mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-12 04:14:06 +00:00
Estimated hours taken: 2 Branches: main Replace "is" with "=". Add field names where relevant. Replace integers with counters where relevant.
950 lines
26 KiB
Mathematica
950 lines
26 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1997,2002-2003 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% file: lp.m
|
|
% main author: conway, Oct 1997
|
|
%
|
|
% This module implements a linear constraint solver that finds an
|
|
% optimal solution to a set of linear [in]equalities with respect
|
|
% to some objective function. It does this using the simplex method.
|
|
%
|
|
% The form of an [in]equation is
|
|
% a1.x1 + a2.x2 + ... + an.xn {=<,=,>=} b
|
|
% where all the numbers are floats, a variable xn may occur multiple
|
|
% times in an equation (or the objective function) - the solver simplifies
|
|
% all the inequations.
|
|
% By default, there is an additional constraint on each of the `xn's:
|
|
% xn >= 0
|
|
% If you want xn to take on any value, you can include it in the list
|
|
% of URS (UnRestricted in Sign) variables.
|
|
%
|
|
% The objective function is simply a weighted sum of the variables.
|
|
%
|
|
% The `x's are represented by `term__var's. The varset from which
|
|
% they are allocated is passed to the solver because it needs to
|
|
% introduce new variables as part of the solving algorithm.
|
|
%
|
|
%------------------------------------------------------------------------------%
|
|
:- module transform_hlds__lp.
|
|
|
|
:- interface.
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- import_module float, io, list, map, std_util, term, varset.
|
|
|
|
:- type coeff == pair(var, float).
|
|
|
|
:- type equation
|
|
---> eqn(list(coeff), operator, float).
|
|
|
|
:- type operator
|
|
---> (=<) ; (=) ; (>=) .
|
|
|
|
:- type equations == list(equation).
|
|
|
|
:- type objective == list(coeff).
|
|
|
|
:- type direction
|
|
---> max ; min .
|
|
|
|
:- type lp__result
|
|
---> unsatisfiable
|
|
; satisfiable(float, map(var, float))
|
|
.
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
% lp_solve(Inequations, MaxOrMin, Objective, Varset, URSVars,
|
|
% Result, IO0, IO)
|
|
% maximize (or minimize - depending on `MaxOrMin') `Objective'
|
|
% subject to the constraints `Inequations'. The variables in
|
|
% the objective and inequations are from `Varset' which is passed
|
|
% so that the solver can allocate fresh variables as required.
|
|
% URSVars is the list of variable that are unrestricted in sign.
|
|
% lp_solve binds Result either to `unsatisfiable' if the there
|
|
% was no optimum value of the objective function (ie the
|
|
% constraints were inconsistent, or the objective function
|
|
% is unbounded by the constraints), or `satisfiable(ObjVal,
|
|
% MapFromObjVarsToVals)'.
|
|
|
|
:- pred lp_solve(equations, direction, objective, varset, list(var),
|
|
lp__result, io__state, io__state).
|
|
:- mode lp_solve(in, in, in, in, in, out, di, uo) is det.
|
|
|
|
%------------------------------------------------------------------------------%
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module bool, int, require, set, string.
|
|
|
|
:- type lp_info
|
|
---> lp(
|
|
varset,
|
|
map(var, pair(var)), % map from variables with URS to
|
|
% the corresponding pair of variables
|
|
% that represent that variable in
|
|
% the standard form (x = x' - x'',
|
|
% x', x'' >= 0).
|
|
list(var), % slack variables
|
|
list(var) % artificial variables
|
|
).
|
|
|
|
lp_solve(Eqns, Dir, Obj, Varset0, URSVars, Result, IO0, IO) :-
|
|
lp_info_init(Varset0, URSVars, Info0),
|
|
lp_solve2(Eqns, Dir, Obj, Result, IO0, IO, Info0, _).
|
|
|
|
%
|
|
% lp_solve2(Eqns, Dir, Obj, Res, IO0, IO, LPInfo0, LPInfo) takes a list
|
|
% of inequations `Eqns', a direction for optimization `Dir', an objective
|
|
% function `Obj', an I/O state `IO0' and an lp_info structure `LPInfo0'.
|
|
% See inline comments for details on the algorithm.
|
|
%
|
|
:- pred lp_solve2(equations, direction, objective, lp__result,
|
|
io__state, io__state, lp_info, lp_info).
|
|
:- mode lp_solve2(in, in, in, out, di, uo, in, out) is det.
|
|
|
|
lp_solve2(Eqns0, Dir, Obj0, Result, IO0, IO, Info0, Info) :-
|
|
% simplify the inequations and convert them
|
|
% to standard form by introducing slack/excess/
|
|
% artificial variables. We also expand URS variables
|
|
% by replacing them with the difference of two
|
|
% fresh variables.
