Files
mercury/compiler/code_util.m
Simon Taylor 2725b1a331 Aditi update syntax, type and mode checking.
Estimated hours taken: 220

Aditi update syntax, type and mode checking.

Change the hlds_goal for constructions in preparation for
structure reuse to avoid making multiple conflicting changes.

compiler/hlds_goal.m:
	Merge `higher_order_call' and `class_method_call' into a single
	`generic_call' goal type. This also has alternatives for the
	various Aditi builtins for which type declarations can't
	be written.

	Remove the argument types field from higher-order/class method calls.
	It wasn't used often, and wasn't updated by optimizations
	such as inlining. The types can be obtained from the vartypes
	field of the proc_info.

	Add a `lambda_eval_method' field to lambda_goals.

	Add a field to constructions to identify which RL code fragment should
	be used for an top-down Aditi closure.

	Add fields to constructions to hold structure reuse information.
	This is currently ignored -- the changes to implement structure
	reuse will be committed to the alias branch.
	This is included here to avoid lots of CVS conflicts caused by
	changing the definition of `hlds_goal' twice.

	Add a field to `some' goals to specify whether the quantification
	can be removed. This is used to make it easier to ensure that
	indexes are used for updates.

	Add a field to lambda_goals to describe whether the modes were
	guessed by the compiler and may need fixing up after typechecking
	works out the argument types.

	Add predicate `hlds_goal__generic_call_id' to work out a call_id
	for a generic call for use in error messages.

compiler/purity.m:
compiler/post_typecheck.m:
	Fill in the modes of Aditi builtin calls and closure constructions.
	This needs to know which are the `aditi__state' arguments, so
	it must be done after typechecking.

compiler/prog_data.m:
	Added `:- type sym_name_and_arity ---> sym_name/arity'.

	Add a type `lambda_eval_method', which describes how a closure
	is to be executed. The alternatives are normal Mercury execution,
	bottom-up execution by Aditi and top-down execution by Aditi.

compiler/prog_out.m:
	Add predicate `prog_out__write_sym_name_and_arity', which
	replaces duplicated inline code in a few places.

compiler/hlds_data.m:
	Add a `lambda_eval_method' field to `pred_const' cons_ids and
	`pred_closure_tag' cons_tags.

compiler/hlds_pred.m:
	Remove type `pred_call_id', replace it with type `simple_call_id',
	which combines a `pred_or_func' and a `sym_name_and_arity'.

	Add a type `call_id' which describes all the different types of call,
	including normal calls, higher-order and class-method calls
	and Aditi builtins.

	Add `aditi_top_down' to the type `marker'.

	Remove `aditi_interface' from type `marker'. Interfacing to
	Aditi predicates is now handled by `generic_call' hlds_goals.

	Add a type `rl_exprn_id' which identifies a predicate to
	be executed top-down by Aditi.
	Add a `maybe(rl_exprn_id)'  field to type `proc_info'.

	Add predicate `adjust_func_arity' to convert between the arity
	of a function to its arity as a predicate.

	Add predicates `get_state_args' and `get_state_args_det' to
	extract the DCG state arguments from an argument list.

	Add predicate `pred_info_get_call_id' to get a `simple_call_id'
	for a predicate for use in error messages.

compiler/hlds_out.m:
	Write the new representation for call_ids.

	Add a predicate `hlds_out__write_call_arg_id' which
	replaces similar code in mode_errors.m and typecheck.m.

compiler/prog_io_goal.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on pred expressions.

compiler/prog_io_util.m:
compiler/prog_io_pragma.m:
	Add predicates
	- `prog_io_util:parse_name_and_arity' to parse `SymName/Arity'
		(moved from prog_io_pragma.m).
	- `prog_io_util:parse_pred_or_func_name_and_arity to parse
		`pred SymName/Arity' or `func SymName/Arity'.
	- `prog_io_util:parse_pred_or_func_and_args' to parse terms resembling
		a clause head (moved from prog_io_pragma.m).

compiler/type_util.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on higher-order types.

