mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-19 07:45:09 +00:00
Estimated hours taken: 8 Branches: main compiler/*.m: Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst' and 'mer_mode'. This is to avoid the need to parenthesize these type names in some contexts, and to prepare for the possibility of a parser that considers those words to be reserved words. Rename some other uses of those names (e.g. as item types in recompilation.m). Delete some redundant synonyms (prog_type, mercury_type) for mer_type. Change some type names (e.g. mlds__type) and predicate names (e.g. deforest__goal) to make them unique even without module qualification. Rename the function symbols (e.g. pure, &) that need to be renamed to avoid the need to parenthesize them. Make their replacement names more expressive. Convert some more modules to four space indentation. Avoid excessively long lines, such as those resulting from the automatic substitution of 'mer_type' for 'type'.
261 lines
10 KiB
Mathematica
261 lines
10 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1999-2001, 2003-2005 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% builtin_ops.m -- defines the builtin operator types.
|
|
% Main author: fjh.
|
|
%
|
|
% This module defines various types which enumerate the different builtin
|
|
% operators. Several of the different back-ends -- the bytecode back-end,
|
|
% the LLDS, and the MLDS -- all use the same set of builtin operators.
|
|
% These operators are defined here.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module backend_libs__builtin_ops.
|
|
:- interface.
|
|
|
|
:- import_module hlds__hlds_pred.
|
|
:- import_module mdbcomp__prim_data.
|
|
|
|
:- import_module list.
|
|
|
|
:- type unary_op
|
|
---> mktag
|
|
; tag
|
|
; unmktag
|
|
; strip_tag
|
|
; mkbody
|
|
; unmkbody
|
|
; hash_string
|
|
; bitwise_complement
|
|
; logical_not.
|
|
|
|
:- type binary_op
|
|
---> int_add
|
|
; int_sub
|
|
; int_mul
|
|
; int_div % assumed to truncate toward zero
|
|
; int_mod % remainder (w.r.t. truncating integer division)
|
|
% XXX `mod' should be renamed `rem'
|
|
; unchecked_left_shift
|
|
; unchecked_right_shift
|
|
; bitwise_and
|
|
; bitwise_or
|
|
; bitwise_xor
|
|
; logical_and
|
|
; logical_or
|
|
; eq % ==
|
|
; ne % !=
|
|
; body
|
|
; array_index(array_elem_type)
|
|
; str_eq % string comparisons
|
|
; str_ne
|
|
; str_lt
|
|
; str_gt
|
|
; str_le
|
|
; str_ge
|
|
; int_lt % signed integer comparions
|
|
; int_gt
|
|
; int_le
|
|
; int_ge
|
|
; unsigned_le % unsigned integer comparison
|
|
% Note that the arguments to `unsigned_le' are just ordinary
|
|
% (signed) Mercury ints, but it does the comparison as
|
|
% if they were first cast to an unsigned type, so e.g.
|
|
% binary(unsigned_le, int_const(1), int_const(-1) returns true,
|
|
% since (MR_Unsigned) 1 <= (MR_Unsigned) -1).
|
|
|
|
; float_plus
|
|
; float_minus
|
|
; float_times
|
|
; float_divide
|
|
; float_eq
|
|
; float_ne
|
|
; float_lt
|
|
; float_gt
|
|
; float_le
|
|
; float_ge.
|
|
|
|
% For the MLDS back-end, we need to know the element type for each
|
|
% array_index operation.
|
|
%
|
|
% Currently array index operations are only generated in limited
|
|
% circumstances. Using a simple representation for them here,
|
|
% rather than just putting the MLDS type here, avoids the need
|
|
% for this module to depend on back-end specific stuff like MLDS types.
|
|
:- type array_elem_type
|
|
---> elem_type_string % ml_string_type
|
|
; elem_type_int % mlds__native_int_type
|
|
; elem_type_generic. % mlds__generic_type
|
|
|
|
% translate_builtin:
|
|
%
|
|
% Given a module name, a predicate name, a proc_id and a list of the
|
|
% arguments, find out if that procedure of that predicate is an inline
|
|
% builtin. If so, return code which can be used to evaluate that call:
|
|
% either an assignment (if the builtin is det) or a test (if the builtin
|
|
% is semidet).