|
|
standardize_equations(Eqns0, Eqns, Info0, Info1),
|
|
|
|
% If we're maximizing the objective function then we need
|
|
% to negate all the coefficients in the objective.w
|
|
(
|
|
Dir = max,
|
|
negate_equation(eqn(Obj0, (=), 0.0), eqn(Obj1, _, _))
|
|
;
|
|
Dir = min,
|
|
Obj1 = Obj0
|
|
),
|
|
simplify_coeffs(Obj1, Obj2),
|
|
|
|
get_urs_vars(URS, Info1, _),
|
|
expand_urs_vars(Obj2, URS, Obj),
|
|
list__length(Eqns, Rows),
|
|
collect_vars(Eqns, Obj, Vars),
|
|
set__to_sorted_list(Vars, VarList),
|
|
list__length(VarList, Cols),
|
|
map__init(VarNums0),
|
|
number_vars(VarList, 0, VarNums0, VarNums),
|
|
get_art_vars(ArtVars, Info1, Info),
|
|
init_tableau(Rows, Cols, VarNums, URS, Tableau0),
|
|
insert_equations(Eqns, 1, Cols, VarNums,
|
|
Tableau0, Tableau1),
|
|
(
|
|
ArtVars = [_|_],
|
|
% There are one or more artificial variables, so we use
|
|
% the two-phase method for solving the system.
|
|
two_phase(Obj0, Obj, ArtVars, VarNums, Tableau1, Result0,
|
|
IO0, IO)
|
|
;
|
|
ArtVars = [],
|
|
one_phase(Obj0, Obj, VarNums, Tableau1, Result0, IO0, IO)
|
|
),
|
|
(
|
|
Dir = max,
|
|
Result = Result0
|
|
;
|
|
Dir = min,
|
|
(
|
|
Result0 = unsatisfiable,
|
|
Result = Result0
|
|
;
|
|
Result0 = satisfiable(NOptVal, OptCoffs),
|
|
OptVal = -NOptVal,
|
|
Result = satisfiable(OptVal, OptCoffs)
|
|
)
|
|
).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred one_phase(list(coeff), list(coeff), map(var, int), tableau,
|
|
lp__result, io__state, io__state).
|
|
:- mode one_phase(in, in, in, in, out, di, uo) is det.
|
|
|
|
one_phase(Obj0, Obj, VarNums, Tableau0, Result, IO0, IO) :-
|
|
insert_coeffs(Obj, 0, VarNums, Tableau0, Tableau1),
|
|
GetObjVar = lambda([V::out] is nondet, (
|
|
list__member(X, Obj0),
|
|
X = V - _Cof
|
|
)),
|
|
solutions(GetObjVar, ObjVars),
|
|
optimize(ObjVars, Tableau1, _, Result, IO0, IO).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred two_phase(list(coeff), list(coeff), list(var), map(var, int),
|
|
tableau, lp__result, io__state, io__state).
|
|
:- mode two_phase(in, in, in, in, in, out, di, uo) is det.
|
|
|
|
two_phase(Obj0, Obj, ArtVars, VarNums, Tableau0, Result, IO0, IO) :-
|
|
% Do phase 1:
|
|
% minimize the sum of the artificial variables
|
|
construct_art_objective(ArtVars, ArtObj),
|
|
insert_coeffs(ArtObj, 0, VarNums, Tableau0, Tableau1a),
|
|
ensure_zero_obj_coeffs(ArtVars, Tableau1a, Tableau1b),
|
|
optimize(ArtVars, Tableau1b, Tableau1c,
|
|
Res0, IO0, IO1),
|
|
(
|
|
Res0 = unsatisfiable,
|
|
Result = unsatisfiable,
|
|
IO = IO1
|
|
;
|
|
Res0 = satisfiable(Val, _ArtRes),
|
|
( Val \= 0.0 ->
|
|
Result = unsatisfiable,
|
|
IO = IO1
|
|
;
|
|
fix_basis_and_rem_cols(ArtVars, Tableau1c, Tableau2),
|
|
% Do phase 2:
|
|
% insert the real objective,
|
|
% zero the objective coefficients of the
|
|
% basis variables,
|
|
% optimize the objective.
|
|
insert_coeffs(Obj, 0, VarNums, Tableau2, Tableau3),
|
|
get_basis_vars(Tableau3, BasisVars),
|
|
ensure_zero_obj_coeffs(BasisVars,
|
|
Tableau3, Tableau4),
|
|
GetObjVar = lambda([V::out] is nondet, (
|
|
list__member(X, Obj0),
|
|
X = V - _Cof
|
|
)),
|
|
solutions(GetObjVar, ObjVars),
|
|
optimize(ObjVars, Tableau4, _, Result, IO1, IO)
|
|
)
|
|
).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred construct_art_objective(list(var), list(coeff)).
|
|
:- mode construct_art_objective(in, out) is det.
|
|
|
|
construct_art_objective([], []).
|
|
construct_art_objective([V|Vs], [V - (1.0)|Rest]) :-
|
|
construct_art_objective(Vs, Rest).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred standardize_equations(equations, equations, lp_info, lp_info).
|
|
:- mode standardize_equations(in, out, in, out) is det.
|
|
|
|
standardize_equations(Eqns0, Eqns) -->
|
|
list__map_foldl(standardize_equation, Eqns0, Eqns).