	Add predicates `construct_higher_order_type',
	`construct_higher_order_pred_type' and
	`construct_higher_order_func_type' to avoid some code duplication.

compiler/mode_util.m:
	Add predicate `unused_mode/1', which returns `builtin:unused'.
	Add functions `aditi_di_mode/0', `aditi_ui_mode/0' and
	`aditi_uo_mode/0' which return `in', `in', and `out', but will
	be changed to return `di', `ui' and `uo' when alias tracking
	is implemented.

compiler/goal_util.m:
	Add predicate `goal_util__generic_call_vars' which returns
	any arguments to a generic_call which are not in the argument list,
	for example the closure passed to a higher-order call or
	the typeclass_info for a class method call.

compiler/llds.m:
compiler/exprn_aux.m:
compiler/dupelim.m:
compiler/llds_out.m:
compiler/opt_debug.m:
	Add builtin labels for the Aditi update operations.

compiler/hlds_module.m:
	Add predicate predicate_table_search_pf_sym, used for finding
	possible matches for a call with the wrong number of arguments.

compiler/intermod.m:
	Don't write predicates which build `aditi_top_down' goals,
	because there is currently no way to tell importing modules
	which RL code fragment to use.

compiler/simplify.m:
	Obey the `cannot_remove' field of explicit quantification goals.

compiler/make_hlds.m:
	Parse Aditi updates.

	Don't typecheck clauses for which syntax errors in Aditi updates
	are found - this avoids spurious "undefined predicate `aditi_insert/3'"
	errors.

	Factor out some common code to handle terms of the form `Head :- Body'.
	Factor out common code in the handling of pred and func expressions.

compiler/typecheck.m:
	Typecheck Aditi builtins.

	Allow the argument types of matching predicates to be adjusted
	when typechecking the higher-order arguments of Aditi builtins.

	Change `typecheck__resolve_pred_overloading' to take a list of
	argument types rather than a `map(var, type)' and a list of
	arguments to allow a transformation to be performed on the
	argument types before passing them.

compiler/error_util.m:
	Move the part of `report_error_num_args' which writes
	"wrong number of arguments (<x>; expected <y>)" from
	typecheck.m for use by make_hlds.m when reporting errors
	for Aditi builtins.

compiler/modes.m:
compiler/unique_modes.m:
compiler/modecheck_call.m:
	Modecheck Aditi builtins.

compiler/lambda.m:
	Handle the markers for predicates introduced for
	`aditi_top_down' and `aditi_bottom_up' lambda expressions.

compiler/polymorphism.m:
	Add extra type_infos to `aditi_insert' calls
	describing the tuple to insert.

compiler/call_gen.m:
	Generate code for Aditi builtins.

compiler/unify_gen.m:
compiler/bytecode_gen.m:
	Abort on `aditi_top_down' and `aditi_bottom_up' lambda
	expressions - code generation for them is not yet implemented.

compiler/magic.m:
	Use the `aditi_call' generic_call rather than create
	a new procedure for each Aditi predicate called from C.

compiler/rl_out.pp:
compiler/rl_gen.m:
compiler/rl.m:
	Move some utility code used by magic.m and call_gen.m into rl.m.

	Remove an XXX comment about reference counting being not yet
	implemented - Evan has fixed that.

library/ops.m:
compiler/mercury_to_mercury.m:
doc/transition_guide.texi:
	Add unary prefix operators `aditi_bottom_up' and `aditi_top_down',
	used as qualifiers on lambda expressions.
	Add infix operator `==>' to separate the tuples in an
	`aditi_modify' call.

compiler/follow_vars.m:
	Thread a `map(prog_var, type)' through, needed because
	type information is no longer held in higher-order call goals.

compiler/table_gen.m:
	Use the `make_*_construction' predicates in hlds_goal.m
	to construct constants.

compiler/*.m:
	Trivial changes to add extra fields to hlds_goal structures.

doc/reference_manual.texi:
	Document Aditi updates.

