mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-11 20:03:28 +00:00
Estimated hours taken: 6 Branches: main This diff makes hlds_module.m and many callers of its predicates easier to read and to maintain, but contains no changes in algorithms whatsoever. compiler/hlds_module.m: Bring (most of) this module into line with our current coding standards. Use predmode declarations, functions, and state variable syntax when appropriate. (The 'most of' is because I left the part of the module dealing with predicate tables alone, not wishing to cause a conflict for Pete.) Reorder arguments of predicates where necessary for the use of state variable syntax, and where this improves readability. Replace old-style lambdas with new-style lambdas or with partially applied named procedures. compiler/*.m: Conform to the changes in hlds_module.m. This mostly means using the new argument orders of predicates exported by hlds_module.m, and switching to state variable notation. Replace old-style lambdas with new-style lambdas or with partially applied named procedures in updated code. Replace unnecessary occurrences of four-space indentation with standard indentation in updated code. library/list.m: library/map.m: library/tree234.m: Add list__foldl4 and map__foldl3, since in some compiler modules, state variable notation is more convenient (and the code more efficient) if we don't have to bundle up several data structures into a tuple just to iterate over them. Change the fold predicates to use state variable notation. NEWS: Mention the new library functions.
1329 lines
49 KiB
Mathematica
1329 lines
49 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-2003 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% det_analysis.m - the determinism analysis pass.
|
|
|
|
% Main authors: conway, fjh, zs.
|
|
|
|
% This pass has three components:
|
|
%
|
|
% o Segregate the procedures into those that have determinism
|
|
% declarations, and those that don't
|
|
%
|
|
% o A step of performing a local inference pass on each procedure
|
|
% without a determinism declaration is iterated until
|
|
% a fixpoint is reached
|
|
%
|
|
% o A checking step is performed on all the procedures that have
|
|
% determinism declarations to ensure that they are at
|
|
% least as deterministic as their declaration. This uses
|
|
% a form of the local inference pass.
|
|
%
|
|
% If we are to avoid global inference for predicates with
|
|
% declarations, then it must be an error, not just a warning,
|
|
% if the determinism checking step detects that the determinism
|
|
% annotation was wrong. If we were to issue just a warning, then
|
|
% we would have to override the determinism annotation, and that
|
|
% would force us to re-check the inferred determinism for all
|
|
% calling predicates.
|
|
%
|
|
% Alternately, we could leave it as a warning, but then we would
|
|
% have to _make_ the predicate deterministic (or semideterministic)
|
|
% by inserting run-time checking code which calls error/1 if the
|
|
% predicate really isn't deterministic (semideterministic).
|
|
|
|
% Determinism has three components:
|
|
%
|
|
% whether a goal can fail
|
|
% whether a goal has more than one possible solution
|
|
% whether a goal occurs in a context where only the first solution
|
|
% is required
|
|
%
|
|
% The first two components are synthesized attributes: they are inferred
|
|
% bottom-up. The last component is an inherited attribute: it is
|
|
% propagated top-down.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module check_hlds__det_analysis.
|
|
|
|
:- interface.
|
|
|
|
:- import_module check_hlds__det_report.
|
|
:- import_module check_hlds__det_util.
|
|
:- import_module hlds__hlds_data.
|
|
:- import_module hlds__hlds_goal.
|
|
:- import_module hlds__hlds_module.
|
|
:- import_module hlds__hlds_pred.
|
|
:- import_module hlds__instmap.
|
|
:- import_module libs__globals.
|
|
:- import_module parse_tree__prog_data.
|
|
|
|
:- import_module list, std_util, io.
|
|
|
|
% Perform determinism inference for local predicates with no
|
|
% determinism declarations, and determinism checking for all other
|
|
% predicates.
|
|
:- pred determinism_pass(module_info, module_info, io__state, io__state).
|
|
:- mode determinism_pass(in, out, di, uo) is det.
|
|
|
|
% Check the determinism of a single procedure
|
|
% (only works if the determinism of the procedures it calls
|
|
% has already been inferred).
|
|
:- pred determinism_check_proc(proc_id, pred_id, module_info, module_info,
|
|
io__state, io__state).
|
|
:- mode determinism_check_proc(in, in, in, out, di, uo) is det.
|
|
|
|
% Infer the determinism of a procedure.
|
|
|
|
:- pred det_infer_proc(pred_id, proc_id, module_info, module_info, globals,
|
|
determinism, determinism, list(det_msg)).
|
|
:- mode det_infer_proc(in, in, in, out, in, out, out, out) is det.
|
|
|
|
% Infers the determinism of `Goal0' and returns this in `Detism'.
|
|
% It annotates the goal and all its subgoals with their determinism
|
|
% and returns the annotated goal in `Goal'.
|
|
|
|
:- pred det_infer_goal(hlds_goal, instmap, soln_context, det_info,
|
|
hlds_goal, determinism, list(det_msg)).
|
|
:- mode det_infer_goal(in, in, in, in, out, out, out) is det.
|
|
|
|
% Work out how many solutions are needed for a given determinism.
|
|
:- pred det_get_soln_context(determinism, soln_context).
|
|
:- mode det_get_soln_context(in, out) is det.
|
|
|
|
:- type soln_context
|
|
---> all_solns
|
|
; first_soln.
|
|
|
|
% The tables for computing the determinism of compound goals
|
|
% from the determinism of their components.
|
|
|
|
:- pred det_conjunction_detism(determinism, determinism, determinism).
|
|
:- mode det_conjunction_detism(in, in, out) is det.
|
|
|
|
:- pred det_par_conjunction_detism(determinism, determinism, determinism).
|
|
:- mode det_par_conjunction_detism(in, in, out) is det.
|
|
|
|
:- pred det_switch_detism(determinism, determinism, determinism).
|
|
:- mode det_switch_detism(in, in, out) is det.
|
|
|
|
:- pred det_disjunction_maxsoln(soln_count, soln_count, soln_count).
|
|
:- mode det_disjunction_maxsoln(in, in, out) is det.
|
|
|
|
:- pred det_disjunction_canfail(can_fail, can_fail, can_fail).
|
|
:- mode det_disjunction_canfail(in, in, out) is det.
|
|
|
|
:- pred det_switch_maxsoln(soln_count, soln_count, soln_count).
|
|
:- mode det_switch_maxsoln(in, in, out) is det.
|
|
|
|
:- pred det_switch_canfail(can_fail, can_fail, can_fail).
|
|
:- mode det_switch_canfail(in, in, out) is det.
|
|
|
|
:- pred det_negation_det(determinism, maybe(determinism)).
|
|
:- mode det_negation_det(in, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module check_hlds__mode_util.
|
|
:- import_module check_hlds__modecheck_call.
|
|
:- import_module check_hlds__purity.
|
|
:- import_module check_hlds__type_util.
|
|
:- import_module hlds__hlds_out.
|
|
:- import_module hlds__passes_aux.
|
|
:- import_module libs__options.
|
|
:- import_module parse_tree__mercury_to_mercury.