|
|
|
|
% standardize_equation peforms the following operations on an
|
|
% equation:
|
|
% - ensures the constant is >= 0 (multiplying by -1 if
|
|
% necessary)
|
|
% - introduces slack, excess and artificial variables
|
|
% - replace the URS variables with their corresponding
|
|
% difference pair
|
|
:- pred standardize_equation(equation, equation, lp_info, lp_info).
|
|
:- mode standardize_equation(in, out, in, out) is det.
|
|
|
|
standardize_equation(Eqn0, Eqn) -->
|
|
{ Eqn0 = eqn(Coeffs0, (=<), Const0) },
|
|
( { Const0 < 0.0 } ->
|
|
{ negate_equation(Eqn0, Eqn1) },
|
|
standardize_equation(Eqn1, Eqn)
|
|
;
|
|
new_slack_var(Var),
|
|
{ Coeffs = [Var - 1.0|Coeffs0] },
|
|
{ simplify(eqn(Coeffs, (=<), Const0), Eqn1) },
|
|
get_urs_vars(URS),
|
|
{ expand_urs_vars_e(Eqn1, URS, Eqn) }
|
|
).
|
|
|
|
standardize_equation(Eqn0, Eqn) -->
|
|
{ Eqn0 = eqn(Coeffs0, (=), Const0) },
|
|
( { Const0 < 0.0 } ->
|
|
{ negate_equation(Eqn0, Eqn1) },
|
|
standardize_equation(Eqn1, Eqn)
|
|
;
|
|
new_art_var(Var),
|
|
{ Coeffs = [Var - 1.0|Coeffs0] },
|
|
{ simplify(eqn(Coeffs, (=<), Const0), Eqn1) },
|
|
get_urs_vars(URS),
|
|
{ expand_urs_vars_e(Eqn1, URS, Eqn) }
|
|
).
|
|
|
|
standardize_equation(Eqn0, Eqn) -->
|
|
{ Eqn0 = eqn(Coeffs0, (>=), Const0) },
|
|
( { Const0 < 0.0 } ->
|
|
{ negate_equation(Eqn0, Eqn1) },
|
|
standardize_equation(Eqn1, Eqn)
|
|
;
|
|
new_slack_var(SVar),
|
|
new_art_var(AVar),
|
|
{ Coeffs = [SVar - (-1.0), AVar - (1.0)|Coeffs0] },
|
|
{ simplify(eqn(Coeffs, (>=), Const0), Eqn1) },
|
|
get_urs_vars(URS),
|
|
{ expand_urs_vars_e(Eqn1, URS, Eqn) }
|
|
).
|
|
|
|
:- pred negate_equation(equation, equation).
|
|
:- mode negate_equation(in, out) is det.
|
|
|
|
negate_equation(eqn(Coeffs0, Op0, Const0), eqn(Coeffs, Op, Const)) :-
|
|
(
|
|
Op0 = (=<), Op = (>=)
|
|
;
|
|
Op0 = (=), Op = (=)
|
|
;
|
|
Op0 = (>=), Op = (=<)
|
|
),
|
|
Neg = lambda([Pair0::in, Pair::out] is det, (
|
|
Pair0 = V - X0,
|
|
X = -X0,
|
|
Pair = V - X
|
|
)),
|
|
list__map(Neg, Coeffs0, Coeffs),
|
|
Const = -Const0.
|
|
|
|
:- pred simplify(equation, equation).
|
|
:- mode simplify(in, out) is det.
|
|
|
|
simplify(eqn(Coeffs0, Op, Const), eqn(Coeffs, Op, Const)) :-
|
|
simplify_coeffs(Coeffs0, Coeffs).
|
|
|
|
:- pred simplify_coeffs(list(coeff), list(coeff)).
|
|
:- mode simplify_coeffs(in, out) is det.
|
|
|
|
simplify_coeffs(Coeffs0, Coeffs) :-
|
|
map__init(CoeffMap0),
|
|
AddCoeff = lambda([Pair::in, Map0::in, Map::out] is det, (
|
|
Pair = Var - Coeff,
|
|
add_var(Map0, Var, Coeff, Map)
|
|
)),
|
|
list__foldl(AddCoeff, Coeffs0, CoeffMap0, CoeffMap),
|
|
map__to_assoc_list(CoeffMap, Coeffs).
|
|
|
|
:- pred add_var(map(var, float), var, float, map(var, float)).
|
|
:- mode add_var(in, in, in, out) is det.
|
|
|
|
add_var(Map0, Var, Coeff, Map) :-
|
|
( map__search(Map0, Var, Acc0) ->
|
|
Acc1 = Acc0
|
|
;
|
|
Acc1 = 0.0
|
|
),
|
|
Acc = Acc1 + Coeff,
|
|
map__set(Map0, Var, Acc, Map).
|
|
|
|
:- pred expand_urs_vars_e(equation, map(var, pair(var)), equation).
|
|
:- mode expand_urs_vars_e(in, in, out) is det.
|
|
|
|
expand_urs_vars_e(eqn(Coeffs0, Op, Const), Vars, eqn(Coeffs, Op, Const)) :-
|
|
expand_urs_vars(Coeffs0, Vars, Coeffs).
|
|
|
|
:- pred expand_urs_vars(list(coeff), map(var, pair(var)), list(coeff)).
|
|
:- mode expand_urs_vars(in, in, out) is det.
