Files
mercury/compiler/make_hlds.m
Fergus Henderson 393e90a4e2 Fix a bug reported by Zoltan: it was printing out a misleading error
Estimated hours taken: 0.25

compiler/make_hlds.m:
	Fix a bug reported by Zoltan: it was printing out a misleading error
	message, since I had `function' and `predicate' switched.
1996-04-08 08:39:01 +00:00

2400 lines
86 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: make_hlds.m.
% Main author: fjh.
% This module converts from the parse tree structure which is read in by
% prog_io.m, into the simplified high level data structure defined in
% hlds.m. In the parse tree, the program is represented as a list of
% items; we insert each item into the appropriate symbol table, and report
% any duplicate definition errors. We also transform clause bodies from
% (A,B,C) into conj([A,B,C]) form, convert all unifications into
% super-homogenous form, and introduce implicit quantification.
%
% XXX we should record each error using module_info_incr_errors.
% WISHLIST - we should handle explicit module quantification
:- module make_hlds.
:- interface.
:- import_module prog_io, hlds_module, hlds_pred, hlds_goal, hlds_data, io.
:- pred parse_tree_to_hlds(program, module_info, io__state, io__state).
:- mode parse_tree_to_hlds(in, out, di, uo) is det.
:- pred unravel_unification(term, term, term__context, unify_main_context,
unify_sub_contexts, varset, hlds__goal, varset).
:- mode unravel_unification(in, in, in, in, in, in, out, out) is det.
:- pred create_atomic_unification(var, unify_rhs, term__context,
unify_main_context, unify_sub_contexts, hlds__goal).
:- mode create_atomic_unification(in, in, in, in, in, out) is det.
:- pred add_new_proc(pred_info, arity, list(mode), maybe(determinism),
term__context, pred_info, proc_id).
:- mode add_new_proc(in, in, in, in, in, out, out) is det.
:- pred clauses_info_init(int::in, clauses_info::out) is det.
:- pred next_mode_id(proc_table, maybe(determinism), proc_id).
:- mode next_mode_id(in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module string, char, int, set, bintree, list, map, require, std_util.
:- import_module bool, assoc_list, term, term_io, varset.
:- import_module prog_util, prog_out, hlds_out.
:- import_module globals, options.
:- import_module make_tags, quantification, shapes.
:- import_module code_util, unify_proc, special_pred, type_util.
:- import_module mercury_to_mercury, passes_aux.
parse_tree_to_hlds(module(Name, Items), Module) -->
{ module_info_init(Name, Module0) },
add_item_list_decls(Items, local, Module0, Module1),
globals__io_lookup_bool_option(statistics, Statistics),
maybe_report_stats(Statistics),
add_item_list_type_defns(Items, local, Module1, Module2),
maybe_report_stats(Statistics),
% balance the binary trees
{ module_info_optimize(Module2, Module3) },
maybe_report_stats(Statistics),
add_item_list_clauses(Items, Module3, Module4),
% the predid list is constructed in reverse order, for
% efficiency, so we return it to the correct order here.
{ module_info_reverse_predids(Module4, Module) }.
%-----------------------------------------------------------------------------%
% add the declarations (other than type definitions)
% one by one to the module
:- pred add_item_list_decls(item_list, import_status, module_info, module_info,
io__state, io__state).
:- mode add_item_list_decls(in, in, in, out, di, uo) is det.
add_item_list_decls([], _, Module, Module) --> [].
add_item_list_decls([Item - Context | Items], Status0, Module0, Module) -->
add_item_decl(Item, Context, Status0, Module0, Status1, Module1),
add_item_list_decls(Items, Status1, Module1, Module).
% Add the type definitions one by one to the module.
% This needs to come after we have added the pred declarations,
% since we need to have the pred_id for `index/2' and `compare/3'
% when we add compiler-generated clauses for `compare/3'.
% (And similarly for other compiler-generated predicates like that.)
:- pred add_item_list_type_defns(item_list, import_status,
module_info, module_info, io__state, io__state).
:- mode add_item_list_type_defns(in, in, in, out, di, uo) is det.
add_item_list_type_defns([], _, Module, Module) --> [].
add_item_list_type_defns([Item - Context | Items], Status0, Module0, Module) -->
add_item_type_defn(Item, Context, Status0, Module0, Status1, Module1),
add_item_list_type_defns(Items, Status1, Module1, Module).
% add the clauses one by one to the module
:- pred add_item_list_clauses(item_list, module_info, module_info,
io__state, io__state).
:- mode add_item_list_clauses(in, in, out, di, uo) is det.
add_item_list_clauses([], Module, Module) --> [].
add_item_list_clauses([Item - Context | Items], Module0, Module) -->
add_item_clause(Item, Context, Module0, Module1),
add_item_list_clauses(Items, Module1, Module).
%-----------------------------------------------------------------------------%
% dispatch on the different types of items
:- pred add_item_decl(item, term__context, import_status, module_info,
import_status, module_info, io__state, io__state).
:- mode add_item_decl(in, in, in, in, out, out, di, uo) is det.
% skip clauses
add_item_decl(pred_clause(_, _, _, _), _, Status, Module, Status, Module)
--> [].
add_item_decl(func_clause(_, _, _, _, _), _, Status, Module, Status, Module)
--> [].
add_item_decl(type_defn(_, _, _), _, Status, Module, Status, Module) --> [].
add_item_decl(inst_defn(VarSet, InstDefn, Cond), Context, Status, Module0,
Status, Module) -->
module_add_inst_defn(Module0, VarSet, InstDefn, Cond, Context, Module).
add_item_decl(mode_defn(VarSet, ModeDefn, Cond), Context, Status, Module0,
Status, Module) -->
module_add_mode_defn(Module0, VarSet, ModeDefn, Cond, Context, Module).
add_item_decl(pred(VarSet, PredName, TypesAndModes, MaybeDet, Cond), Context,
Status, Module0, Status, Module) -->
module_add_pred(Module0, VarSet, PredName, TypesAndModes, MaybeDet,
Cond, Context, Status, Module).
add_item_decl(func(VarSet, FuncName, TypesAndModes, RetTypeAndMode, MaybeDet,
Cond), Context, Status, Module0, Status, Module) -->
module_add_func(Module0, VarSet, FuncName, TypesAndModes,
RetTypeAndMode, MaybeDet, Cond, Context, Status, Module).
add_item_decl(pred_mode(VarSet, PredName, Modes, MaybeDet, Cond), Context,
Status, Module0, Status, Module) -->
module_add_mode(Module0, VarSet, PredName, Modes, MaybeDet, Cond,
Context, predicate, Module).
add_item_decl(func_mode(VarSet, FuncName, Modes, RetMode, MaybeDet, Cond),
Context, Status, Module0, Status, Module) -->
{ list__append(Modes, [RetMode], Modes1) },
module_add_mode(Module0, VarSet, FuncName, Modes1,
MaybeDet, Cond, Context, function, Module).
add_item_decl(pragma(Pragma), Context, Status, Module0, Status, Module) -->
(
{ Pragma = c_code(C_Body_Code) },
{ module_add_c_body_code(C_Body_Code, Context,
Module0, Module) }
;
{ Pragma = c_header_code(C_Header) },
{ module_add_c_header(C_Header, Context, Module0, Module) }
;
% Handle pragma(c_code, ...) decls later on (when we process
% clauses).