	Use @samp{pragma base_relation} instead of
	@samp{:- pragma base_relation} throughout the Aditi documentation
	to be consistent with other parts of the reference manual.

tests/valid/Mmakefile:
tests/valid/aditi_update.m:
tests/valid/aditi.m:
	Test case.

tests/valid/Mmakefile:
	Remove some hard-coded --intermodule-optimization rules which are
	no longer needed because `mmake depend' is now run in this directory.

tests/invalid/*.err_exp:
	Fix expected output for changes in reporting of call_ids
	in typecheck.m.

tests/invalid/Mmakefile
tests/invalid/aditi_update_errors.{m,err_exp}:
tests/invalid/aditi_update_mode_errors.{m,err_exp}:
	Test error messages for Aditi updates.

tests/valid/aditi.m:
tests/invalid/aditi.m:
	Cut down version of extras/aditi/aditi.m to provide basic declarations
	for Aditi compilation such as `aditi__state' and the modes
	`aditi_di', `aditi_uo' and `aditi_ui'. Installing extras/aditi/aditi.m
	somewhere would remove the need for these.
1999-07-13 08:55:28 +00:00

985 lines
38 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module code_util.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, prog_data, llds.
:- import_module list, assoc_list, set, std_util.
% Create a code address which holds the address of the specified
% procedure.
% The fourth argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_id, proc_id, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__extract_proc_label_from_code_addr(code_addr, proc_label).
:- mode code_util__extract_proc_label_from_code_addr(in, out) is det.
:- pred code_util__extract_proc_label_from_label(label, proc_label).
:- mode code_util__extract_proc_label_from_label(in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds_goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(pred_info).
:- mode code_util__predinfo_is_builtin(in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Given a module name, a predicate name, a proc_id and a list of
% variables as the arguments, find out if that procedure of that
% predicate is an inline builtin. If yes, the last two arguments
% return two things:
%
% - an rval to execute as a test if the builtin is semidet; and
%
% - an rval to assign to a variable if the builtin calls for this.
%
% At least one of these will be present.
%
% Each test rval returned is guaranteed to be either a unop or a binop,
% applied to arguments that are either variables (from the argument
% list) or constants.
%
% Each to be assigned rval is guaranteed to be either in a form
% acceptable for a test rval, or in the form of a variable.
:- pred code_util__translate_builtin(module_name, string, proc_id,
list(prog_var), maybe(rval), maybe(pair(prog_var, rval))).
:- mode code_util__translate_builtin(in, in, in, in, out, out) is semidet.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds_goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
% Return the set of locations occupied by output arguments.
:- pred code_util__output_args(assoc_list(prog_var, arg_info), set(lval)).
:- mode code_util__output_args(in, out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
:- pred code_util__lvals_in_rval(rval, list(lval)).
:- mode code_util__lvals_in_rval(in, out) is det.
:- pred code_util__lvals_in_lval(lval, list(lval)).
:- mode code_util__lvals_in_lval(in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module prog_data, builtin_ops, type_util, special_pred.
:- import_module bool, char, int, string, set, map, term, varset.
:- import_module require, std_util, assoc_list.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, PredAddress) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
(
pred_info_is_imported(PredInfo)
;
pred_info_is_pseudo_imported(PredInfo),
% only the (in, in) mode of unification is imported
hlds_pred__in_in_unification_proc_id(ProcId)
)
->
code_util__make_proc_label(ModuleInfo, PredId, ProcId,
ProcLabel),
PredAddress = imported(ProcLabel)
;
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
Immed, Label),
PredAddress = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
procedure_is_exported(PredInfo, ProcId)
->
(
Immed = no,
Label = exported(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
;
(
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
Immed = no,
Label = local(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(ProcLabel, LabelNum).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
module_info_name(ModuleInfo, ThisModule),
(
code_util__compiler_generated(PredInfo)
->
pred_info_arg_types(PredInfo, ArgTypes),
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_type_id(Type, TypeId, _),
% All type_ids here should be module qualified,
% since builtin types are handled separately in
% polymorphism.m.
TypeId = qualified(TypeModule, TypeName) - Arity
->
(
ThisModule \= TypeModule,
PredName = "__Unify__",
\+ hlds_pred__in_in_unification_proc_id(ProcId)
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, Arity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
\+ pred_info_is_imported(PredInfo)
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
pred_info_arity(PredInfo, Arity),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, Arity, ProcId)
).
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeId = qualified(TypeModule, TypeName) - Arity ->
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_id")
).
code_util__extract_proc_label_from_code_addr(CodeAddr, ProcLabel) :-
( code_util__proc_label_from_code_addr(CodeAddr, ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
error("code_util__extract_label_from_code_addr failed")
).
:- pred code_util__proc_label_from_code_addr(code_addr::in,
proc_label::out) is semidet.
code_util__proc_label_from_code_addr(CodeAddr, ProcLabel) :-
(
CodeAddr = label(Label),
code_util__extract_proc_label_from_label(Label, ProcLabel)
;
CodeAddr = imported(ProcLabel)
).
code_util__extract_proc_label_from_label(local(ProcLabel, _), ProcLabel).
code_util__extract_proc_label_from_label(c_local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(exported(ProcLabel), ProcLabel).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