|
|
|
|
expand_urs_vars(Coeffs0, Vars, Coeffs) :-
|
|
expand_urs_vars(Coeffs0, Vars, [], Coeffs1),
|
|
list__reverse(Coeffs1, Coeffs).
|
|
|
|
:- pred expand_urs_vars(list(coeff), map(var, pair(var)),
|
|
list(coeff), list(coeff)).
|
|
:- mode expand_urs_vars(in, in, in, out) is det.
|
|
|
|
expand_urs_vars([], _Vars, Coeffs, Coeffs).
|
|
expand_urs_vars([Var - Coeff|Rest], Vars, Coeffs0, Coeffs) :-
|
|
( map__search(Vars, Var, PVar - NVar) ->
|
|
NCoeff = -Coeff,
|
|
Coeffs1 = [NVar - NCoeff, PVar - Coeff|Coeffs0]
|
|
;
|
|
Coeffs1 = [Var - Coeff|Coeffs0]
|
|
),
|
|
expand_urs_vars(Rest, Vars, Coeffs1, Coeffs).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred collect_vars(equations, objective, set(var)).
|
|
:- mode collect_vars(in, in, out) is det.
|
|
|
|
collect_vars(Eqns, Obj, Vars) :-
|
|
GetVar = lambda([Var::out] is nondet, (
|
|
(
|
|
list__member(Eqn, Eqns),
|
|
Eqn = eqn(Coeffs, _, _),
|
|
list__member(Pair, Coeffs),
|
|
Pair = Var - _
|
|
;
|
|
list__member(Pair, Obj),
|
|
Pair = Var - _
|
|
)
|
|
)),
|
|
solutions(GetVar, VarList),
|
|
set__list_to_set(VarList, Vars).
|
|
|
|
:- pred number_vars(list(var), int, map(var, int), map(var, int)).
|
|
:- mode number_vars(in, in, in, out) is det.
|
|
|
|
number_vars([], _, VarNums, VarNums).
|
|
number_vars([Var|Vars], N, VarNums0, VarNums) :-
|
|
map__det_insert(VarNums0, Var, N, VarNums1),
|
|
N1 = N + 1,
|
|
number_vars(Vars, N1, VarNums1, VarNums).
|
|
|
|
:- pred insert_equations(equations, int, int, map(var, int), tableau, tableau).
|
|
:- mode insert_equations(in, in, in, in, in, out) is det.
|
|
|
|
insert_equations([], _, _, _, Tableau, Tableau).
|
|
insert_equations([Eqn|Eqns], Row, ConstCol, VarNums, Tableau0, Tableau) :-
|
|
Eqn = eqn(Coeffs, _Op, Const),
|
|
insert_coeffs(Coeffs, Row, VarNums, Tableau0, Tableau1),
|
|
set_index(Tableau1, Row, ConstCol, Const, Tableau2),
|
|
Row1 = Row + 1,
|
|
insert_equations(Eqns, Row1, ConstCol, VarNums, Tableau2, Tableau).
|
|
|
|
:- pred insert_coeffs(list(coeff), int, map(var, int), tableau, tableau).
|
|
:- mode insert_coeffs(in, in, in, in, out) is det.
|
|
|
|
insert_coeffs([], _Row, _VarNums, Tableau, Tableau).
|
|
insert_coeffs([Coeff|Coeffs], Row, VarNums, Tableau0, Tableau) :-
|
|
Coeff = Var - Const,
|
|
map__lookup(VarNums, Var, Col),
|
|
set_index(Tableau0, Row, Col, Const, Tableau1),
|
|
insert_coeffs(Coeffs, Row, VarNums, Tableau1, Tableau).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred optimize(list(var), tableau, tableau, lp__result,
|
|
io__state, io__state).
|
|
:- mode optimize(in, in, out, out, di, uo) is det.
|
|
|
|
optimize(ObjVars, A0, A, Result) -->
|
|
simplex(A0, A, Res0),
|
|
(
|
|
{ Res0 = no },
|
|
{ Result = unsatisfiable }
|
|
;
|
|
{ Res0 = yes },
|
|
{ rhs_col(A, M) },
|
|
{ index(A, 0, M, ObjVal) },
|
|
{ extract_objective(ObjVars, A, ObjMap) },
|
|
{ Result = satisfiable(ObjVal, ObjMap) }
|
|
).
|
|
|
|
:- pred extract_objective(list(var), tableau, map(var, float)).
|
|
:- mode extract_objective(in, in, out) is det.
|
|
|
|
extract_objective(ObjVars, Tab, Res) :-
|
|
map__init(Res0),
|
|
list__foldl(extract_obj_var(Tab), ObjVars, Res0, Res).
|
|
|
|
:- pred extract_obj_var(tableau, var, map(var, float), map(var, float)).
|
|
:- mode extract_obj_var(in, in, in, out) is det.
|
|
|
|
extract_obj_var(Tab, Var, Map0, Map) :-
|
|
urs_vars(Tab, Vars),
|
|
( map__search(Vars, Var, Pos - Neg) ->
|
|
extract_obj_var2(Tab, Pos, PosVal),
|
|
extract_obj_var2(Tab, Neg, NegVal),
|
|
Val = PosVal - NegVal
|
|
;
|
|
extract_obj_var2(Tab, Var, Val)
|
|
),
|
|
map__set(Map0, Var, Val, Map).