{ Pragma = c_code(_, _, _, _) },
{ Module = Module0 }
;
{ Pragma = memo(Pred, Arity) },
add_pred_marker(Module0, "memo", Pred, Arity, Context,
[request(dnf), request(magic), request(memo)], Module)
;
{ Pragma = inline(Pred, Arity) },
add_pred_marker(Module0, "inline", Pred, Arity, Context,
[request(inline)], Module)
).
add_item_decl(module_defn(_VarSet, ModuleDefn), Context, Status0, Module0,
Status, Module) -->
( { ModuleDefn = interface } ->
{ Status = exported },
{ Module = Module0 }
; { ModuleDefn = implementation } ->
{ Status = local },
{ Module = Module0 }
; { ModuleDefn = imported } ->
{ Status = imported },
{ Module = Module0 }
; { ModuleDefn = import(module(_)) } ->
{ Status = Status0 },
{ Module = Module0 }
; { ModuleDefn = external(name_arity(Name, Arity)) } ->
{ Status = Status0 },
module_mark_as_external(Name, Arity, predicate, Context,
Module0, Module)
;
{ Status = Status0 },
{ Module = Module0 },
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
prog_out__write_context(Context),
report_warning("warning: declaration not yet implemented.\n"),
io__set_output_stream(OldStream, _)
).
add_item_decl(nothing, _, Status, Module, Status, Module) --> [].
%-----------------------------------------------------------------------------%
:- pred add_pred_marker(module_info, string, sym_name, arity,
term__context, list(marker_status), module_info, io__state, io__state).
:- mode add_pred_marker(in, in, in, in, in, in, out, di, uo) is det.
add_pred_marker(Module0, PragmaName, Pred, Arity, Context, Markers, Module) -->
{ module_info_get_predicate_table(Module0, PredTable0) },
(
{ predicate_table_search_sym_arity(PredTable0, Pred,
Arity, PredIds) }
->
{ predicate_table_get_preds(PredTable0, Preds0) },
{ pragma_set_markers(Preds0, PredIds, Markers, Preds) },
{ predicate_table_set_preds(PredTable0, Preds,
PredTable) },
{ module_info_set_predicate_table(Module0, PredTable,
Module) }
;
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
prog_out__write_context(Context),
io__write_strings(
["Warning: pragma(",
PragmaName,
", ...) declaration ",
"for predicate\n"]),
prog_out__write_context(Context),
hlds_out__write_pred_call_id(Pred/Arity),
io__write_string(
" without preceding pred declaration.\n"),
io__set_output_stream(OldStream, _),
{ Module = Module0 }
).
%-----------------------------------------------------------------------------%
% dispatch on the different types of items
:- pred add_item_type_defn(item, term__context, import_status, module_info,
import_status, module_info,
io__state, io__state).
:- mode add_item_type_defn(in, in, in, in, out, out, di, uo) is det.
add_item_type_defn(type_defn(VarSet, TypeDefn, Cond), Context, Status, Module0,
Status, Module) -->
module_add_type_defn(Module0, VarSet, TypeDefn, Cond, Context, Status,
Module).
add_item_type_defn(module_defn(_VarSet, ModuleDefn), _Context, Status0, Module0,
Status, Module) -->
( { ModuleDefn = interface } ->
{ Status = exported },
{ Module = Module0 }
; { ModuleDefn = implementation } ->
{ Status = local },
{ Module = Module0 }
; { ModuleDefn = imported } ->
{ Status = imported },
{ Module = Module0 }
;
{ Status = Status0 },
{ Module = Module0 }
).
add_item_type_defn(func_clause(_, _, _, _, _), _, Status, Module, Status,
Module) -->
[].
add_item_type_defn(pred_clause(_, _, _, _), _, Status, Module, Status, Module)
-->
[].
add_item_type_defn(inst_defn(_, _, _), _, Status, Module, Status, Module) -->
[].
add_item_type_defn(mode_defn(_, _, _), _, Status, Module, Status, Module) -->
[].
add_item_type_defn(pred(_, _, _, _, _), _, Status, Module, Status, Module) -->
[].
add_item_type_defn(func(_, _, _, _, _, _), _, Status, Module, Status, Module)
--> [].
add_item_type_defn(pred_mode(_, _, _, _, _), _, Status, Module, Status, Module)
--> [].
add_item_type_defn(func_mode(_, _, _, _, _, _), _, Status, Module, Status,
Module) --> [].
add_item_type_defn(pragma(_), _, Status, Module, Status, Module) --> [].
add_item_type_defn(nothing, _, Status, Module, Status, Module) --> [].
%-----------------------------------------------------------------------------%
% dispatch on the different types of items
:- pred add_item_clause(item, term__context, module_info, module_info,
io__state, io__state).
:- mode add_item_clause(in, in, in, out, di, uo) is det.
add_item_clause(func_clause(VarSet, PredName, Args, Result, Body), Context,
Module0, Module) -->
module_add_func_clause(Module0, VarSet, PredName, Args, Result, Body,
Context, Module).
add_item_clause(pred_clause(VarSet, PredName, Args, Body), Context, Module0,
Module) -->
module_add_pred_clause(Module0, VarSet, PredName, Args, Body, Context,
Module).
add_item_clause(type_defn(_, _, _), _, Module, Module) --> [].
add_item_clause(inst_defn(_, _, _), _, Module, Module) --> [].
add_item_clause(mode_defn(_, _, _), _, Module, Module) --> [].
add_item_clause(pred(_, _, _, _, _), _, Module, Module) --> [].
add_item_clause(func(_, _, _, _, _, _), _, Module, Module) --> [].
add_item_clause(pred_mode(_, _, _, _, _), _, Module, Module) --> [].
add_item_clause(func_mode(_, _, _, _, _, _), _, Module, Module) --> [].
add_item_clause(module_defn(_, _), _, Module, Module) --> [].
add_item_clause(pragma(Pragma), Context, Module0, Module) -->
(
{ Pragma = c_code(Pred, Vars, VarSet, C_Code) }
->
module_add_pragma_c_code(Pred, Vars, VarSet, C_Code, Context,
Module0, Module)
;
% don't worry about any pragma decs but c_code here
{ Module = Module0 }
).
add_item_clause(nothing, _, Module, Module) --> [].