|
|
|
|
:- import_module string, assoc_list, bool, map, set, require, term.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
determinism_pass(ModuleInfo0, ModuleInfo) -->
|
|
{ determinism_declarations(ModuleInfo0, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs) },
|
|
{ list__foldl(set_non_inferred_proc_determinism, NoInferProcs,
|
|
ModuleInfo0, ModuleInfo1) },
|
|
globals__io_lookup_bool_option(verbose, Verbose),
|
|
globals__io_lookup_bool_option(debug_det, Debug),
|
|
( { UndeclaredProcs = [] } ->
|
|
{ ModuleInfo2 = ModuleInfo1 }
|
|
;
|
|
maybe_write_string(Verbose,
|
|
"% Doing determinism inference...\n"),
|
|
global_inference_pass(ModuleInfo1, UndeclaredProcs, Debug,
|
|
ModuleInfo2),
|
|
maybe_write_string(Verbose, "% done.\n")
|
|
),
|
|
maybe_write_string(Verbose, "% Doing determinism checking...\n"),
|
|
global_final_pass(ModuleInfo2, DeclaredProcs, Debug, ModuleInfo),
|
|
maybe_write_string(Verbose, "% done.\n").
|
|
|
|
determinism_check_proc(ProcId, PredId, ModuleInfo0, ModuleInfo) -->
|
|
globals__io_lookup_bool_option(debug_det, Debug),
|
|
global_final_pass(ModuleInfo0, [proc(PredId, ProcId)], Debug,
|
|
ModuleInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred global_inference_pass(module_info, pred_proc_list, bool, module_info,
|
|
io__state, io__state).
|
|
:- mode global_inference_pass(in, in, in, out, di, uo) is det.
|
|
|
|
% Iterate until a fixpoint is reached. This can be expensive
|
|
% if a module has many predicates with undeclared determinisms.
|
|
% If this ever becomes a problem, we should switch to doing
|
|
% iterations only on strongly connected components of the
|
|
% dependency graph.
|
|
|
|
global_inference_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
|
|
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
|
|
[], Msgs, unchanged, Changed),
|
|
maybe_write_string(Debug, "% Inference pass complete\n"),
|
|
( { Changed = changed } ->
|
|
global_inference_pass(ModuleInfo1, ProcList, Debug, ModuleInfo)
|
|
;
|
|
% We have arrived at a fixpoint. Therefore all the messages we
|
|
% have are based on the final determinisms of all procedures,
|
|
% which means it is safe to print them.
|
|
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo)
|
|
).
|
|
|
|
:- pred global_inference_single_pass(pred_proc_list, bool,
|
|
module_info, module_info, list(det_msg), list(det_msg),
|
|
maybe_changed, maybe_changed, io__state, io__state).
|
|
:- mode global_inference_single_pass(in, in, in, out, in, out, in, out, di, uo)
|
|
is det.
|
|
|
|
global_inference_single_pass([], _, ModuleInfo, ModuleInfo, Msgs, Msgs,
|
|
Changed, Changed) --> [].
|
|
global_inference_single_pass([proc(PredId, ProcId) | PredProcs], Debug,
|
|
ModuleInfo0, ModuleInfo, Msgs0, Msgs, Changed0, Changed) -->
|
|
globals__io_get_globals(Globals),
|
|
{ det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1, Globals,
|
|
Detism0, Detism, ProcMsgs) },
|
|
( { Detism = Detism0 } ->
|
|
( { Debug = yes } ->
|
|
io__write_string("% Inferred old detism "),
|
|
mercury_output_det(Detism),
|
|
io__write_string(" for "),
|
|
hlds_out__write_pred_proc_id(ModuleInfo1,
|
|
PredId, ProcId),
|
|
io__write_string("\n")
|
|
;
|
|
[]
|
|
),
|
|
{ Changed1 = Changed0 }
|
|
;
|
|
( { Debug = yes } ->
|
|
io__write_string("% Inferred new detism "),
|
|
mercury_output_det(Detism),
|
|
io__write_string(" for "),
|
|
hlds_out__write_pred_proc_id(ModuleInfo1,
|
|
PredId, ProcId),
|
|
io__write_string("\n")
|
|
;
|
|
[]
|
|
),
|
|
{ Changed1 = changed }
|
|
),
|
|
{ list__append(ProcMsgs, Msgs0, Msgs1) },
|
|
global_inference_single_pass(PredProcs, Debug,
|
|
ModuleInfo1, ModuleInfo, Msgs1, Msgs, Changed1, Changed).
|
|
|
|
:- pred global_final_pass(module_info, pred_proc_list, bool,
|
|
module_info, io__state, io__state).
|
|
:- mode global_final_pass(in, in, in, out, di, uo) is det.
|
|
|
|
global_final_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
|
|
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
|
|
[], Msgs, unchanged, _),
|
|
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo2),
|
|
global_checking_pass(ProcList, ModuleInfo2, ModuleInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo, Globals,
|
|
Detism0, Detism, Msgs) :-
|
|
|
|
% Get the proc_info structure for this procedure
|
|
module_info_preds(ModuleInfo0, Preds0),
|
|
map__lookup(Preds0, PredId, Pred0),
|
|
pred_info_procedures(Pred0, Procs0),
|
|
map__lookup(Procs0, ProcId, Proc0),
|
|
|
|
% Remember the old inferred determinism of this procedure
|
|
proc_info_inferred_determinism(Proc0, Detism0),
|
|
|
|
% Work out whether the procedure occurs in a single-solution
|
|
% context or not. Currently we only assume so if
|
|
% the predicate has an explicit determinism declaration
|
|
% that says so.
|
|
det_get_soln_context(Detism0, OldInferredSolnContext),
|
|
proc_info_declared_determinism(Proc0, MaybeDeclaredDetism),
|
|
( MaybeDeclaredDetism = yes(DeclaredDetism) ->
|
|
det_get_soln_context(DeclaredDetism, DeclaredSolnContext)
|
|
;
|
|
DeclaredSolnContext = all_solns
|
|
),
|
|
(
|
|
( DeclaredSolnContext = first_soln
|
|
; OldInferredSolnContext = first_soln
|
|
)
|
|
->
|
|
SolnContext = first_soln
|
|
;
|
|
SolnContext = all_solns
|
|
),
|
|
|
|
% Infer the determinism of the goal
|
|
proc_info_goal(Proc0, Goal0),
|
|
proc_info_get_initial_instmap(Proc0, ModuleInfo0, InstMap0),
|
|
proc_info_vartypes(Proc0, VarTypes),
|
|
det_info_init(ModuleInfo0, VarTypes, PredId, ProcId, Globals, DetInfo),
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, Detism1, Msgs),
|
|
|
|
% Take the worst of the old and new detisms.
|
|
% This is needed to prevent loops on p :- not(p)
|
|
% at least if the initial assumed detism is det.
|
|
% This may also be needed to ensure that we don't change
|
|
% the interface determinism of procedures, if we are
|
|
% re-running determinism analysis.
|
|
|
|
determinism_components(Detism0, CanFail0, MaxSoln0),
|
|
determinism_components(Detism1, CanFail1, MaxSoln1),
|
|
det_switch_canfail(CanFail0, CanFail1, CanFail),
|
|
det_switch_maxsoln(MaxSoln0, MaxSoln1, MaxSoln),
|
|
determinism_components(Detism2, CanFail, MaxSoln),
|
|
|
|
% Now see if the evaluation model can change the detism
|
|
proc_info_eval_method(Proc0, EvalMethod),
|
|
Detism = eval_method_change_determinism(EvalMethod, Detism2),
|
|
|
|
% Save the newly inferred information
|
|
proc_info_set_goal(Goal, Proc0, Proc1),
|
|
proc_info_set_inferred_determinism(Detism, Proc1, Proc),
|
|
|
|
% Put back the new proc_info structure.