% code_util__translate_builtin(ModuleName, PredName, _, _, _, _).
pred_info_arity(PredInfo, Arity),
ProcId = 0,
code_util__inline_builtin(ModuleName, PredName, ProcId, Arity).
code_util__builtin_state(ModuleInfo, PredId0, ProcId, BuiltinState) :-
predicate_module(ModuleInfo, PredId0, ModuleName),
predicate_name(ModuleInfo, PredId0, PredName),
predicate_arity(ModuleInfo, PredId0, Arity),
proc_id_to_int(ProcId, ProcInt),
( code_util__inline_builtin(ModuleName, PredName, ProcInt, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__inline_builtin(module_name, string, int, int).
:- mode code_util__inline_builtin(in, in, in, in) is semidet.
code_util__inline_builtin(FullyQualifiedModule, PredName, ProcId, Arity) :-
Arity =< 3,
varset__init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
% --- not yet:
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
FullyQualifiedModule = unqualified(ModuleName),
code_util__translate_builtin_2(ModuleName, PredName, ProcId, Args,
_, _).
code_util__translate_builtin(FullyQualifiedModule, PredName, ProcId, Args,
BinOp, AsgOp) :-
proc_id_to_int(ProcId, ProcInt),
% -- not yet:
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
FullyQualifiedModule = unqualified(ModuleName),
code_util__translate_builtin_2(ModuleName, PredName, ProcInt, Args,
BinOp, AsgOp).
:- pred code_util__translate_builtin_2(string, string, int, list(prog_var),
maybe(rval), maybe(pair(prog_var, rval))).
:- mode code_util__translate_builtin_2(in, in, in, in, out, out) is semidet.
code_util__translate_builtin_2("private_builtin", "unsafe_type_cast", 0,
[X, Y], no, yes(Y - var(X))).
code_util__translate_builtin_2("builtin", "unsafe_promise_unique", 0,
[X, Y], no, yes(Y - var(X))).
code_util__translate_builtin_2("private_builtin", "builtin_int_gt", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin_2("private_builtin", "builtin_int_lt", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "builtin_plus", 0, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_plus", 1, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "builtin_plus", 2, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin_2("int", "+", 0, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin_2("int", "+", 1, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "+", 2, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin_2("int", "builtin_minus", 0, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_minus", 1, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "builtin_minus", 2, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin_2("int", "-", 0, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin_2("int", "-", 1, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "-", 2, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin_2("int", "builtin_times", 0, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_times", 1, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "builtin_times", 2, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin_2("int", "*", 0, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin_2("int", "*", 1, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "*", 2, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin_2("int", "builtin_div", 0, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_div", 1, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "builtin_div", 2, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin_2("int", "//", 0, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin_2("int", "//", 1, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "//", 2, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin_2("int", "builtin_mod", 0, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin_2("int", "rem", 0, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_left_shift", 0, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin_2("int", "unchecked_left_shift", 0, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_right_shift", 0, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin_2("int", "unchecked_right_shift", 0, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_and", 0, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin_2("int", "/\\", 0, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_or", 0, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin_2("int", "\\/", 0, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_xor", 0, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin_2("int", "^", 0, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_unary_plus", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("int", "+", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("int", "builtin_unary_minus", 0, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin_2("int", "-", 0, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin_2("int", "builtin_bit_neg", 0, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin_2("int", "\\", 0, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin_2("int", ">", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "<", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin_2("int", ">=", 0, [X, Y],
yes(binop((>=), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "=<", 0, [X, Y],
yes(binop((<=), var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_plus", 0, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_plus", 1, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_plus", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin_2("float", "+", 0, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "+", 1, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "+", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 0, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 1, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin_2("float", "-", 0, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "-", 1, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "-", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_times", 0, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_times", 1, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_times", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin_2("float", "*", 0, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin_2("float", "*", 1, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "*", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 0, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 1, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin_2("float", "/", 0, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin_2("float", "/", 1, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "/", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin_2("float", "+", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("float", "-", 0, [X, Y],