%-----------------------------------------------------------------------------%
:- pred module_mark_as_external(sym_name, int, pred_or_func, term__context,
module_info, module_info, io__state, io__state).
:- mode module_mark_as_external(in, in, in, in, in, out, di, uo) is det.
module_mark_as_external(PredName, Arity, PredOrFunc, Context,
Module0, Module) -->
{ module_info_name(Module0, ModuleName) },
{ module_info_get_predicate_table(Module0, PredicateTable0) },
{ unqualify_name(PredName, PName) }, % ignore any module qualifier
(
{ predicate_table_search_m_n_a(PredicateTable0,
ModuleName, PName, Arity, PredIdList) }
->
{ module_mark_preds_as_external(PredIdList, Module0, Module) }
;
{ module_info_incr_errors(Module0, Module) },
undefined_pred_error(PredName, Arity, PredOrFunc, Context,
"`external' declaration")
).
:- pred module_mark_preds_as_external(list(pred_id), module_info, module_info).
:- mode module_mark_preds_as_external(in, in, out) is det.
module_mark_preds_as_external([], Module, Module).
module_mark_preds_as_external([PredId | PredIds], Module0, Module) :-
module_info_preds(Module0, Preds0),
map__lookup(Preds0, PredId, PredInfo0),
pred_info_mark_as_external(PredInfo0, PredInfo),
map__set(Preds0, PredId, PredInfo, Preds),
module_info_set_preds(Module0, Preds, Module1),
module_mark_preds_as_external(PredIds, Module1, Module).
%-----------------------------------------------------------------------------%
:- pred module_add_inst_defn(module_info, varset, inst_defn, condition,
term__context, module_info, io__state, io__state).
:- mode module_add_inst_defn(in, in, in, in, in, out, di, uo) is det.
module_add_inst_defn(Module0, VarSet, InstDefn, Cond, Context, Module) -->
{ module_info_insts(Module0, InstTable0) },
{ inst_table_get_user_insts(InstTable0, Insts0) },
insts_add(Insts0, VarSet, InstDefn, Cond, Context, Insts),
{ inst_table_set_user_insts(InstTable0, Insts, InstTable) },
{ module_info_set_insts(Module0, InstTable, Module) }.
:- pred insts_add(user_inst_table, varset, inst_defn, condition, term__context,
user_inst_table, io__state, io__state).
:- mode insts_add(in, in, in, in, in, out, di, uo) is det.
% XXX handle abstract insts
insts_add(_, _, abstract_inst(_, _), _, _, _) -->
{ error("sorry, abstract insts not implemented") }.
insts_add(Insts0, VarSet, eqv_inst(Name, Args, Body), Cond, Context, Insts) -->
{ list__length(Args, Arity) },
(
{ I = hlds__inst_defn(VarSet, Args, eqv_inst(Body), Cond,
Context) },
{ map__insert(Insts0, Name - Arity, I, Insts1) }
->
{ Insts = Insts1 }
;
{ Insts = Insts0 },
% XXX we should record each error using module_info_incr_errors
{ map__lookup(Insts, Name - Arity, OrigI) },
{ OrigI = hlds__inst_defn(_, _, _, _, OrigContext) },
multiple_def_error(Name, Arity, "inst", Context, OrigContext)
).
%-----------------------------------------------------------------------------%
:- pred module_add_mode_defn(module_info, varset, mode_defn, condition,
term__context, module_info, io__state, io__state).
:- mode module_add_mode_defn(in, in, in, in, in, out, di, uo) is det.
module_add_mode_defn(Module0, VarSet, ModeDefn, Cond, Context, Module) -->
{ module_info_modes(Module0, Modes0) },
modes_add(Modes0, VarSet, ModeDefn, Cond, Context, Modes),
{ module_info_set_modes(Module0, Modes, Module) }.
:- pred modes_add(mode_table, varset, mode_defn, condition, term__context,
mode_table, io__state, io__state).
:- mode modes_add(in, in, in, in, in, out, di, uo) is det.
modes_add(Modes0, VarSet, eqv_mode(Name, Args, Body), Cond, Context, Modes) -->
{ list__length(Args, Arity) },
(
{ I = hlds__mode_defn(VarSet, Args, eqv_mode(Body), Cond,
Context) },
{ map__insert(Modes0, Name - Arity, I, Modes1) }
->
{ Modes = Modes1 }
;
{ Modes = Modes0 },
{ map__lookup(Modes, Name - Arity, OrigI) },
{ OrigI = hlds__mode_defn(_, _, _, _, OrigContext) },
% XXX we should record each error using module_info_incr_errors
multiple_def_error(Name, Arity, "mode", Context, OrigContext)
).
:- pred mode_name_args(mode_defn, sym_name, list(inst_param), hlds__mode_body).
:- mode mode_name_args(in, out, out, out) is det.
mode_name_args(eqv_mode(Name, Args, Body), Name, Args, eqv_mode(Body)).
%-----------------------------------------------------------------------------%
% We allow more than one "definition" for a given type so
% long all of them except one are actually just declarations,
% e.g. `:- type t.', which is parsed as an type definition for
% t which defines t as an abstract_type.
:- pred module_add_type_defn(module_info, tvarset, type_defn, condition,
term__context, import_status, module_info,
io__state, io__state).