|
|
map__det_update(Procs0, ProcId, Proc, Procs),
|
|
pred_info_set_procedures(Procs, Pred0, Pred),
|
|
map__det_update(Preds0, PredId, Pred, Preds),
|
|
module_info_set_preds(Preds, ModuleInfo0, ModuleInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
det_infer_goal(Goal0 - GoalInfo0, InstMap0, SolnContext0, DetInfo,
|
|
Goal - GoalInfo, Detism, Msgs) :-
|
|
goal_info_get_nonlocals(GoalInfo0, NonLocalVars),
|
|
goal_info_get_instmap_delta(GoalInfo0, DeltaInstMap),
|
|
|
|
% If a pure or semipure goal has no output variables,
|
|
% then the goal is in a single-solution context.
|
|
|
|
(
|
|
det_no_output_vars(NonLocalVars, InstMap0, DeltaInstMap,
|
|
DetInfo),
|
|
\+ goal_info_is_impure(GoalInfo0)
|
|
->
|
|
AddPruning = yes,
|
|
SolnContext = first_soln
|
|
;
|
|
AddPruning = no,
|
|
SolnContext = SolnContext0
|
|
),
|
|
|
|
% Some other part of the compiler has determined that we need to keep
|
|
% the cut represented by this quantification. This can happen e.g.
|
|
% when deep profiling adds impure code to the goal inside the some;
|
|
% it doesn't want to change the behavior of the some, even though
|
|
% the addition of impurity would make the if-then-else treat it
|
|
% differently.
|
|
|
|
(
|
|
Goal0 = some(_, _, _),
|
|
goal_info_has_feature(GoalInfo0, keep_this_commit)
|
|
->
|
|
Prune = yes
|
|
;
|
|
Prune = AddPruning
|
|
),
|
|
|
|
det_infer_goal_2(Goal0, GoalInfo0, InstMap0, SolnContext, DetInfo,
|
|
NonLocalVars, DeltaInstMap, Goal1, InternalDetism0, Msgs1),
|
|
|
|
determinism_components(InternalDetism0, InternalCanFail,
|
|
InternalSolns0),
|
|
(
|
|
% If mode analysis notices that a goal cannot succeed,
|
|
% then determinism analysis should notice this too.
|
|
|
|
instmap_delta_is_unreachable(DeltaInstMap)
|
|
->
|
|
InternalSolns = at_most_zero
|
|
;
|
|
InternalSolns = InternalSolns0
|
|
),
|
|
|
|
(
|
|
( InternalSolns = at_most_many
|
|
; InternalSolns = at_most_many_cc
|
|
),
|
|
Prune = yes
|
|
->
|
|
Solns = at_most_one
|
|
;
|
|
% If a goal with multiple solutions occurs in a
|
|
% single-solution context, then we will need to do pruning.
|
|
|
|
InternalSolns = at_most_many,
|
|
SolnContext = first_soln
|
|
->
|
|
Solns = at_most_many_cc
|
|
;
|
|
Solns = InternalSolns
|
|
),
|
|
determinism_components(Detism, InternalCanFail, Solns),
|
|
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
|
|
|
|
%
|
|
% The code generators assume that conjunctions containing
|
|
% multi or nondet goals and if-then-elses containing
|
|
% multi or nondet conditions can only occur inside other
|
|
% multi or nondet goals. simplify.m modifies the code to make
|
|
% these invariants hold. Determinism analysis can be rerun
|
|
% after simplification, and without this code here the
|
|
% invariants would not hold after determinism analysis
|
|
% (the number of solutions of the inner goal would be changed
|
|
% back from at_most_many to at_most_one or at_most_zero).
|
|
%
|
|
(
|
|
%
|
|
% If-then-elses that are det or semidet may
|
|
% nevertheless contain nondet or multidet
|
|
% conditions. If this happens, the if-then-else
|
|
% must be put inside a `some' to appease the
|
|
% code generator. (Both the MLDS and LLDS
|
|
% back-ends rely on this.)
|
|
%
|
|
Goal1 = if_then_else(_, _ - CondInfo, _, _),
|
|
goal_info_get_determinism(CondInfo, CondDetism),
|
|
determinism_components(CondDetism, _, at_most_many),
|
|
Solns \= at_most_many
|
|
->
|
|
FinalInternalSolns = at_most_many
|
|
;
|
|
%
|
|
% Conjunctions that cannot produce solutions may nevertheless
|
|
% contain nondet and multidet goals. If this happens, the
|
|
% conjunction is put inside a `some' to appease the code
|
|
% generator.
|
|
%
|
|
Goal1 = conj(ConjGoals),
|
|
Solns = at_most_zero,
|
|
some [ConjGoalInfo] (
|
|
list__member(_ - ConjGoalInfo, ConjGoals),
|
|
goal_info_get_determinism(ConjGoalInfo,
|
|
ConjGoalDetism),
|
|
determinism_components(ConjGoalDetism, _, at_most_many)
|
|
)
|
|
->
|
|
FinalInternalSolns = at_most_many
|
|
;
|
|
FinalInternalSolns = InternalSolns
|
|
),
|
|
determinism_components(FinalInternalDetism, InternalCanFail,
|
|
FinalInternalSolns),
|
|
|
|
% See how we should introduce the commit operator, if one is needed.
|
|
|
|
(
|
|
% do we need a commit?
|
|
Detism \= FinalInternalDetism,
|
|
|
|
% for disjunctions, we want to use a semidet
|
|
% or cc_nondet disjunction which avoids creating a
|
|
% choice point at all, rather than wrapping a
|
|
% some [] around a nondet disj, which would
|
|
% create a choice point and then prune it.
|
|
Goal1 \= disj(_),
|
|
|
|
% do we already have a commit?
|
|
Goal1 \= some(_, _, _)
|
|
->
|
|
% a commit needed - we must introduce an explicit `some'
|
|
% so that the code generator knows to insert the appropriate
|
|
% code for pruning
|
|
goal_info_set_determinism(GoalInfo0,
|
|
FinalInternalDetism, InnerInfo),
|
|
Goal = some([], can_remove, Goal1 - InnerInfo),
|
|
Msgs = Msgs1
|
|
;
|
|
% either no commit needed, or a `some' already present
|
|
Goal = Goal1,
|
|
Msgs = Msgs1
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred det_infer_goal_2(hlds_goal_expr, hlds_goal_info, instmap,
|
|
soln_context, det_info, set(prog_var), instmap_delta,
|
|
hlds_goal_expr, determinism, list(det_msg)).
|
|
:- mode det_infer_goal_2(in, in, in, in, in, in, in, out, out, out) is det.
|
|
|
|
% The determinism of a conjunction is the worst case of the elements
|
|
% of that conjuction.
|
|
|
|
det_infer_goal_2(conj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
|
|
conj(Goals), Detism, Msgs) :-
|
|
det_infer_conj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
Goals, Detism, Msgs).
