting the import of module unsafe,
|
|
% the call to dump_results, and two lines computing one of the arguments of
|
|
% that call.
|
|
|
|
:- pred dump_results(prog_var::in, set(prog_var)::in, list(prog_var)::in,
|
|
set(prog_var)::in, bool::in, set(prog_var)::in,
|
|
assoc_list(int, set(prog_var))::in,
|
|
list(benefit_node)::in, list(benefit_operation)::in,
|
|
list(cost_node)::in, list(cost_operation)::in,
|
|
io__state::di, io__state::uo) is det.
|
|
|
|
dump_results(CellVar, CandidateFieldVars, OccurringCandidateFieldVarList,
|
|
ViaCellOccurringVars, Nullified, BeforeFlush, AfterFlush,
|
|
BenefitNodes, BenefitOps, CostNodes, CostOps) -->
|
|
{ term__var_to_int(CellVar, CellVarInt) },
|
|
{ set__to_sorted_list(CandidateFieldVars, CandidateFieldVarList) },
|
|
{ set__to_sorted_list(ViaCellOccurringVars, ViaCellVarList) },
|
|
{ set__to_sorted_list(BeforeFlush, BeforeFlushList) },
|
|
{ list__map(term__var_to_int, CandidateFieldVarList,
|
|
CandidateFieldVarInts) },
|
|
{ list__map(term__var_to_int, OccurringCandidateFieldVarList,
|
|
OccurringCandidateFieldVarInts) },
|
|
{ list__map(term__var_to_int, ViaCellVarList, ViaCellVarInts) },
|
|
{ list__map(term__var_to_int, BeforeFlushList, BeforeFlushInts) },
|
|
io__write_string("%\n% FIND_VIA_CELL_VARS "),
|
|
io__write_int(CellVarInt),
|
|
io__write_string(" => f("),
|
|
io__write_list(CandidateFieldVarInts, ", ", io__write_int),
|
|
io__write_string(")\n"),
|
|
io__write_string("% occurring ["),
|
|
io__write_list(OccurringCandidateFieldVarInts, ", ", io__write_int),
|
|
io__write_string("]\n"),
|
|
io__write_string("% via cell ["),
|
|
io__write_list(ViaCellVarInts, ", ", io__write_int),
|
|
io__write_string("]"),
|
|
(
|
|
{ Nullified = no },
|
|
io__write_string("\n")
|
|
;
|
|
{ Nullified = yes },
|
|
io__write_string(" nullified\n")
|
|
),
|
|
io__write_string("% before flush, segment 1: ["),
|
|
io__write_list(BeforeFlushInts, ", ", io__write_int),
|
|
io__write_string("]\n"),
|
|
list__foldl(dump_after_flush, AfterFlush),
|
|
io__write_string("% realized benefits: "),
|
|
io__write_int(list__length(BenefitOps)),
|
|
io__write_string(" ops, "),
|
|
io__write_int(list__length(BenefitNodes)),
|
|
io__write_string(" nodes:\n"),
|
|
io__write_string("% "),
|
|
io__write(BenefitOps),
|
|
io__write_string("\n"),
|
|
io__write_string("% realized costs: "),
|
|
io__write_int(list__length(CostOps)),
|
|
io__write_string(" ops, "),
|
|
io__write_int(list__length(CostNodes)),
|
|
io__write_string(" nodes:\n"),
|
|
io__write_string("% "),
|
|
io__write(CostOps),
|
|
io__write_string("\n%\n").
|
|
|
|
:- pred dump_after_flush(pair(int, set(prog_var))::in,
|
|
io__state::di, io__state::uo) is det.
|
|
|
|
dump_after_flush(SegmentNum - SegmentVars) -->
|
|
{ set__to_sorted_list(SegmentVars, SegmentVarList) },
|
|
{ list__map(term__var_to_int, SegmentVarList, SegmentVarInts) },
|
|
io__write_string("% after flush, segment "),
|
|
io__write_int(SegmentNum),
|
|
io__write_string(": ["),
|
|
io__write_list(SegmentVarInts, ", ", io__write_int),
|
|
io__write_string("]\n").
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred realized_costs_benefits(set(prog_var)::in, field_costs_benefits::in)
|
|
is semidet.
|
|
|
|
realized_costs_benefits(ViaCellOccurringVars, FieldCostsBenefits) :-
|
|
FieldCostsBenefits = field_costs_benefits(FieldVar, _, _),
|
|
set__member(FieldVar, ViaCellOccurringVars).
|
|
|
|
:- func project_benefit_op(benefit_node) = benefit_operation.
|
|
|
|
project_benefit_op(benefit_node(BenefitOp, _CopyNum)) = BenefitOp.
|
|
|
|
:- func project_cost_op(cost_node) = cost_operation.
|
|
|
|
project_cost_op(cost_node(CostOp, _CopyNum)) = CostOp.
|
|
|
|
%-----------------------------------------------------------------------------%
|