no, yes(Y - binop(float_minus, const(float_const(0.0)), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_gt", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", ">", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_lt", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "<", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_ge", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin_2("float", ">=", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_le", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "=<", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
%-----------------------------------------------------------------------------%
% code_util__compiler_generated(PredInfo) should succeed iff
% the PredInfo is for a compiler generated predicate.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
special_pred_name_arity(_, _, PredName, PredArity).
%-----------------------------------------------------------------------------%
% This code may _look_ nondeterministic, but it's really semidet,
% and Mercury is smart enough to know this.
code_util__goal_may_allocate_heap(Goal - _GoalInfo) :-
code_util__goal_may_allocate_heap_2(Goal).
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr).
:- mode code_util__goal_may_allocate_heap_2(in) is semidet.
code_util__goal_may_allocate_heap_2(generic_call(_, _, _, _)).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _)) :-
Builtin \= inline_builtin.
code_util__goal_may_allocate_heap_2(
unify(_, _, _, construct(_,_,Args,_,_,_,_), _)) :-
Args = [_|_].
code_util__goal_may_allocate_heap_2(some(_Vars, _, Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(not(Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(conj(Goals)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(disj(Goals, _)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _)) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, A, B, C, _)) :-
(
code_util__goal_may_allocate_heap(A)
;
code_util__goal_may_allocate_heap(B)
;
code_util__goal_may_allocate_heap(C)
).
:- pred code_util__cases_may_allocate_heap(list(case)).
:- mode code_util__cases_may_allocate_heap(in) is semidet.
code_util__cases_may_allocate_heap([case(_, Goal) | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__cases_may_allocate_heap([_ | Cases]) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_list_may_allocate_heap([Goal | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_list_may_allocate_heap([_ | Goals]) :-
code_util__goal_list_may_allocate_heap(Goals).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M,E), _, _, pred_closure_tag(P,M,E)).
code_util__cons_id_to_tag(type_ctor_info_const(M,T,A), _, _,
type_ctor_info_constant(M,T,A)).
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,_,N), _, _,
base_typeclass_info_constant(M,C,N)).
code_util__cons_id_to_tag(tabling_pointer_const(PredId,ProcId), _, _,
tabling_pointer_constant(PredId,ProcId)).
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
Name = unqualified(ConsName),
string__char_to_string(Char, ConsName)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% Use the type to determine the type_id
( type_to_type_id(Type, TypeId0, _) ->
TypeId = TypeId0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_id, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(Name, Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
code_util__cannot_stack_flush_cases(Cases).
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = generic_call(_, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, _, Goal),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(generic_call(_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(pragma_c_code(_,_,_, _, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(par_conj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0, Min, Max).
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, 0, 0).
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
code_util__output_args([], LiveVals) :-
set__init(LiveVals).
code_util__output_args([_V - arg_info(Loc, Mode) | Args], Vs) :-
code_util__output_args(Args, Vs0),
(
Mode = top_out
->
code_util__arg_loc_to_register(Loc, Reg),
set__insert(Vs0, Reg, Vs)
;
Vs = Vs0
).
%-----------------------------------------------------------------------------%
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
code_util__lvals_in_lval(Lval, Lvals).
code_util__lvals_in_rval(var(_), []).
code_util__lvals_in_rval(create(_, _, _, _, _, _), []).
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(const(_), []).
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
code_util__lvals_in_mem_ref(MemRef, Lvals).
code_util__lvals_in_lval(reg(_, _), []).
code_util__lvals_in_lval(stackvar(_), []).
code_util__lvals_in_lval(framevar(_), []).
code_util__lvals_in_lval(succip, []).
code_util__lvals_in_lval(maxfr, []).
code_util__lvals_in_lval(curfr, []).
code_util__lvals_in_lval(succip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(hp, []).
code_util__lvals_in_lval(sp, []).
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_lval(lvar(_), []).
code_util__lvals_in_lval(temp(_, _), []).
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
:- mode code_util__lvals_in_mem_ref(in, out) is det.
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
code_util__lvals_in_mem_ref(framevar_ref(_), []).
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
%-----------------------------------------------------------------------------%