:- mode module_add_type_defn(in, in, in, in, in, in, out, di, uo) is det.
module_add_type_defn(Module0, TVarSet, TypeDefn, Cond, Context, Status,
Module) -->
{ module_info_types(Module0, Types0) },
globals__io_get_globals(Globals),
{ convert_type_defn(TypeDefn, Globals, Name, Args, Body) },
{ list__length(Args, Arity) },
{ T = hlds__type_defn(TVarSet, Args, Body, Cond, Context) },
(
% if there was an existing non-abstract definition for the type
{ map__search(Types0, Name - Arity, T2) },
{ T2 = hlds__type_defn(_, _, Body_2, _, OrigContext) },
{ Body_2 \= abstract_type }
->
(
% then if this definition was abstract, ignore it
{ Body = abstract_type }
->
{ Module = Module0 }
;
% otherwise issue an error message
{ module_info_incr_errors(Module0, Module) },
multiple_def_error(Name, Arity, "type", Context,
OrigContext)
)
;
{ TypeId = Name - Arity },
{ map__set(Types0, TypeId, T, Types) },
(
{ Body = du_type(ConsList, _, _) }
->
{ module_info_ctors(Module0, Ctors0) },
ctors_add(ConsList, TypeId, Context, Ctors0, Ctors),
{ module_info_set_ctors(Module0, Ctors, Module1) }
;
{ Module1 = Module0 }
),
{ unqualify_name(Name, UnqualifiedName) },
{ TypeFunctor = term__atom(UnqualifiedName) },
{ Type = term__functor(TypeFunctor, Args, Context) },
(
{ Body = abstract_type }
->
{ special_pred_list(SpecialPredIds) },
{ add_special_pred_decl_list(SpecialPredIds,
Module1, TVarSet, Type, TypeId,
Context, Status, Module2) }
;
{ special_pred_list(SpecialPredIds) },
{ add_special_pred_list(SpecialPredIds,
Module1, TVarSet, Type, TypeId,
Body, Context, Status, Module2a) },
{ add_abstract_export(Module2a, Type, TypeId, Module2) }
),
{ module_info_set_types(Module2, Types, Module) },
( { Body = uu_type(_) } ->
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
prog_out__write_context(Context),
report_warning(StdErr,
"warning: undiscriminated union types (`+') not implemented.\n"),
io__set_output_stream(OldStream, _)
;
[]
)
).
:- pred add_abstract_export(module_info, type, type_id, module_info).
:- mode add_abstract_export(in, in, in, out) is det.
add_abstract_export(Module0, Type, TypeId, Module) :-
module_info_shape_info(Module0, Shape_Info0),
Shape_Info0 = shape_info(Shapes, Abs_Exports0),
S_Num = no(Type),
map__set(Abs_Exports0, TypeId, S_Num, Abs_Exports1),
Shape_Info = shape_info(Shapes, Abs_Exports1),
module_info_set_shape_info(Module0, Shape_Info, Module).
:- pred convert_type_defn(type_defn, globals,
sym_name, list(type_param), hlds__type_body).
:- mode convert_type_defn(in, in, out, out, out) is det.
convert_type_defn(du_type(Name, Args, Body), Globals, Name, Args,
du_type(Body, CtorTags, IsEnum)) :-
assign_constructor_tags(Body, Globals, CtorTags, IsEnum).
convert_type_defn(uu_type(Name, Args, Body), _, Name, Args, uu_type(Body)).
convert_type_defn(eqv_type(Name, Args, Body), _, Name, Args, eqv_type(Body)).
convert_type_defn(abstract_type(Name, Args), _, Name, Args, abstract_type).
:- pred ctors_add(list(constructor), type_id, term__context, cons_table,
cons_table, io__state, io__state).
:- mode ctors_add(in, in, in, in, out, di, uo) is det.
ctors_add([], _TypeId, _Context, Ctors, Ctors) --> [].
ctors_add([Name - Args | Rest], TypeId, Context, Ctors0, Ctors) -->
{ make_cons_id(Name, Args, TypeId, ConsId) },
{ ConsDefn = hlds__cons_defn(Args, TypeId, Context) },
( %%% some [ConsDefns0]
{ map__search(Ctors0, ConsId, ConsDefns0) }
->
{ ConsDefns1 = ConsDefns0 }
;
{ ConsDefns1 = [] }
),
(
{ list__member(OtherConsDefn, ConsDefns1) },
{ OtherConsDefn = hlds__cons_defn(_, TypeId, _) }
->
% XXX we should record each error using module_info_incr_errors
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
prog_out__write_context(Context),
io__write_string("Error: constructor `"),
hlds_out__write_cons_id(ConsId),
io__write_string("' for type `"),
hlds_out__write_type_id(TypeId),
io__write_string("' multiply defined.\n"),
io__set_exit_status(1),
io__set_output_stream(OldStream, _),
{ ConsDefns2 = ConsDefns1 }
;
{ ConsDefns2 = [ConsDefn | ConsDefns1] }
),
{ map__set(Ctors0, ConsId, ConsDefns2, Ctors1) },
ctors_add(Rest, TypeId, Context, Ctors1, Ctors).
%---------------------------------------------------------------------------%
:- pred module_add_pred(module_info, varset, sym_name, list(type_and_mode),
maybe(determinism), condition, term__context, import_status,
module_info,
io__state, io__state).
:- mode module_add_pred(in, in, in, in, in, in, in, in, out, di, uo) is det.
module_add_pred(Module0, VarSet, PredName, TypesAndModes, MaybeDet, Cond,
Context, Status, Module) -->
{ split_types_and_modes(TypesAndModes, Types, MaybeModes) },
add_new_pred(Module0, VarSet, PredName, Types, Cond, Context, Status,
predicate, Module1),
(
{ MaybeModes = yes(Modes) }
->
module_add_mode(Module1, VarSet, PredName, Modes, MaybeDet,
Cond, Context, predicate, Module)
;
{ Module = Module1 }
).
:- pred module_add_func(module_info, varset, sym_name, list(type_and_mode),
type_and_mode, maybe(determinism), condition, term__context,
import_status, module_info,
io__state, io__state).
:- mode module_add_func(in, in, in, in, in, in, in, in, in, out, di, uo) is det.
module_add_func(Module0, VarSet, FuncName, TypesAndModes, RetTypeAndMode,
MaybeDet, Cond, Context, Status, Module) -->
{ split_types_and_modes(TypesAndModes, Types, MaybeModes) },
{ split_type_and_mode(RetTypeAndMode, RetType, MaybeRetMode) },
{ list__append(Types, [RetType], Types1) },
add_new_pred(Module0, VarSet, FuncName, Types1, Cond, Context, Status,
function, Module1),
(
{ MaybeModes = yes(Modes) },
{ MaybeRetMode = yes(RetMode) }
->
{ list__append(Modes, [RetMode], Modes1) },
module_add_mode(Module1, VarSet, FuncName, Modes1,
MaybeDet, Cond, Context, function, Module)
;
{ Module = Module1 }
).
:- pred add_new_pred(module_info, tvarset, sym_name, list(type),
condition, term__context, import_status, pred_or_func,
module_info, io__state, io__state).