|
|
%
|
|
% There are some further guarantees on the form of the expressions
|
|
% in the code returned -- see below for details.
|
|
% (bytecode_gen.m depends on these guarantees.)
|
|
%
|
|
:- pred translate_builtin(module_name::in, string::in, proc_id::in,
|
|
list(T)::in, simple_code(T)::out(simple_code)) is semidet.
|
|
|
|
:- type simple_code(T)
|
|
---> assign(T, simple_expr(T))
|
|
; ref_assign(T, T)
|
|
; test(simple_expr(T)).
|
|
|
|
:- type simple_expr(T)
|
|
---> leaf(T)
|
|
; int_const(int)
|
|
; float_const(float)
|
|
; unary(unary_op, simple_expr(T))
|
|
; binary(binary_op, simple_expr(T), simple_expr(T)).
|
|
|
|
% Each test expression returned is guaranteed to be either a unary
|
|
% or binary operator, applied to arguments that are either variables
|
|
% (from the argument list) or constants.
|
|
%
|
|
% Each to be assigned expression is guaranteed to be either in a form
|
|
% acceptable for a test rval, or in the form of a variable.
|
|
|
|
:- inst simple_code
|
|
---> assign(ground, simple_assign_expr)
|
|
; ref_assign(ground, ground)
|
|
; test(simple_test_expr).
|
|
|
|
:- inst simple_arg_expr
|
|
---> leaf(ground)
|
|
; int_const(ground)
|
|
; float_const(ground).
|
|
|
|
:- inst simple_test_expr
|
|
---> unary(ground, simple_arg_expr)
|
|
; binary(ground, simple_arg_expr, simple_arg_expr).
|
|
|
|
:- inst simple_assign_expr
|
|
---> unary(ground, simple_arg_expr)
|
|
; binary(ground, simple_arg_expr, simple_arg_expr)
|
|
; leaf(ground).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
translate_builtin(FullyQualifiedModule, PredName, ProcId, Args, Code) :-
|
|
proc_id_to_int(ProcId, ProcInt),
|
|
% -- not yet:
|
|
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
|
|
FullyQualifiedModule = unqualified(ModuleName),
|
|
builtin_translation(ModuleName, PredName, ProcInt, Args, Code).
|
|
|
|
:- pred builtin_translation(string::in, string::in, int::in, list(T)::in,
|
|
simple_code(T)::out) is semidet.
|
|
|
|
builtin_translation("private_builtin", "store_at_ref", 0, [X, Y],
|
|
ref_assign(X, Y)).
|
|
|
|
% Note that the code we generate for unsafe_type_cast is not type-correct.
|
|
% Back-ends that require type-correct intermediate code (e.g. the MLDS
|
|
% back-end) must handle unsafe_type_cast separately, rather than by calling
|
|
% builtin_translation.
|
|
builtin_translation("private_builtin", "unsafe_type_cast", 0, [X, Y],
|
|
assign(Y, leaf(X))).
|
|
builtin_translation("builtin", "unsafe_promise_unique", 0, [X, Y],
|
|
assign(Y, leaf(X))).
|
|
|
|
builtin_translation("private_builtin", "builtin_int_gt", 0, [X, Y],
|
|
test(binary(int_gt, leaf(X), leaf(Y)))).
|
|
builtin_translation("private_builtin", "builtin_int_lt", 0, [X, Y],
|
|
test(binary(int_lt, leaf(X), leaf(Y)))).
|
|
|
|
builtin_translation("term_size_prof_builtin", "term_size_plus", 0, [X, Y, Z],
|
|
assign(Z, binary(int_add, leaf(X), leaf(Y)))).
|
|
|
|
builtin_translation("int", "+", 0, [X, Y, Z],
|
|
assign(Z, binary(int_add, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "+", 1, [X, Y, Z],
|
|
assign(X, binary(int_sub, leaf(Z), leaf(Y)))).
|
|
builtin_translation("int", "+", 2, [X, Y, Z],
|
|
assign(Y, binary(int_sub, leaf(Z), leaf(X)))).