|
|
|
|
det_infer_goal_2(par_conj(Goals0), GoalInfo, InstMap0, SolnContext,
|
|
DetInfo, _, _, par_conj(Goals), Detism, Msgs) :-
|
|
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
Goals, Detism, Msgs0),
|
|
(
|
|
determinism_components(Detism, CanFail, Solns),
|
|
CanFail = cannot_fail,
|
|
Solns \= at_most_many
|
|
->
|
|
Msgs = Msgs0
|
|
;
|
|
det_info_get_pred_id(DetInfo, PredId),
|
|
det_info_get_proc_id(DetInfo, ProcId),
|
|
Msg = par_conj_not_det(Detism, PredId, ProcId, GoalInfo, Goals),
|
|
Msgs = [Msg|Msgs0]
|
|
).
|
|
|
|
det_infer_goal_2(disj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
|
|
disj(Goals), Detism, Msgs) :-
|
|
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
can_fail, at_most_zero, Goals, Detism, Msgs).
|
|
|
|
% The determinism of a switch is the worst of the determinism of each
|
|
% of the cases. Also, if only a subset of the constructors are handled,
|
|
% then it is semideterministic or worse - this is determined
|
|
% in switch_detection.m and handled via the SwitchCanFail field.
|
|
|
|
det_infer_goal_2(switch(Var, SwitchCanFail, Cases0), GoalInfo,
|
|
InstMap0, SolnContext, DetInfo, _, _,
|
|
switch(Var, SwitchCanFail, Cases), Detism, Msgs) :-
|
|
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo,
|
|
cannot_fail, at_most_zero, Cases, CasesDetism, Msgs0),
|
|
determinism_components(CasesDetism, CasesCanFail, CasesSolns),
|
|
% The switch variable tests are in a first_soln context if and only
|
|
% if the switch goal as a whole was in a first_soln context and the
|
|
% cases cannot fail.
|
|
(
|
|
CasesCanFail = cannot_fail,
|
|
SolnContext = first_soln
|
|
->
|
|
SwitchSolnContext = first_soln
|
|
;
|
|
SwitchSolnContext = all_solns
|
|
),
|
|
ExaminesRep = yes,
|
|
det_check_for_noncanonical_type(Var, ExaminesRep, SwitchCanFail,
|
|
SwitchSolnContext, GoalInfo, switch, DetInfo, Msgs0,
|
|
SwitchSolns, Msgs),
|
|
det_conjunction_canfail(SwitchCanFail, CasesCanFail, CanFail),
|
|
det_conjunction_maxsoln(SwitchSolns, CasesSolns, NumSolns),
|
|
determinism_components(Detism, CanFail, NumSolns).
|
|
|
|
% For calls, just look up the determinism entry associated with
|
|
% the called predicate.
|
|
% This is the point at which annotations start changing
|
|
% when we iterate to fixpoint for global determinism inference.
|
|
|
|
det_infer_goal_2(call(PredId, ModeId0, A, B, C, N), GoalInfo, _,
|
|
SolnContext, DetInfo, _, _,
|
|
call(PredId, ModeId, A, B, C, N), Detism, Msgs) :-
|
|
det_lookup_detism(DetInfo, PredId, ModeId0, Detism0),
|
|
%
|
|
% Make sure we don't try to call a committed-choice pred
|
|
% from a non-committed-choice context.
|
|
%
|
|
determinism_components(Detism0, CanFail, NumSolns),
|
|
(
|
|
NumSolns = at_most_many_cc,
|
|
SolnContext \= first_soln
|
|
->
|
|
(
|
|
det_find_matching_non_cc_mode(DetInfo, PredId, ModeId0,
|
|
ModeId1)
|
|
->
|
|
ModeId = ModeId1,
|
|
Msgs = [],
|
|
determinism_components(Detism, CanFail, at_most_many)
|
|
;
|
|
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
|
|
PredId, ModeId0)],
|
|
ModeId = ModeId0,
|
|
% Code elsewhere relies on the assumption that
|
|
% SolnContext \= first_soln =>
|
|
% NumSolns \= at_most_many_cc,
|
|
% so we need to enforce that here.
|
|
determinism_components(Detism, CanFail, at_most_many)
|
|
)
|
|
;
|
|
Msgs = [],
|
|
ModeId = ModeId0,
|
|
Detism = Detism0
|
|
).
|
|
|
|
det_infer_goal_2(generic_call(GenericCall, ArgVars, Modes, Det0),
|
|
GoalInfo, _InstMap0, SolnContext,
|
|
_MiscInfo, _NonLocalVars, _DeltaInstMap,
|
|
generic_call(GenericCall, ArgVars, Modes, Det0),
|
|
Det, Msgs) :-
|
|
determinism_components(Det0, CanFail, NumSolns),
|
|
(
|
|
NumSolns = at_most_many_cc,
|
|
SolnContext \= first_soln
|
|
->
|
|
% This error can only occur for higher-order calls.
|
|
% class_method calls are only introduced by polymorphism,
|
|
% and the aditi_builtins are all det (for the updates)
|
|
% or introduced later (for calls).
|
|
Msgs = [higher_order_cc_pred_in_wrong_context(GoalInfo, Det0)],
|
|
% Code elsewhere relies on the assumption that
|
|
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
|
|
% so we need to enforce that here.
|
|
determinism_components(Det, CanFail, at_most_many)
|
|
;
|
|
Msgs = [],
|
|
Det = Det0
|
|
).
|
|
|
|
% unifications are either deterministic or semideterministic.
|
|
% (see det_infer_unify).
|
|
det_infer_goal_2(unify(LT, RT0, M, U, C), GoalInfo, InstMap0, SolnContext,
|
|
DetInfo, _, _, unify(LT, RT, M, U, C), UnifyDet, Msgs) :-
|
|
(
|
|
RT0 = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
|
|
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal0)
|
|
->
|
|
(
|
|
determinism_components(LambdaDeclaredDet, _,
|
|
at_most_many_cc)
|
|
->
|
|
LambdaSolnContext = first_soln
|
|
;
|
|
LambdaSolnContext = all_solns
|
|
),
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
instmap__pre_lambda_update(ModuleInfo, Vars, Modes,
|
|
InstMap0, InstMap1),
|
|
det_infer_goal(Goal0, InstMap1, LambdaSolnContext, DetInfo,
|
|
Goal, LambdaInferredDet, Msgs1),
|
|
det_check_lambda(LambdaDeclaredDet, LambdaInferredDet,
|
|
Goal, GoalInfo, DetInfo, Msgs2),
|
|
list__append(Msgs1, Msgs2, Msgs3),
|
|
RT = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
|
|
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal)
|
|
;
|
|
RT = RT0,
|
|
Msgs3 = []
|
|
),
|
|
det_infer_unify_canfail(U, UnifyCanFail),
|
|
det_infer_unify_examines_rep(U, ExaminesRepresentation),
|
|
det_check_for_noncanonical_type(LT, ExaminesRepresentation,
|
|
UnifyCanFail, SolnContext, GoalInfo, unify(C), DetInfo, Msgs3,
|
|
UnifyNumSolns, Msgs),
|
|
determinism_components(UnifyDet, UnifyCanFail, UnifyNumSolns).
|
|
|
|
det_infer_goal_2(if_then_else(Vars, Cond0, Then0, Else0), _GoalInfo0,
|
|
InstMap0, SolnContext, DetInfo, _NonLocalVars, _DeltaInstMap,
|
|
if_then_else(Vars, Cond, Then, Else), Detism, Msgs) :-
|
|
|
|
% We process the goal right-to-left, doing the `then' before
|
|
% the condition of the if-then-else, so that we can propagate
|
|
% the SolnContext correctly.