:- mode add_new_pred(in, in, in, in, in, in, in, in, out, di, uo) is det.
% NB. Predicates are also added in polymorphism.m, which converts
% lambda expressions into separate predicates, so any changes may need
% to be reflected there too.
add_new_pred(Module0, TVarSet, PredName, Types, Cond, Context, Status,
PredOrFunc, Module) -->
{ module_info_name(Module0, ModuleName) },
{ list__length(Types, Arity) },
(
{ PredName = unqualified(_PName) },
{ module_info_incr_errors(Module0, Module) },
unqualified_pred_error(PredName, Arity, Context)
% All predicate names passed into this predicate should have
% been qualified by prog_io.m, when they were first read.
;
{ PredName = qualified(MNameOfPred, PName) },
{ Module1 = Module0 },
{ module_info_get_predicate_table(Module1, PredicateTable0) },
{ clauses_info_init(Arity, ClausesInfo) },
{ pred_info_init(ModuleName, PredName, Arity, TVarSet, Types,
Cond, Context, ClausesInfo, Status, no, none,
PredOrFunc, PredInfo0) },
(
{ predicate_table_search_m_n_a(PredicateTable0,
MNameOfPred, PName, Arity, [OrigPred|_]) }
->
{ module_info_incr_errors(Module1, Module) },
{ module_info_pred_info(Module, OrigPred,
OrigPredInfo) },
{ pred_info_context(OrigPredInfo, OrigContext) },
{ PredOrFunc = predicate, DeclString = "pred"
; PredOrFunc = function, DeclString = "func"
}, !,
multiple_def_error(PredName, Arity, DeclString,
Context, OrigContext)
;
(
{ code_util__predinfo_is_builtin(Module1,
PredInfo0) }
->
{ pred_info_mark_as_external(PredInfo0,
PredInfo) }
;
{ PredInfo = PredInfo0 }
),
{ predicate_table_insert(PredicateTable0, PredInfo,
_PredId, PredicateTable) },
{ module_info_set_predicate_table(Module1,
PredicateTable, Module) }
)
).
:- pred add_special_pred_list(list(special_pred_id),
module_info, tvarset, type, type_id, hlds__type_body,
term__context, import_status,
module_info).
:- mode add_special_pred_list(in, in, in, in, in, in, in, in, out) is det.
add_special_pred_list([], Module, _, _, _, _, _, _, Module).
add_special_pred_list([SpecialPredId | SpecialPredIds], Module0,
TVarSet, Type, TypeId, Body, Context, Status, Module) :-
add_special_pred(SpecialPredId, Module0,
TVarSet, Type, TypeId, Body, Context, Status, Module1),
add_special_pred_list(SpecialPredIds, Module1,
TVarSet, Type, TypeId, Body, Context, Status, Module).
:- pred add_special_pred(special_pred_id,
module_info, tvarset, type, type_id, hlds__type_body,
term__context, import_status,
module_info).
:- mode add_special_pred(in, in, in, in, in, in, in, in, out) is det.
add_special_pred(SpecialPredId,
Module0, TVarSet, Type, TypeId, TypeBody, Context, Status0,
Module) :-
% unification predicates are special - they are
% "pseudo"-imported/exported (only mode 0 is imported/exported).
( SpecialPredId = unify ->
( Status0 = imported ->
Status = pseudo_imported
; Status0 = exported ->
Status = pseudo_exported
;
Status = Status0
)
;
Status = Status0
),
module_info_get_special_pred_map(Module0, SpecialPredMap0),
( map__contains(SpecialPredMap0, SpecialPredId - TypeId) ->
Module1 = Module0
;
add_special_pred_decl(SpecialPredId,
Module0, TVarSet, Type, TypeId, Context, Status,
Module1)
),
module_info_get_special_pred_map(Module1, SpecialPredMap1),
map__lookup(SpecialPredMap1, SpecialPredId - TypeId, PredId),
module_info_preds(Module1, Preds0),
map__lookup(Preds0, PredId, PredInfo0),
% if the type was imported, then the special preds for that
% type should be imported too
( (Status = imported ; Status = pseudo_imported) ->
pred_info_set_status(PredInfo0, Status, PredInfo1)
;
PredInfo1 = PredInfo0
),
unify_proc__generate_clause_info(SpecialPredId, Type, TypeBody,
Module1, ClausesInfo),
pred_info_set_clauses_info(PredInfo1, ClausesInfo, PredInfo),
map__set(Preds0, PredId, PredInfo, Preds),
module_info_set_preds(Module1, Preds, Module).
:- pred add_special_pred_decl_list(list(special_pred_id),
module_info, tvarset, type, type_id,
term__context, import_status,
module_info).
:- mode add_special_pred_decl_list(in, in, in, in, in, in, in, out) is det.
add_special_pred_decl_list([], Module, _, _, _, _, _, Module).
add_special_pred_decl_list([SpecialPredId | SpecialPredIds], Module0,
TVarSet, Type, TypeId, Context, Status, Module) :-
add_special_pred_decl(SpecialPredId, Module0,
TVarSet, Type, TypeId, Context, Status, Module1),
add_special_pred_decl_list(SpecialPredIds, Module1,
TVarSet, Type, TypeId, Context, Status, Module).
:- pred add_special_pred_decl(special_pred_id,
module_info, tvarset, type, type_id,
term__context, import_status,
module_info).
:- mode add_special_pred_decl(in, in, in, in, in, in, in, out) is det.
add_special_pred_decl(SpecialPredId,
Module0, TVarSet, Type, TypeId, Context, Status,
Module) :-
module_info_name(Module0, ModuleName),
PredName = unqualified(Name),
special_pred_info(SpecialPredId, Type, Name, ArgTypes, ArgModes, Det),
special_pred_name_arity(SpecialPredId, _, _, Arity),
Cond = true,
clauses_info_init(Arity, ClausesInfo0),
pred_info_init(ModuleName, PredName, Arity, TVarSet, ArgTypes, Cond,
Context, ClausesInfo0, Status, no, none, predicate, PredInfo0),
add_new_proc(PredInfo0, Arity, ArgModes, yes(Det), Context,
PredInfo, _),
module_info_get_predicate_table(Module0, PredicateTable0),
predicate_table_insert(PredicateTable0, PredInfo, PredId,
PredicateTable),
module_info_set_predicate_table(Module0, PredicateTable,
Module1),
module_info_get_special_pred_map(Module1, SpecialPredMap0),
map__set(SpecialPredMap0, SpecialPredId - TypeId, PredId,
SpecialPredMap),
module_info_set_special_pred_map(Module1, SpecialPredMap, Module).
add_new_proc(PredInfo0, Arity, ArgModes, MaybeDet, Context, PredInfo, ModeId) :-
pred_info_procedures(PredInfo0, Procs0),
next_mode_id(Procs0, MaybeDet, ModeId),
proc_info_init(Arity, ArgModes, MaybeDet, Context, NewProc),
map__set(Procs0, ModeId, NewProc, Procs),
pred_info_set_procedures(PredInfo0, Procs, PredInfo).