|
|
|
|
:- pred extract_obj_var2(tableau, var, float).
|
|
:- mode extract_obj_var2(in, in, out) is det.
|
|
|
|
extract_obj_var2(Tab, Var, Val) :-
|
|
var_col(Tab, Var, Col),
|
|
GetCell = lambda([Val0::out] is nondet, (
|
|
all_rows(Tab, Row),
|
|
index(Tab, Row, Col, 1.0),
|
|
rhs_col(Tab, RHS),
|
|
index(Tab, Row, RHS, Val0)
|
|
)),
|
|
solutions(GetCell, Solns),
|
|
( Solns = [Val1] ->
|
|
Val = Val1
|
|
;
|
|
Val = 0.0
|
|
).
|
|
|
|
:- pred simplex(tableau, tableau, bool, io__state, io__state).
|
|
:- mode simplex(in, out, out, di, uo) is det.
|
|
|
|
simplex(A0, A, Result, IO0, IO) :-
|
|
AllColumns = all_cols(A0),
|
|
MinAgg = lambda([Col::in, Min0::in, Min::out] is det, (
|
|
(
|
|
Min0 = no,
|
|
index(A0, 0, Col, MinVal),
|
|
( MinVal < 0.0 ->
|
|
Min = yes(Col - MinVal)
|
|
;
|
|
Min = no
|
|
)
|
|
;
|
|
Min0 = yes(_ - MinVal0),
|
|
index(A0, 0, Col, CellVal),
|
|
( CellVal < MinVal0 ->
|
|
Min = yes(Col - CellVal)
|
|
;
|
|
Min = Min0
|
|
)
|
|
)
|
|
)),
|
|
aggregate(AllColumns, MinAgg, no, MinResult),
|
|
(
|
|
MinResult = no,
|
|
A = A0,
|
|
IO = IO0,
|
|
Result = yes
|
|
;
|
|
MinResult = yes(Q - _Val),
|
|
AllRows = all_rows(A0),
|
|
MaxAgg = lambda([Row::in, Max0::in, Max::out] is det, (
|
|
(
|
|
Max0 = no,
|
|
index(A0, Row, Q, MaxVal),
|
|
( MaxVal > 0.0 ->
|
|
rhs_col(A0, RHSC),
|
|
index(A0, Row, RHSC, MVal),
|
|
CVal = MVal/MaxVal,
|
|
Max = yes(Row - CVal)
|
|
;
|
|
Max = no
|
|
)
|
|
;
|
|
Max0 = yes(_ - MaxVal0),
|
|
index(A0, Row, Q, CellVal),
|
|
rhs_col(A0, RHSC),
|
|
index(A0, Row, RHSC, MVal),
|
|
(
|
|
CellVal > 0.0,
|
|
MaxVal1 = MVal/CellVal,
|
|
MaxVal1 =< MaxVal0
|
|
->
|
|
Max = yes(Row - MaxVal1)
|
|
;
|
|
Max = Max0
|
|
)
|
|
)
|
|
)),
|
|
aggregate(AllRows, MaxAgg, no, MaxResult),
|
|
(
|
|
MaxResult = no,
|
|
A = A0,
|
|
IO = IO0,
|
|
Result = no
|
|
;
|
|
MaxResult = yes(P - _),
|
|
pivot(P, Q, A0, A1),
|
|
simplex(A1, A, Result, IO0, IO)
|
|
)
|
|
).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred ensure_zero_obj_coeffs(list(var), tableau, tableau).
|
|
:- mode ensure_zero_obj_coeffs(in, in, out) is det.
|
|
|
|
ensure_zero_obj_coeffs([], Tableau, Tableau).
|
|
ensure_zero_obj_coeffs([V|Vs], Tableau0, Tableau) :-
|
|
var_col(Tableau0, V, Col),
|
|
index(Tableau0, 0, Col, Val),
|
|
( Val = 0.0 ->
|
|
ensure_zero_obj_coeffs(Vs, Tableau0, Tableau)
|
|
;
|
|
FindOne = lambda([P::out] is nondet, (
|
|
all_rows(Tableau0, R),
|
|
index(Tableau0, R, Col, ValF0),
|
|
ValF0 \= 0.0,
|
|
P = R - ValF0
|
|
)),
|
|
solutions(FindOne, Ones),
|
|
(
|
|
Ones = [Row - Fac0|_],
|
|
Fac = -Val/Fac0,
|
|
row_op(Fac, Row, 0, Tableau0, Tableau1),
|
|
ensure_zero_obj_coeffs(Vs, Tableau1, Tableau)
|
|
;
|
|
Ones = [],
|
|
error("problem with artificial variable")
|
|
)
|
|
).
|
|
|
|
:- pred fix_basis_and_rem_cols(list(var), tableau, tableau).
|
|
:- mode fix_basis_and_rem_cols(in, in, out) is det.
|
|
|
|
fix_basis_and_rem_cols([], Tab, Tab).