|
|
|
|
% First process the `then' part
|
|
update_instmap(Cond0, InstMap0, InstMap1),
|
|
det_infer_goal(Then0, InstMap1, SolnContext, DetInfo,
|
|
Then, ThenDetism, ThenMsgs),
|
|
determinism_components(ThenDetism, ThenCanFail, ThenMaxSoln),
|
|
|
|
% Next, work out the right soln_context to use for the condition.
|
|
% The condition is in a first_soln context if and only if the goal
|
|
% as a whole was in a first_soln context and the `then' part
|
|
% cannot fail.
|
|
(
|
|
ThenCanFail = cannot_fail,
|
|
SolnContext = first_soln
|
|
->
|
|
CondSolnContext = first_soln
|
|
;
|
|
CondSolnContext = all_solns
|
|
),
|
|
|
|
% Process the `condition' part
|
|
det_infer_goal(Cond0, InstMap0, CondSolnContext, DetInfo,
|
|
Cond, CondDetism, CondMsgs),
|
|
determinism_components(CondDetism, CondCanFail, CondMaxSoln),
|
|
|
|
% Process the `else' part
|
|
det_infer_goal(Else0, InstMap0, SolnContext, DetInfo,
|
|
Else, ElseDetism, ElseMsgs),
|
|
determinism_components(ElseDetism, ElseCanFail, ElseMaxSoln),
|
|
|
|
% Finally combine the results from the three parts
|
|
( CondCanFail = cannot_fail ->
|
|
% A -> B ; C is equivalent to A, B if A cannot fail
|
|
det_conjunction_detism(CondDetism, ThenDetism, Detism)
|
|
; CondMaxSoln = at_most_zero ->
|
|
% A -> B ; C is equivalent to ~A, C if A cannot succeed
|
|
det_negation_det(CondDetism, MaybeNegDetism),
|
|
(
|
|
MaybeNegDetism = no,
|
|
error("cannot find determinism of negated condition")
|
|
;
|
|
MaybeNegDetism = yes(NegDetism)
|
|
),
|
|
det_conjunction_detism(NegDetism, ElseDetism, Detism)
|
|
;
|
|
det_conjunction_maxsoln(CondMaxSoln, ThenMaxSoln, CTMaxSoln),
|
|
det_switch_maxsoln(CTMaxSoln, ElseMaxSoln, MaxSoln),
|
|
det_switch_canfail(ThenCanFail, ElseCanFail, CanFail),
|
|
determinism_components(Detism, CanFail, MaxSoln)
|
|
),
|
|
|
|
list__append(ThenMsgs, ElseMsgs, AfterMsgs),
|
|
list__append(CondMsgs, AfterMsgs, Msgs).
|
|
|
|
% Negations are almost always semideterministic. It is an error for
|
|
% a negation to further instantiate any non-local variable. Such
|
|
% errors will be reported by the mode analysis.
|
|
%
|
|
% Question: should we warn about the negation of goals that either
|
|
% cannot succeed or cannot fail?
|
|
% Answer: yes, probably, but it's not a high priority.
|
|
|
|
det_infer_goal_2(not(Goal0), _, InstMap0, _SolnContext, DetInfo, _, _,
|
|
not(Goal), Det, Msgs) :-
|
|
det_infer_goal(Goal0, InstMap0, first_soln, DetInfo,
|
|
Goal, NegDet, Msgs),
|
|
det_negation_det(NegDet, MaybeDet),
|
|
(
|
|
MaybeDet = no,
|
|
error("inappropriate determinism inside a negation")
|
|
;
|
|
MaybeDet = yes(Det)
|
|
).
|
|
|
|
% Existential quantification may require a cut to throw away solutions,
|
|
% but we cannot rely on explicit quantification to detect this.
|
|
% Therefore cuts are handled in det_infer_goal.
|
|
|
|
det_infer_goal_2(some(Vars, CanRemove, Goal0), _, InstMap0, SolnContext,
|
|
DetInfo, _, _, some(Vars, CanRemove, Goal), Det, Msgs) :-
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, Det, Msgs).
|
|
|
|
% pragma foregin_codes are handled in the same way as predicate calls
|
|
det_infer_goal_2(foreign_proc(Attributes, PredId, ProcId,
|
|
Args, ArgNameMap, OrigArgTypes, PragmaCode),
|
|
GoalInfo, _, SolnContext, DetInfo, _, _,
|
|
foreign_proc(Attributes, PredId, ProcId, Args,
|
|
ArgNameMap, OrigArgTypes, PragmaCode),
|
|
Detism, Msgs) :-
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
|
|
proc_info_declared_determinism(ProcInfo, MaybeDetism),
|
|
( MaybeDetism = yes(Detism0) ->
|
|
determinism_components(Detism0, CanFail, NumSolns0),
|
|
( PragmaCode = nondet(_, _, _, _, _, _, _, _, _) ->
|
|
% pragma C codes of this form
|
|
% can have more than one solution
|
|
NumSolns1 = at_most_many
|
|
;
|
|
NumSolns1 = NumSolns0
|
|
),
|
|
(
|
|
NumSolns1 = at_most_many_cc,
|
|
SolnContext \= first_soln
|
|
->
|
|
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
|
|
PredId, ProcId)],
|
|
NumSolns = at_most_many
|
|
;
|
|
Msgs = [],
|
|
NumSolns = NumSolns1
|
|
),
|
|
determinism_components(Detism, CanFail, NumSolns)
|
|
;
|
|
Msgs = [pragma_c_code_without_det_decl(PredId, ProcId)],
|
|
Detism = erroneous
|
|
).
|
|
|
|
det_infer_goal_2(shorthand(_), _, _, _, _, _, _, _, _, _) :-
|
|
% these should have been expanded out by now
|
|
error("det_infer_goal_2: unexpected shorthand").
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred det_infer_conj(list(hlds_goal), instmap, soln_context, det_info,
|
|
list(hlds_goal), determinism, list(det_msg)).
|
|
:- mode det_infer_conj(in, in, in, in, out, out, out) is det.
|
|
|
|
det_infer_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
|
|
det_infer_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
|
|
[Goal | Goals], Detism, Msgs) :-
|
|
|
|
% We should look to see when we get to a not_reached point
|
|
% and optimize away the remaining elements of the conjunction.
|
|
% But that optimization is done in the code generation anyway.
|
|
|
|
% We infer the determinisms right-to-left, so that we can propagate
|
|
% the SolnContext properly.
|
|
|
|
%
|
|
% First, process the second and subsequent conjuncts.
|
|
%
|
|
update_instmap(Goal0, InstMap0, InstMap1),
|
|
det_infer_conj(Goals0, InstMap1, SolnContext, DetInfo,
|
|
Goals, DetismB, MsgsB),
|
|
determinism_components(DetismB, CanFailB, _MaxSolnsB),
|
|
|
|
%
|
|
% Next, work out whether the first conjunct is in a first_soln context
|
|
% or not. We obviously need all its solutions if we need all the
|
|
% solutions of the conjunction. However, even if we need only the
|
|
% first solution of the conjunction, we may need to generate more
|
|
% than one solution of the first conjunct if the later conjuncts
|
|
% may possibly fail.