%-----------------------------------------------------------------------------%
% Add a mode declaration for a predicate.
:- pred module_add_mode(module_info, varset, sym_name, list(mode),
maybe(determinism), condition, term__context, pred_or_func,
module_info, io__state, io__state).
:- mode module_add_mode(in, in, in, in, in, in, in, in, out, di, uo) is det.
% We should store the mode varset and the mode condition
% in the hlds - at the moment we just ignore those two arguments.
module_add_mode(ModuleInfo0, _VarSet, PredName, Modes, MaybeDet, _Cond,
MContext, PredOrFunc, ModuleInfo) -->
% XXX should use PredOrFunc
% Lookup the pred declaration in the predicate table.
% If it's not there (or if it is ambiguous), print an
% error message and insert a dummy declaration for the
% predicate.
{ module_info_name(ModuleInfo0, ModuleName0) },
{ sym_name_get_module_name(PredName, ModuleName0, ModuleName) },
{ unqualify_name(PredName, PName) }, % ignore any module qualifier
{ list__length(Modes, Arity) },
{ module_info_get_predicate_table(ModuleInfo0, PredicateTable0) },
(
{ predicate_table_search_m_n_a(PredicateTable0,
ModuleName, PName, Arity, [PredId0]) }
->
{ PredicateTable1 = PredicateTable0 },
{ PredId = PredId0 }
;
% XXX we should record each error using module_info_incr_errors
undefined_pred_error(PredName, Arity, PredOrFunc, MContext,
"mode declaration"),
{ preds_add_implicit(PredicateTable0,
ModuleName, PredName, Arity, MContext,
PredOrFunc,
PredId, PredicateTable1) }
),
% Lookup the pred_info for this predicate
{ predicate_table_get_preds(PredicateTable1, Preds0) },
{ map__lookup(Preds0, PredId, PredInfo0) },
% check that the determinism was specified
(
{ MaybeDet = no }
->
( { pred_info_is_exported(PredInfo0) } ->
unspecified_det_error(PredName, Arity, PredOrFunc,
MContext)
;
globals__io_lookup_bool_option(warn_missing_det_decls,
ShouldWarn),
(
{ ShouldWarn = yes }
->
unspecified_det_warning(PredName, Arity,
PredOrFunc, MContext)
;
[]
)
)
;
[]
),
% add the mode declaration to the proc_info for this procedure.
% XXX we should check that this mode declaration
% isn't the same as an existing one
{ add_new_proc(PredInfo0, Arity, Modes, MaybeDet, MContext,
PredInfo, _) },
{ map__set(Preds0, PredId, PredInfo, Preds) },
{ predicate_table_set_preds(PredicateTable0, Preds, PredicateTable) },
{ module_info_set_predicate_table(ModuleInfo0, PredicateTable,
ModuleInfo) }.
% Whenever there is a clause or mode declaration for an undeclared
% predicate, we add an implicit declaration
% :- pred p(_, _, ..., _).
% for that predicate, so that calls to the pred don't get
% spurious errors.
:- pred preds_add_implicit(predicate_table, module_name, sym_name, arity,
term__context, pred_or_func,
pred_id, predicate_table).
:- mode preds_add_implicit(in, in, in, in, in, in, out, out) is det.
preds_add_implicit(PredicateTable0,
ModuleName, PredName, Arity, Context, PredOrFunc,
PredId, PredicateTable) :-
varset__init(TVarSet0),
make_n_fresh_vars(Arity, TVarSet0, TypeVars, TVarSet),
term__var_list_to_term_list(TypeVars, Types),
Cond = true,
clauses_info_init(Arity, ClausesInfo),
pred_info_init(ModuleName, PredName, Arity, TVarSet, Types, Cond,
Context, ClausesInfo, local, no, none, PredOrFunc, PredInfo),
unqualify_name(PredName, PName), % ignore any module qualifier
(
\+ predicate_table_search_m_n_a(PredicateTable0,
ModuleName, PName, Arity, _)
->
predicate_table_insert(PredicateTable0, PredInfo, PredId,
PredicateTable1),
predicate_table_remove_predid(PredicateTable1, PredId,
PredicateTable)
;
error("preds_add_implicit")
).
% This is a quick hack, especially the trick with
% determinism_priority. Efficiency could be improved -
% we should probably store the next available ModeId rather
% than recomputing it all the time.
next_mode_id(Procs, MaybeDet, ModeId) :-
map__to_assoc_list(Procs, List),
list__length(List, ModeId0),
(
MaybeDet = no,
determinism_priority_unspecified(Priority)
;
MaybeDet = yes(Det),
determinism_priority(Det, Priority)
),
determinism_priority_step(Step),
( ModeId0 >= Step ->
error("too many modes per predicate")
;
true
),
ModeId is ModeId0 + Priority.
% If we can call a predicate in either of two different modes,
% we should prefer to call it in a deterministic mode
% rather than a non-deterministic one, and we should prefer
% to call it in a semideterministic mode rather than a deterministic
% one. Also we should prefer a nondet mode rather than a multidet mode.
% Higher numbers mean lower priority.
% This works because mode analysis tries each mode in turn,
% starting with the lowest-numbered modes.
:- pred determinism_priority(determinism, int).
:- mode determinism_priority(in, out) is det.
determinism_priority(semidet, 0).
determinism_priority(failure, 0).
determinism_priority(det, 10000).
determinism_priority(erroneous, 10000).
determinism_priority(cc_nondet, 30000).
determinism_priority(nondet, 40000).
determinism_priority(cc_multidet, 50000).
determinism_priority(multidet, 60000).
:- pred determinism_priority_unspecified(int).
:- mode determinism_priority_unspecified(out) is det.
determinism_priority_unspecified(20000).
:- pred determinism_priority_step(int).
:- mode determinism_priority_step(out) is det.
determinism_priority_step(10000).
%-----------------------------------------------------------------------------%
:- pred module_add_pred_clause(module_info, varset, sym_name, list(term), goal,
term__context, module_info, io__state, io__state).