|
|
builtin_translation("int", "plus", 0, [X, Y, Z],
|
|
assign(Z, binary(int_add, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "-", 0, [X, Y, Z],
|
|
assign(Z, binary(int_sub, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "-", 1, [X, Y, Z],
|
|
assign(X, binary(int_add, leaf(Y), leaf(Z)))).
|
|
builtin_translation("int", "-", 2, [X, Y, Z],
|
|
assign(Y, binary(int_sub, leaf(X), leaf(Z)))).
|
|
builtin_translation("int", "minus", 0, [X, Y, Z],
|
|
assign(Z, binary(int_sub, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "*", 0, [X, Y, Z],
|
|
assign(Z, binary(int_mul, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "times", 0, [X, Y, Z],
|
|
assign(Z, binary(int_mul, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "unchecked_quotient", 0, [X, Y, Z],
|
|
assign(Z, binary(int_div, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "unchecked_rem", 0, [X, Y, Z],
|
|
assign(Z, binary(int_mod, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "unchecked_left_shift", 0, [X, Y, Z],
|
|
assign(Z, binary(unchecked_left_shift, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "unchecked_right_shift", 0, [X, Y, Z],
|
|
assign(Z, binary(unchecked_right_shift, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "/\\", 0, [X, Y, Z],
|
|
assign(Z, binary(bitwise_and, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "\\/", 0, [X, Y, Z],
|
|
assign(Z, binary(bitwise_or, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "xor", 0, [X, Y, Z],
|
|
assign(Z, binary(bitwise_xor, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "xor", 1, [X, Y, Z],
|
|
assign(Y, binary(bitwise_xor, leaf(X), leaf(Z)))).
|
|
builtin_translation("int", "xor", 2, [X, Y, Z],
|
|
assign(X, binary(bitwise_xor, leaf(Y), leaf(Z)))).
|
|
builtin_translation("int", "+", 0, [X, Y],
|
|
assign(Y, leaf(X))).
|
|
builtin_translation("int", "-", 0, [X, Y],
|
|
assign(Y, binary(int_sub, int_const(0), leaf(X)))).
|
|
builtin_translation("int", "\\", 0, [X, Y],
|
|
assign(Y, unary(bitwise_complement, leaf(X)))).
|
|
|
|
builtin_translation("int", ">", 0, [X, Y],
|
|
test(binary(int_gt, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "<", 0, [X, Y],
|
|
test(binary(int_lt, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", ">=", 0, [X, Y],
|
|
test(binary(int_ge, leaf(X), leaf(Y)))).
|
|
builtin_translation("int", "=<", 0, [X, Y],
|
|
test(binary(int_le, leaf(X), leaf(Y)))).
|
|
|
|
builtin_translation("float", "+", 0, [X, Y, Z],
|
|
assign(Z, binary(float_plus, leaf(X), leaf(Y)))).
|
|
builtin_translation("float", "-", 0, [X, Y, Z],
|
|
assign(Z, binary(float_minus, leaf(X), leaf(Y)))).
|
|
builtin_translation("float", "*", 0, [X, Y, Z],
|
|
assign(Z, binary(float_times, leaf(X), leaf(Y)))).
|
|
builtin_translation("float", "unchecked_quotient", 0, [X, Y, Z],
|
|
assign(Z, binary(float_divide, leaf(X), leaf(Y)))).
|
|
builtin_translation("float", "+", 0, [X, Y],
|
|
assign(Y, leaf(X))).
|
|
builtin_translation("float", "-", 0, [X, Y],
|
|
assign(Y, binary(float_minus, float_const(0.0), leaf(X)))).
|
|
|
|
builtin_translation("float", ">", 0, [X, Y],
|
|
test(binary(float_gt, leaf(X), leaf(Y)))).
|
|
builtin_translation("float", "<", 0, [X, Y],
|
|
test(binary(float_lt, leaf(X), leaf(Y)))).
|
|
builtin_translation("float", ">=", 0, [X, Y],
|
|
test(binary(float_ge, leaf(X), leaf(Y)))).
|
|
builtin_translation("float", "=<", 0, [X, Y],
|
|
test(binary(float_le, leaf(X), leaf(Y)))).
|