|
|
%
|
|
(
|
|
CanFailB = cannot_fail,
|
|
SolnContext = first_soln
|
|
->
|
|
SolnContextA = first_soln
|
|
;
|
|
SolnContextA = all_solns
|
|
),
|
|
%
|
|
% Process the first conjunct.
|
|
%
|
|
det_infer_goal(Goal0, InstMap0, SolnContextA, DetInfo,
|
|
Goal, DetismA, MsgsA),
|
|
|
|
%
|
|
% Finally combine the results computed above.
|
|
%
|
|
det_conjunction_detism(DetismA, DetismB, Detism),
|
|
list__append(MsgsA, MsgsB, Msgs).
|
|
|
|
:- pred det_infer_par_conj(list(hlds_goal), instmap, soln_context, det_info,
|
|
list(hlds_goal), determinism, list(det_msg)).
|
|
:- mode det_infer_par_conj(in, in, in, in, out, out, out) is det.
|
|
|
|
det_infer_par_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
|
|
det_infer_par_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
|
|
[Goal | Goals], Detism, Msgs) :-
|
|
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, DetismA, MsgsA),
|
|
determinism_components(DetismA, CanFailA, MaxSolnsA),
|
|
|
|
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
Goals, DetismB, MsgsB),
|
|
determinism_components(DetismB, CanFailB, MaxSolnsB),
|
|
|
|
det_conjunction_maxsoln(MaxSolnsA, MaxSolnsB, MaxSolns),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
determinism_components(Detism, CanFail, MaxSolns),
|
|
list__append(MsgsA, MsgsB, Msgs).
|
|
|
|
:- pred det_infer_disj(list(hlds_goal), instmap, soln_context, det_info,
|
|
can_fail, soln_count, list(hlds_goal), determinism, list(det_msg)).
|
|
:- mode det_infer_disj(in, in, in, in, in, in, out, out, out) is det.
|
|
|
|
det_infer_disj([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
|
|
[], Detism, []) :-
|
|
determinism_components(Detism, CanFail, MaxSolns).
|
|
det_infer_disj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo, CanFail0,
|
|
MaxSolns0, [Goal | Goals1], Detism, Msgs) :-
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo, Goal, Detism1,
|
|
Msgs1),
|
|
determinism_components(Detism1, CanFail1, MaxSolns1),
|
|
Goal = _ - GoalInfo,
|
|
% If a disjunct cannot succeed but is marked with the
|
|
% preserve_backtrack_into feature, treat it as being able to succeed
|
|
% when computing the max number of solutions of the disjunction as a
|
|
% whole, *provided* that some earlier disjuct could succeed. The idea
|
|
% is that ( marked failure ; det ) should be treated as det, since all
|
|
% backtracking is local within it, while disjunctions of the form
|
|
% ( det ; marked failure ) should be treated as multi, since we want
|
|
% to be able to backtrack to the second disjunct from *outside*
|
|
% the disjunction. This is useful for program transformation that want
|
|
% to get control on exits to and redos into model_non procedures.
|
|
% Deep profiling is one such transformation.
|
|
(
|
|
MaxSolns0 \= at_most_zero,
|
|
MaxSolns1 = at_most_zero,
|
|
goal_info_has_feature(GoalInfo, preserve_backtrack_into)
|
|
->
|
|
AdjMaxSolns1 = at_most_one
|
|
;
|
|
AdjMaxSolns1 = MaxSolns1
|
|
),
|
|
det_disjunction_canfail(CanFail0, CanFail1, CanFail2),
|
|
det_disjunction_maxsoln(MaxSolns0, AdjMaxSolns1, MaxSolns2),
|
|
% if we're in a single-solution context,
|
|
% convert `at_most_many' to `at_most_many_cc'
|
|
( SolnContext = first_soln, MaxSolns2 = at_most_many ->
|
|
MaxSolns3 = at_most_many_cc
|
|
;
|
|
MaxSolns3 = MaxSolns2
|
|
),
|
|
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo, CanFail2,
|
|
MaxSolns3, Goals1, Detism, Msgs2),
|
|
list__append(Msgs1, Msgs2, Msgs).
|
|
|
|
:- pred det_infer_switch(list(case), instmap, soln_context, det_info,
|
|
can_fail, soln_count, list(case), determinism, list(det_msg)).
|
|
:- mode det_infer_switch(in, in, in, in, in, in, out, out, out) is det.
|
|
|
|
det_infer_switch([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
|
|
[], Detism, []) :-
|
|
determinism_components(Detism, CanFail, MaxSolns).
|
|
det_infer_switch([Case0 | Cases0], InstMap0, SolnContext, DetInfo, CanFail0,
|
|
MaxSolns0, [Case | Cases], Detism, Msgs) :-
|
|
% Technically, we should update the instmap to reflect the
|
|
% knowledge that the var is bound to this particular
|
|
% constructor, but we wouldn't use that information here anyway,
|
|
% so we don't bother.
|
|
Case0 = case(ConsId, Goal0),
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, Detism1, Msgs1),
|
|
Case = case(ConsId, Goal),
|
|
determinism_components(Detism1, CanFail1, MaxSolns1),
|
|
det_switch_canfail(CanFail0, CanFail1, CanFail2),
|
|
det_switch_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
|
|
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo, CanFail2,
|
|
MaxSolns2, Cases, Detism, Msgs2),
|
|
list__append(Msgs1, Msgs2, Msgs).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId):
|
|
% Search for a mode of the given predicate that
|
|
% is identical to the mode ProcId0, except that its
|
|
% determinism is non-cc whereas ProcId0's detism is cc.
|
|
% Let ProcId be the first such mode.
|
|
|
|
:- pred det_find_matching_non_cc_mode(det_info, pred_id, proc_id, proc_id).
|
|
:- mode det_find_matching_non_cc_mode(in, in, in, out) is semidet.
|
|
|
|
det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId) :-
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
module_info_preds(ModuleInfo, PredTable),
|
|
map__lookup(PredTable, PredId, PredInfo),
|
|
pred_info_procedures(PredInfo, ProcTable),
|
|
map__to_assoc_list(ProcTable, ProcList),
|
|
det_find_matching_non_cc_mode_2(ProcList, ModuleInfo, PredInfo,
|
|
ProcId0, ProcId).
|
|
|
|
:- pred det_find_matching_non_cc_mode_2(assoc_list(proc_id, proc_info),
|
|
module_info, pred_info, proc_id, proc_id).
|
|
:- mode det_find_matching_non_cc_mode_2(in, in, in, in, out) is semidet.
|
|
|
|
det_find_matching_non_cc_mode_2([ProcId1 - ProcInfo | Rest],
|
|
ModuleInfo, PredInfo, ProcId0, ProcId) :-
|
|
(
|
|
ProcId1 \= ProcId0,
|
|
proc_info_interface_determinism(ProcInfo, Detism),
|
|
determinism_components(Detism, _CanFail, MaxSoln),
|
|
MaxSoln = at_most_many,
|
|
modes_are_identical_bar_cc(ProcId0, ProcId1, PredInfo,
|
|
ModuleInfo)
|
|
->
|
|
ProcId = ProcId1
|
|
;
|
|
det_find_matching_non_cc_mode_2(Rest, ModuleInfo, PredInfo,
|
|
ProcId0, ProcId)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred det_check_for_noncanonical_type(prog_var, bool, can_fail, soln_context,
|
|
hlds_goal_info, cc_unify_context, det_info, list(det_msg),
|
|
soln_count, list(det_msg)).