|
|
fix_basis_and_rem_cols([V|Vs], Tab0, Tab) :-
|
|
var_col(Tab0, V, Col),
|
|
BasisAgg = lambda([R::in, Ones0::in, Ones::out] is det, (
|
|
index(Tab0, R, Col, Val),
|
|
( Val = 0.0 ->
|
|
Ones = Ones0
|
|
;
|
|
Ones = [Val - R|Ones0]
|
|
)
|
|
)),
|
|
aggregate(all_rows(Tab0), BasisAgg, [], Res),
|
|
(
|
|
Res = [1.0 - Row]
|
|
->
|
|
PivGoal = lambda([Col1::out] is nondet, (
|
|
all_cols(Tab0, Col1),
|
|
Col \= Col1,
|
|
index(Tab0, Row, Col1, Zz),
|
|
Zz \= 0.0
|
|
)),
|
|
solutions(PivGoal, PivSolns),
|
|
(
|
|
PivSolns = [],
|
|
remove_col(Col, Tab0, Tab0a),
|
|
remove_row(Row, Tab0a, Tab1)
|
|
;
|
|
PivSolns = [Col2|_],
|
|
pivot(Row, Col2, Tab0, Tab0a),
|
|
remove_col(Col, Tab0a, Tab1)
|
|
)
|
|
;
|
|
Tab1 = Tab0
|
|
),
|
|
remove_col(Col, Tab1, Tab2),
|
|
fix_basis_and_rem_cols(Vs, Tab2, Tab).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- type cell ---> cell(int, int).
|
|
|
|
:- pred pivot(int, int, tableau, tableau).
|
|
:- mode pivot(in, in, in, out) is det.
|
|
|
|
pivot(P, Q, A0, A) :-
|
|
index(A0, P, Q, Apq),
|
|
MostCells = lambda([Cell::out] is nondet, (
|
|
all_rows0(A0, J),
|
|
J \= P,
|
|
all_cols0(A0, K),
|
|
K \= Q,
|
|
Cell = cell(J, K)
|
|
)),
|
|
ScaleCell = lambda([Cell::in, T0::in, T::out] is det, (
|
|
Cell = cell(J, K),
|
|
index(T0, J, K, Ajk),
|
|
index(T0, J, Q, Ajq),
|
|
index(T0, P, K, Apk),
|
|
NewAjk = Ajk - Apk * Ajq / Apq,
|
|
set_index(T0, J, K, NewAjk, T)
|
|
)),
|
|
aggregate(MostCells, ScaleCell, A0, A1),
|
|
QColumn = lambda([Cell::out] is nondet, (
|
|
all_rows0(A1, J),
|
|
Cell = cell(J, Q)
|
|
)),
|
|
Zero = lambda([Cell::in, T0::in, T::out] is det, (
|
|
Cell = cell(J, K),
|
|
set_index(T0, J, K, 0.0, T)
|
|
)),
|
|
aggregate(QColumn, Zero, A1, A2),
|
|
PRow = all_cols0(A2),
|
|
ScaleRow = lambda([K::in, T0::in, T::out] is det, (
|
|
index(T0, P, K, Apk),
|
|
NewApk = Apk / Apq,
|
|
set_index(T0, P, K, NewApk, T)
|
|
)),
|
|
aggregate(PRow, ScaleRow, A2, A3),
|
|
set_index(A3, P, Q, 1.0, A).
|
|
|
|
:- pred row_op(float, int, int, tableau, tableau).
|
|
:- mode row_op(in, in, in, in, out) is det.
|
|
|
|
row_op(Scale, From, To, A0, A) :-
|
|
AllCols = all_cols0(A0),
|
|
AddRow = lambda([Col::in, T0::in, T::out] is det, (
|
|
index(T0, From, Col, X),
|
|
index(T0, To, Col, Y),
|
|
Z = Y + (Scale * X),
|
|
set_index(T0, To, Col, Z, T)
|
|
)),
|
|
aggregate(AllCols, AddRow, A0, A).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- type tableau
|
|
---> tableau(
|
|
int,
|
|
int,
|
|
map(var, int),
|
|
map(var, pair(var)),
|
|
list(int), % shunned rows
|
|
list(int), % shunned cols
|
|
map(pair(int), float)
|
|
).
|
|
|
|
:- pred init_tableau(int::in, int::in, map(var, int)::in,
|
|
map(var, pair(var))::in, tableau::out) is det.
|
|
|
|
init_tableau(Rows, Cols, VarNums, URSVars, Tableau) :-
|
|
map__init(Cells),
|
|
Tableau = tableau(Rows, Cols, VarNums, URSVars, [], [], Cells).
|
|
|
|
:- pred index(tableau, int, int, float).
|
|
:- mode index(in, in, in, out) is det.
|
|
|
|
index(Tableau, J, K, R) :-
|
|
Tableau = tableau(_, _, _, _, SR, SC, Cells),
|
|
(
|
|
( list__member(J, SR)
|
|
; list__member(K, SC)
|
|
)
|
|
->
|
|
error("attempt to address shunned row/col")
|
|
;
|
|
true
|
|
),
|
|
(
|
|
map__search(Cells, J - K, R0)
|
|
->
|
|
R = R0
|
|
;
|
|
R = 0.0
|
|
).