:- mode module_add_pred_clause(in, in, in, in, in, in, out, di, uo) is det.
module_add_pred_clause(ModuleInfo0, ClauseVarSet, PredName, Args, Body,
Context, ModuleInfo) -->
% print out a progress message
globals__io_lookup_bool_option(very_verbose, VeryVerbose),
( { VeryVerbose = yes } ->
{ list__length(Args, Arity) },
io__write_string("% Processing clause for predicate `"),
hlds_out__write_pred_call_id(PredName/Arity),
io__write_string("'...\n")
;
[]
),
module_add_clause(ModuleInfo0, ClauseVarSet, PredName, Args, Body,
Context, predicate, ModuleInfo).
:- pred module_add_func_clause(module_info, varset, sym_name, list(term), term,
goal, term__context, module_info, io__state, io__state).
:- mode module_add_func_clause(in, in, in, in, in, in, in, out, di, uo) is det.
module_add_func_clause(ModuleInfo0, ClauseVarSet, FuncName, Args0, Result, Body,
Context, ModuleInfo) -->
% print out a progress message
globals__io_lookup_bool_option(very_verbose, VeryVerbose),
( { VeryVerbose = yes } ->
io__write_string("% Processing clause for function `"),
{ list__length(Args0, Arity) },
hlds_out__write_pred_call_id(FuncName/Arity),
io__write_string("'...\n")
;
[]
),
{ list__append(Args0, [Result], Args) },
module_add_clause(ModuleInfo0, ClauseVarSet, FuncName, Args, Body,
Context, function, ModuleInfo).
:- pred module_add_clause(module_info, varset, sym_name, list(term), goal,
term__context, pred_or_func, module_info, io__state, io__state).
:- mode module_add_clause(in, in, in, in, in, in, in, out, di, uo) is det.
module_add_clause(ModuleInfo0, ClauseVarSet, PredName, Args, Body, Context,
PredOrFunc, ModuleInfo) -->
% Lookup the pred declaration in the predicate table.
% (if it's not there, print an error message and insert
% a dummy declaration for the predicate.)
{ module_info_name(ModuleInfo0, ModuleName) },
{ unqualify_name(PredName, PName) }, % ignore any module qualifier
{ list__length(Args, Arity) },
{ module_info_get_predicate_table(ModuleInfo0, PredicateTable0) },
(
{ predicate_table_search_m_n_a(PredicateTable0,
ModuleName, PName, Arity, [PredId0]) }
->
{ PredId = PredId0 },
{ PredicateTable1 = PredicateTable0 },
{ ModuleInfo1 = ModuleInfo0 }
;
{ module_info_incr_errors(ModuleInfo0, ModuleInfo1) },
undefined_pred_error(PredName, Arity, PredOrFunc, Context,
"clause"),
{ preds_add_implicit(PredicateTable0,
ModuleName, PredName, Arity, Context,
PredOrFunc,
PredId, PredicateTable1) }
),
% Lookup the pred_info for this pred,
% add the clause to the clauses_info in the pred_info,
% and save the pred_info.
{ predicate_table_get_preds(PredicateTable1, Preds0) },
{ map__lookup(Preds0, PredId, PredInfo0) },
( { pred_info_is_imported(PredInfo0) } ->
{ module_info_incr_errors(ModuleInfo1, ModuleInfo) },
clause_for_imported_pred_error(PredName, Arity, PredOrFunc,
Context)
;
{ pred_info_get_goal_type(PredInfo0, pragmas) }
->
{ module_info_incr_errors(ModuleInfo1, ModuleInfo) },
prog_out__write_context(Context),
io__write_string("Error: clause for predicate `"),
hlds_out__write_pred_call_id(PredName/Arity),
io__write_string("'\n"),
prog_out__write_context(Context),
io__write_string(
" with pragma(c_code, ...) declaration preceding.\n")
;
{
pred_info_clauses_info(PredInfo0, Clauses0),
pred_info_procedures(PredInfo0, Procs),
map__keys(Procs, ModeIds),
clauses_info_add_clause(Clauses0, ModeIds, ClauseVarSet, Args,
Body, Context, Goal, VarSet, Clauses, Warnings),
pred_info_set_clauses_info(PredInfo0, Clauses, PredInfo1),
pred_info_set_goal_type(PredInfo1, clauses, PredInfo),
map__set(Preds0, PredId, PredInfo, Preds),
predicate_table_set_preds(PredicateTable1, Preds,
PredicateTable),
module_info_set_predicate_table(ModuleInfo1, PredicateTable,
ModuleInfo)
},
% warn about singleton variables
maybe_warn_singletons(VarSet, PredName/Arity, Goal),
% warn about variables with overlapping scopes
maybe_warn_overlap(Warnings, VarSet, PredOrFunc, PredName/Arity)
).
%-----------------------------------------------------------------------------%
:- pred module_add_c_header(string, term__context, module_info, module_info).
:- mode module_add_c_header(in, in, in, out) is det.
module_add_c_header(C_Header, Context, Module0, Module) :-
module_info_get_c_header(Module0, C_HeaderIndex0),
% store the c headers in reverse order and reverse them later
% for efficiency
C_HeaderIndex1 = [C_Header - Context|C_HeaderIndex0],
module_info_set_c_header(Module0, C_HeaderIndex1, Module).
:- pred module_add_c_body_code(string, term__context, module_info, module_info).
:- mode module_add_c_body_code(in, in, in, out) is det.
module_add_c_body_code(C_Body_Code, Context, Module0, Module) :-
module_info_get_c_body_code(Module0, C_Body_List0),
% store the c headers in reverse order and reverse them later
% for efficiency
C_Body_List = [C_Body_Code - Context | C_Body_List0],
module_info_set_c_body_code(Module0, C_Body_List, Module).
%-----------------------------------------------------------------------------%
:- pred module_add_pragma_c_code(sym_name, list(pragma_var), varset, string,
term__context, module_info, module_info, io__state, io__state).
:- mode module_add_pragma_c_code(in, in, in, in, in, in, out, di, uo) is det.
module_add_pragma_c_code(PredName, PVars, VarSet, C_Code, Context,
ModuleInfo0, ModuleInfo) -->
% XXX we should allow pragma c_code for functions as well
% as for predicates, but currently we don't
{ PredOrFunc = predicate },
% print out a progress message
{ module_info_name(ModuleInfo0, ModuleName) },
{ unqualify_name(PredName, PName) }, % ignore any module qualifier
{ list__length(PVars, Arity) },
globals__io_lookup_bool_option(very_verbose, VeryVerbose),
(
{ VeryVerbose = yes }
->
io__write_string("% Processing pragma (c_code) for "),
hlds_out__write_call_id(PredOrFunc, PredName/Arity),
io__write_string("...\n")
;
[]
),
% Lookup the pred declaration in the predicate table.