|
|
:- mode det_check_for_noncanonical_type(in, in, in, in,
|
|
in, in, in, in, out, out) is det.
|
|
|
|
det_check_for_noncanonical_type(Var, ExaminesRepresentation, CanFail,
|
|
SolnContext, GoalInfo, GoalContext, DetInfo, Msgs0,
|
|
NumSolns, Msgs) :-
|
|
(
|
|
%
|
|
% check for unifications that attempt to examine
|
|
% the representation of a type that does not have
|
|
% a single representation for each abstract value
|
|
%
|
|
ExaminesRepresentation = yes,
|
|
det_get_proc_info(DetInfo, ProcInfo),
|
|
proc_info_vartypes(ProcInfo, VarTypes),
|
|
map__lookup(VarTypes, Var, Type),
|
|
det_type_has_user_defined_equality_pred(DetInfo, Type)
|
|
->
|
|
( CanFail = can_fail ->
|
|
proc_info_varset(ProcInfo, VarSet),
|
|
Msgs = [cc_unify_can_fail(GoalInfo, Var, Type,
|
|
VarSet, GoalContext) | Msgs0]
|
|
; SolnContext \= first_soln ->
|
|
proc_info_varset(ProcInfo, VarSet),
|
|
Msgs = [cc_unify_in_wrong_context(GoalInfo, Var,
|
|
Type, VarSet, GoalContext) | Msgs0]
|
|
;
|
|
Msgs = Msgs0
|
|
),
|
|
( SolnContext = first_soln ->
|
|
NumSolns = at_most_many_cc
|
|
;
|
|
NumSolns = at_most_many
|
|
)
|
|
;
|
|
NumSolns = at_most_one,
|
|
Msgs = Msgs0
|
|
).
|
|
|
|
% Return true iff the principal type constructor of the given type
|
|
% has user-defined equality.
|
|
|
|
:- pred det_type_has_user_defined_equality_pred(det_info::in,
|
|
(type)::in) is semidet.
|
|
det_type_has_user_defined_equality_pred(DetInfo, Type) :-
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
type_has_user_defined_equality_pred(ModuleInfo, Type, _).
|
|
|
|
% Return yes iff the results of the specified unification might depend on
|
|
% the concrete representation of the abstract values involved.
|
|
|
|
:- pred det_infer_unify_examines_rep(unification::in, bool::out) is det.
|
|
|
|
det_infer_unify_examines_rep(assign(_, _), no).
|
|
det_infer_unify_examines_rep(construct(_, _, _, _, _, _, _), no).
|
|
det_infer_unify_examines_rep(deconstruct(_, _, _, _, _, _), yes).
|
|
det_infer_unify_examines_rep(simple_test(_, _), yes).
|
|
det_infer_unify_examines_rep(complicated_unify(_, _, _), no).
|
|
% Some complicated modes of complicated unifications _do_
|
|
% examine the representation...
|
|
% but we will catch those by reporting errors in the
|
|
% compiler-generated code for the complicated unification.
|
|
|
|
% Deconstruction unifications cannot fail if the type
|
|
% only has one constructor, or if the variable is known to be
|
|
% already bound to the appropriate functor.
|
|
%
|
|
% This is handled (modulo bugs) by modes.m, which sets
|
|
% the appropriate field in the deconstruct(...) to can_fail for
|
|
% those deconstruction unifications which might fail.
|
|
% But switch_detection.m may set it back to cannot_fail again,
|
|
% if it moves the functor test into a switch instead.
|
|
|
|
:- pred det_infer_unify_canfail(unification, can_fail).
|
|
:- mode det_infer_unify_canfail(in, out) is det.
|
|
|
|
det_infer_unify_canfail(deconstruct(_, _, _, _, CanFail, _), CanFail).
|
|
det_infer_unify_canfail(assign(_, _), cannot_fail).
|
|
det_infer_unify_canfail(construct(_, _, _, _, _, _, _), cannot_fail).
|
|
det_infer_unify_canfail(simple_test(_, _), can_fail).
|
|
det_infer_unify_canfail(complicated_unify(_, CanFail, _), CanFail).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
det_get_soln_context(DeclaredDetism, SolnContext) :-
|
|
(
|
|
determinism_components(DeclaredDetism, _, at_most_many_cc)
|
|
->
|
|
SolnContext = first_soln
|
|
;
|
|
SolnContext = all_solns
|
|
).
|
|
|
|
% When figuring out the determinism of a conjunction,
|
|
% if the second goal is unreachable, then then the
|
|
% determinism of the conjunction is just the determinism
|
|
% of the first goal.
|
|
|
|
det_conjunction_detism(DetismA, DetismB, Detism) :-
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
( MaxSolnA = at_most_zero ->
|
|
Detism = DetismA
|
|
;
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln)
|
|
).
|
|
|
|
% Figuring out the determinism of a parallel conjunction is much
|
|
% easier than for a sequential conjunction, since you simply
|
|
% ignore the case where the second goal is unreachable. Just do
|
|
% a normal solution count.
|
|
|
|
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln).
|
|
|
|
det_switch_detism(DetismA, DetismB, Detism) :-
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_switch_canfail(CanFailA, CanFailB, CanFail),
|
|
det_switch_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln).
|
|
|
|
% For the at_most_zero, at_most_one, at_most_many,
|
|
% we're just doing abstract interpretation to count
|
|
% the number of solutions. Similarly, for the can_fail
|
|
% and cannot_fail components, we're doing abstract
|
|
% interpretation to count the possible number of failures.
|
|
% If the num_solns is at_most_many_cc, this means that
|
|
% the goal might have many logical solutions if there were no
|
|
% pruning, but that the goal occurs in a single-solution
|
|
% context, so only the first solution will be returned.
|
|
|
|
:- pred det_conjunction_maxsoln(soln_count, soln_count, soln_count).
|
|
:- mode det_conjunction_maxsoln(in, in, out) is det.
|
|
|
|
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
|
|
|
|
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
|
|
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
|
|
% if the first conjunct could be cc pruned,
|
|
% the second conj ought to have been cc pruned too
|
|
error("det_conjunction_maxsoln: many_cc , many").
|
|
|
|
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
|
|
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
:- pred det_conjunction_canfail(can_fail, can_fail, can_fail).
|
|
:- mode det_conjunction_canfail(in, in, out) is det.
|
|
|
|
det_conjunction_canfail(can_fail, can_fail, can_fail).
|
|
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
|
|
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
|
|
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
|
|
|
|
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
|
|
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
|
|
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
|
|
% if the first disjunct could be cc pruned,
|
|
% the second disjunct ought to have been cc pruned too
|
|
error("det_disjunction_maxsoln: cc in first case, " ++
|
|
"not cc in second case").
|
|
|
|
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
|
|
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_disjunction_maxsoln(at_most_many, at_most_many_cc, _) :-
|
|
% if the first disjunct could be cc pruned,
|
|
% the second disjunct ought to have been cc pruned too
|
|
error("det_disjunction_maxsoln: cc in second case, " ++
|
|
"not cc in first case").
|
|
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
det_disjunction_canfail(can_fail, can_fail, can_fail).