|
|
|
|
:- pred set_index(tableau, int, int, float, tableau).
|
|
:- mode set_index(in, in, in, in, out) is det.
|
|
|
|
set_index(Tableau0, J, K, R, Tableau) :-
|
|
Tableau0 = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells0),
|
|
(
|
|
( list__member(J, SR)
|
|
; list__member(K, SC)
|
|
)
|
|
->
|
|
error("attempt to write shunned row/col")
|
|
;
|
|
true
|
|
),
|
|
( R = 0.0 ->
|
|
map__delete(Cells0, J - K, Cells)
|
|
;
|
|
map__set(Cells0, J - K, R, Cells)
|
|
),
|
|
Tableau = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells).
|
|
|
|
:- pred rhs_col(tableau, int).
|
|
:- mode rhs_col(in, out) is det.
|
|
|
|
rhs_col(tableau(_, RHS, _, _, _, _, _), RHS).
|
|
|
|
:- pred all_rows0(tableau, int).
|
|
:- mode all_rows0(in, out) is nondet.
|
|
|
|
all_rows0(Tableau, Row) :-
|
|
Tableau = tableau(Rows, _Cols, _, _, SR, _, _),
|
|
between(0, Rows, Row),
|
|
\+ list__member(Row, SR).
|
|
|
|
:- pred all_rows(tableau, int).
|
|
:- mode all_rows(in, out) is nondet.
|
|
|
|
all_rows(Tableau, Row) :-
|
|
Tableau = tableau(Rows, _Cols, _, _, SR, _, _),
|
|
between(1, Rows, Row),
|
|
\+ list__member(Row, SR).
|
|
|
|
:- pred all_cols0(tableau, int).
|
|
:- mode all_cols0(in, out) is nondet.
|
|
|
|
all_cols0(Tableau, Col) :-
|
|
Tableau = tableau(_Rows, Cols, _, _, _, SC, _),
|
|
between(0, Cols, Col),
|
|
\+ list__member(Col, SC).
|
|
|
|
:- pred all_cols(tableau, int).
|
|
:- mode all_cols(in, out) is nondet.
|
|
|
|
all_cols(Tableau, Col) :-
|
|
Tableau = tableau(_Rows, Cols, _, _, _, SC, _),
|
|
Cols1 = Cols - 1,
|
|
between(0, Cols1, Col),
|
|
\+ list__member(Col, SC).
|
|
|
|
:- pred var_col(tableau, var, int).
|
|
:- mode var_col(in, in, out) is det.
|
|
|
|
var_col(Tableau, Var, Col) :-
|
|
Tableau = tableau(_, _, VarCols, _, _, _, _),
|
|
map__lookup(VarCols, Var, Col).
|
|
|
|
:- pred urs_vars(tableau, map(var, pair(var))).
|
|
:- mode urs_vars(in, out) is det.
|
|
|
|
urs_vars(Tableau, URS) :-
|
|
Tableau = tableau(_, _, _, URS, _, _, _).
|
|
|
|
:- pred remove_row(int, tableau, tableau).
|
|
:- mode remove_row(in, in, out) is det.
|
|
|
|
remove_row(R, Tableau0, Tableau) :-
|
|
Tableau0 = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells),
|
|
Tableau = tableau(Rows, Cols, VarNums, URS, [R|SR], SC, Cells).
|
|
|
|
:- pred remove_col(int, tableau, tableau).
|
|
:- mode remove_col(in, in, out) is det.
|
|
|
|
remove_col(C, Tableau0, Tableau) :-
|
|
Tableau0 = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells),
|
|
Tableau = tableau(Rows, Cols, VarNums, URS, SR, [C|SC], Cells).
|
|
|
|
:- pred get_basis_vars(tableau, list(var)).
|
|
:- mode get_basis_vars(in, out) is det.
|
|
|
|
get_basis_vars(Tab, Vars) :-
|
|
BasisCol = lambda([C::out] is nondet, (
|
|
all_cols(Tab, C),
|
|
NonZeroGoal = lambda([P::out] is nondet, (
|
|
all_rows(Tab, R),
|
|
index(Tab, R, C, Z),
|
|
Z \= 0.0,
|
|
P = R - Z
|
|
)),
|
|
solutions(NonZeroGoal, Solns),
|
|
Solns = [_ - 1.0]
|
|
)),
|
|
solutions(BasisCol, Cols),
|
|
BasisVars = lambda([V::out] is nondet, (
|
|
list__member(Col, Cols),
|
|
Tab = tableau(_, _, VarCols, _, _, _, _),
|
|
map__member(VarCols, V, Col)
|
|
)),
|
|
solutions(BasisVars, Vars).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
% For debugging ....
|
|
|
|
:- pred show_tableau(tableau, io__state, io__state).
|
|
:- mode show_tableau(in, di, uo) is det.
|
|
|
|
show_tableau(Tableau) -->
|
|
{ Tableau = tableau(N, M, _, _, _, _, _) },
|
|
{ string__format("Tableau (%d, %d):\n", [i(N), i(M)], Str) },
|
|
io__write_string(Str),
|
|
aggregate(all_rows0(Tableau), show_row(Tableau)).