|
|
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
|
|
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
|
|
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
|
|
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
|
|
|
|
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
|
|
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
|
|
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_many, _) :-
|
|
% if the first case could be cc pruned,
|
|
% the second case ought to have been cc pruned too
|
|
error("det_switch_maxsoln: cc in first case, not cc in second case").
|
|
|
|
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
|
|
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_switch_maxsoln(at_most_many, at_most_many_cc, _) :-
|
|
% if the first case could be cc pruned,
|
|
% the second case ought to have been cc pruned too
|
|
error("det_switch_maxsoln: cc in second case, not cc in first case").
|
|
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
det_switch_canfail(can_fail, can_fail, can_fail).
|
|
det_switch_canfail(can_fail, cannot_fail, can_fail).
|
|
det_switch_canfail(cannot_fail, can_fail, can_fail).
|
|
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_negation_det(det, yes(failure)).
|
|
det_negation_det(semidet, yes(semidet)).
|
|
det_negation_det(multidet, no).
|
|
det_negation_det(nondet, no).
|
|
det_negation_det(cc_multidet, no).
|
|
det_negation_det(cc_nondet, no).
|
|
det_negation_det(erroneous, yes(erroneous)).
|
|
det_negation_det(failure, yes(det)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% determinism_declarations takes a module_info as input and
|
|
% returns two lists of procedure ids, the first being those
|
|
% with determinism declarations, and the second being those without.
|
|
|
|
:- pred determinism_declarations(module_info, pred_proc_list,
|
|
pred_proc_list, pred_proc_list).
|
|
:- mode determinism_declarations(in, out, out, out) is det.
|
|
|
|
determinism_declarations(ModuleInfo, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs) :-
|
|
get_all_pred_procs(ModuleInfo, PredProcs),
|
|
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs).
|
|
|
|
% get_all_pred_procs takes a module_info and returns a list
|
|
% of all the procedures ids for that module (except class methods,
|
|
% which do not need to be checked since we generate the code ourselves).
|
|
|
|
:- pred get_all_pred_procs(module_info, pred_proc_list).
|
|
:- mode get_all_pred_procs(in, out) is det.
|
|
|
|
get_all_pred_procs(ModuleInfo, PredProcs) :-
|
|
module_info_predids(ModuleInfo, PredIds),
|
|
module_info_preds(ModuleInfo, Preds),
|
|
get_all_pred_procs_2(Preds, PredIds, [], PredProcs).
|
|
|
|
:- pred get_all_pred_procs_2(pred_table, list(pred_id),
|
|
pred_proc_list, pred_proc_list).
|
|
:- mode get_all_pred_procs_2(in, in, in, out) is det.
|
|
|
|
get_all_pred_procs_2(_Preds, [], PredProcs, PredProcs).
|
|
get_all_pred_procs_2(Preds, [PredId|PredIds], PredProcs0, PredProcs) :-
|
|
map__lookup(Preds, PredId, Pred),
|
|
ProcIds = pred_info_procids(Pred),
|
|
fold_pred_modes(PredId, ProcIds, PredProcs0, PredProcs1),
|
|
get_all_pred_procs_2(Preds, PredIds, PredProcs1, PredProcs).
|
|
|
|
:- pred fold_pred_modes(pred_id, list(proc_id), pred_proc_list, pred_proc_list).
|
|
:- mode fold_pred_modes(in, in, in, out) is det.
|
|
|
|
fold_pred_modes(_PredId, [], PredProcs, PredProcs).
|
|
fold_pred_modes(PredId, [ProcId|ProcIds], PredProcs0, PredProcs) :-
|
|
fold_pred_modes(PredId, ProcIds, [proc(PredId, ProcId) | PredProcs0],
|
|
PredProcs).
|
|
|
|
% segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs)
|
|
% splits the list of procedures PredProcs into DeclaredProcs and
|
|
% UndeclaredProcs.
|
|
|
|
:- pred segregate_procs(module_info, pred_proc_list, pred_proc_list,
|
|
pred_proc_list, pred_proc_list).
|
|
:- mode segregate_procs(in, in, out, out, out) is det.
|
|
|
|
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs) :-
|
|
segregate_procs_2(ModuleInfo, PredProcs, [], DeclaredProcs,
|
|
[], UndeclaredProcs, [], NoInferProcs).
|
|
|
|
:- pred segregate_procs_2(module_info, pred_proc_list, pred_proc_list,
|
|
pred_proc_list, pred_proc_list, pred_proc_list,
|
|
pred_proc_list, pred_proc_list).
|
|
:- mode segregate_procs_2(in, in, in, out, in, out, in, out) is det.
|
|
|
|
segregate_procs_2(_ModuleInfo, [], !DeclaredProcs,
|
|
!UndeclaredProcs, !NoInferProcs).
|
|
segregate_procs_2(ModuleInfo, [proc(PredId, ProcId) | PredProcs],
|
|
!DeclaredProcs, !UndeclaredProcs, !NoInferProcs) :-
|
|
module_info_preds(ModuleInfo, Preds),
|
|
map__lookup(Preds, PredId, Pred),
|
|
(
|
|
(
|
|
pred_info_is_imported(Pred)
|
|
;
|
|
pred_info_is_pseudo_imported(Pred),
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
;
|
|
pred_info_get_markers(Pred, Markers),
|
|
check_marker(Markers, class_method)
|
|
)
|
|
->
|
|
!:NoInferProcs = [proc(PredId, ProcId) | !.NoInferProcs]
|
|
;
|
|
pred_info_procedures(Pred, Procs),
|
|
map__lookup(Procs, ProcId, Proc),
|
|
proc_info_declared_determinism(Proc, MaybeDetism),
|
|
(
|
|
MaybeDetism = no,
|
|
!:UndeclaredProcs =
|
|
[proc(PredId, ProcId) | !.UndeclaredProcs]
|
|
;
|
|
MaybeDetism = yes(_),
|
|
!:DeclaredProcs =
|
|
[proc(PredId, ProcId) | !.DeclaredProcs]
|
|
)
|
|
),
|
|
segregate_procs_2(ModuleInfo, PredProcs, !DeclaredProcs,
|
|
!UndeclaredProcs, !NoInferProcs).
|
|
|
|
% We can't infer a tighter determinism for imported procedures or
|
|
% for class methods, so set the inferred determinism to be the
|
|
% same as the declared determinism. This can't be done easily in
|
|
% make_hlds.m since inter-module optimization means that the
|
|
% import_status of procedures isn't determined until after all
|
|
% items are processed.
|
|
:- pred set_non_inferred_proc_determinism(pred_proc_id,
|
|
module_info, module_info).
|
|
:- mode set_non_inferred_proc_determinism(in, in, out) is det.
|
|
|
|
set_non_inferred_proc_determinism(proc(PredId, ProcId), !ModuleInfo) :-
|
|
module_info_pred_info(!.ModuleInfo, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, Procs0),
|
|
map__lookup(Procs0, ProcId, ProcInfo0),
|
|
proc_info_declared_determinism(ProcInfo0, MaybeDet),
|
|
( MaybeDet = yes(Det) ->
|
|
proc_info_set_inferred_determinism(Det, ProcInfo0, ProcInfo),
|
|
map__det_update(Procs0, ProcId, ProcInfo, Procs),
|
|
pred_info_set_procedures(Procs, PredInfo0, PredInfo),
|
|
module_info_set_pred_info(PredId, PredInfo, !ModuleInfo)
|
|
;
|
|
true
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|