|
|
|
|
:- pred show_row(tableau, int, io__state, io__state).
|
|
:- mode show_row(in, in, di, uo) is det.
|
|
|
|
show_row(Tableau, Row) -->
|
|
aggregate(all_cols0(Tableau), show_cell(Tableau, Row)),
|
|
io__write_string("\n").
|
|
|
|
:- pred show_cell(tableau, int, int, io__state, io__state).
|
|
:- mode show_cell(in, in, in, di, uo) is det.
|
|
|
|
show_cell(Tableau, Row, Col) -->
|
|
{ index(Tableau, Row, Col, Val) },
|
|
{ string__format("%2.2f\t", [f(Val)], Str) },
|
|
io__write_string(Str).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred lp_info_init(varset, list(var), lp_info).
|
|
:- mode lp_info_init(in, in, out) is det.
|
|
|
|
lp_info_init(Varset0, URSVars, LPInfo) :-
|
|
Introduce = lambda([Orig::in, VP0::in, VP::out] is det, (
|
|
VP0 = VS0 - VM0,
|
|
varset__new_var(VS0, V1, VS1),
|
|
varset__new_var(VS1, V2, VS),
|
|
map__set(VM0, Orig, V1 - V2, VM),
|
|
VP = VS - VM
|
|
)),
|
|
map__init(URSMap0),
|
|
list__foldl(Introduce, URSVars, Varset0 - URSMap0, Varset - URSMap),
|
|
LPInfo = lp(Varset, URSMap, [], []).
|
|
|
|
:- pred new_slack_var(var::out, lp_info::in, lp_info::out) is det.
|
|
|
|
new_slack_var(Var) -->
|
|
get_varset(Varset0),
|
|
{ varset__new_var(Varset0, Var, Varset) },
|
|
set_varset(Varset),
|
|
get_slack_vars(Vars),
|
|
set_slack_vars([Var|Vars]).
|
|
|
|
:- pred new_art_var(var::out, lp_info::in, lp_info::out) is det.
|
|
|
|
new_art_var(Var) -->
|
|
get_varset(Varset0),
|
|
{ varset__new_var(Varset0, Var, Varset) },
|
|
set_varset(Varset),
|
|
get_art_vars(Vars),
|
|
set_art_vars([Var|Vars]).
|
|
|
|
:- pred get_varset(varset::out, lp_info::in, lp_info::out) is det.
|
|
|
|
get_varset(Varset, Info, Info) :-
|
|
Info = lp(Varset, _URSVars, _Slack, _Art).
|
|
|
|
:- pred set_varset(varset::in, lp_info::in, lp_info::out) is det.
|
|
|
|
set_varset(Varset, Info0, Info) :-
|
|
Info0 = lp(_Varset, URSVars, Slack, Art),
|
|
Info = lp(Varset, URSVars, Slack, Art).
|
|
|
|
:- pred get_urs_vars(map(var, pair(var))::out, lp_info::in, lp_info::out) is det.
|
|
|
|
get_urs_vars(URSVars, Info, Info) :-
|
|
Info = lp(_Varset, URSVars, _Slack, _Art).
|
|
|
|
:- pred set_urs_vars(map(var, pair(var))::in, lp_info::in, lp_info::out) is det.
|
|
|
|
set_urs_vars(URSVars, Info0, Info) :-
|
|
Info0 = lp(Varset, _URSVars, Slack, Art),
|
|
Info = lp(Varset, URSVars, Slack, Art).
|
|
|
|
:- pred get_slack_vars(list(var)::out, lp_info::in, lp_info::out) is det.
|
|
|
|
get_slack_vars(Slack, Info, Info) :-
|
|
Info = lp(_Varset, _URSVars, Slack, _Art).
|
|
|
|
:- pred set_slack_vars(list(var)::in, lp_info::in, lp_info::out) is det.
|
|
|
|
set_slack_vars(Slack, Info0, Info) :-
|
|
Info0 = lp(Varset, URSVars, _Slack, Art),
|
|
Info = lp(Varset, URSVars, Slack, Art).
|
|
|
|
:- pred get_art_vars(list(var)::out, lp_info::in, lp_info::out) is det.
|
|
|
|
get_art_vars(Art, Info, Info) :-
|
|
Info = lp(_Varset, _URSVars, _Slack, Art).
|
|
|
|
:- pred set_art_vars(list(var)::in, lp_info::in, lp_info::out) is det.
|
|
|
|
set_art_vars(Art, Info0, Info) :-
|
|
Info0 = lp(Varset, URSVars, Slack, _Art),
|
|
Info = lp(Varset, URSVars, Slack, Art).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
|
|
:- pred between(int, int, int).
|
|
:- mode between(in, in, out) is nondet.
|
|
|
|
between(Min, Max, I) :-
|
|
Min =< Max,
|
|
(
|
|
I = Min
|
|
;
|
|
Min1 = Min + 1,
|
|
between(Min1, Max, I)
|
|
).
|
|
|
|
%------------------------------------------------------------------------------%
|
|
%------------------------------------------------------------------------------%
|