% (if it's not there, print an error message and insert
% a dummy declaration for the predicate.)
{ module_info_get_predicate_table(ModuleInfo0, PredicateTable0) },
(
{ predicate_table_search_m_n_a(PredicateTable0, ModuleName,
PName, Arity, [PredId0]) }
->
{ PredId = PredId0 },
{ PredicateTable1 = PredicateTable0 },
{ ModuleInfo1 = ModuleInfo0 }
;
{ module_info_incr_errors(ModuleInfo0, ModuleInfo1) },
undefined_pred_error(PredName, Arity, PredOrFunc, Context,
"pragma (c_code)"),
{ preds_add_implicit(PredicateTable0,
ModuleName, PredName, Arity, Context,
PredOrFunc,
PredId, PredicateTable1) }
),
% Lookup the pred_info for this pred,
% add the pragma to the proc_info in the proc_table in the
% pred_info, and save the pred_info.
{ predicate_table_get_preds(PredicateTable1, Preds0) },
{ map__lookup(Preds0, PredId, PredInfo0) },
(
{ pred_info_is_imported(PredInfo0) }
->
{ module_info_incr_errors(ModuleInfo1, ModuleInfo) },
prog_out__write_context(Context),
io__write_string("Error: pragma(c_code, ...) declaration "),
io__write_string("for imported "),
hlds_out__write_call_id(PredOrFunc, PredName/Arity),
io__write_string(".\n")
;
{ pred_info_get_goal_type(PredInfo0, clauses) }
->
{ module_info_incr_errors(ModuleInfo1, ModuleInfo) },
prog_out__write_context(Context),
io__write_string("Error: pragma(c_code, ...) declaration "),
io__write_string("for "),
hlds_out__write_call_id(PredOrFunc, PredName/Arity),
io__write_string("\n"),
prog_out__write_context(Context),
io__write_string(" with clauses preceding.\n")
;
% add the pragma declaration to the proc_info for this procedure
{ pred_info_procedures(PredInfo0, Procs) },
{ map__to_assoc_list(Procs, ExistingProcs) },
{ pragma_get_modes(PVars, Modes) },
(
{ get_matching_procedure(ExistingProcs, Modes, ProcId) }
->
{ pred_info_clauses_info(PredInfo0, Clauses0) },
{ clauses_info_add_pragma_c_code(Clauses0, PredId,
ProcId, VarSet, PVars, C_Code, Context,
Clauses, Goal) },
{ pred_info_set_clauses_info(PredInfo0, Clauses,
PredInfo1) },
{ pred_info_set_goal_type(PredInfo1, pragmas,
PredInfo) },
{ map__set(Preds0, PredId, PredInfo, Preds) },
{ predicate_table_set_preds(PredicateTable0, Preds,
PredicateTable) },
{ module_info_set_predicate_table(ModuleInfo0,
PredicateTable, ModuleInfo) },
maybe_warn_singletons(VarSet, PredName/Arity, Goal)
;
{ module_info_incr_errors(ModuleInfo1, ModuleInfo) },
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
prog_out__write_context(Context),
io__write_string("Error: pragma(c_code, ...) "),
io__write_string("declaration for non-existent mode "),
io__write_string("for `"),
io__write_string(PName),
io__write_string("/"),
io__write_int(Arity),
io__write_string("'.\n"),
io__set_output_stream(OldStream, _)
)
).
%-----------------------------------------------------------------------------%
% from the list of pragma_vars extract the modes.
:- pred pragma_get_modes(list(pragma_var), list(mode)).
:- mode pragma_get_modes(in, out) is det.
pragma_get_modes([], []).
pragma_get_modes([V|Vars], [M|Modes]) :-
V = pragma_var(_Variable, _Name, M),
pragma_get_modes(Vars, Modes).
%-----------------------------------------------------------------------------%
% from the list of pragma_vars , extract the vars.
:- pred pragma_get_vars(list(pragma_var), list(var)).
:- mode pragma_get_vars(in, out) is det.
pragma_get_vars([], []).
pragma_get_vars([P|PragmaVars], [V|Vars]) :-
P = pragma_var(V, _Name, _Mode),
pragma_get_vars(PragmaVars, Vars).
%---------------------------------------------------------------------------%
% from the list of pragma_vars, extract the names.
:- pred pragma_get_var_names(list(pragma_var), list(string)).
:- mode pragma_get_var_names(in, out) is det.
pragma_get_var_names([], []).
pragma_get_var_names([P|PragmaVars], [N|Names]) :-
P = pragma_var(_Var, N, _Mode),
pragma_get_var_names(PragmaVars, Names).
%---------------------------------------------------------------------------%
% For each pred_id in the list, set the given markers
% in the corresponding pred_info.
:- pred pragma_set_markers(pred_table, list(pred_id), list(marker_status),
pred_table).
:- mode pragma_set_markers(in, in, in, out) is det.
pragma_set_markers(PredTable, [], _, PredTable).
pragma_set_markers(PredTable0, [PredId | PredIds], Markers, PredTable) :-
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_get_marker_list(PredInfo0, MarkerList0),
pragma_set_markers_2(Markers, MarkerList0, MarkerList),
pred_info_set_marker_list(PredInfo0, MarkerList, PredInfo),
map__set(PredTable0, PredId, PredInfo, PredTable1),
pragma_set_markers(PredTable1, PredIds, Markers, PredTable).
:- pred pragma_set_markers_2(list(marker_status), list(marker_status),
list(marker_status)).
:- mode pragma_set_markers_2(in, in, out) is det.
pragma_set_markers_2([], MarkerList, MarkerList).
pragma_set_markers_2([Marker | Markers], MarkerList0, MarkerList) :-
( list__member(Marker, MarkerList0) ->
MarkerList1 = MarkerList0
;
MarkerList1 = [Marker | MarkerList0]
),
pragma_set_markers_2(Markers, MarkerList1, MarkerList).
%---------------------------------------------------------------------------%
% Find the procedure with modes which match the ones we want.
:- pred get_matching_procedure(assoc_list(proc_id, proc_info), list(mode),
proc_id).
:- mode get_matching_procedure(in, in, out) is semidet.
get_matching_procedure([P|Procs], Modes, OurProcId) :-
P = ProcId - ProcInfo,
(
proc_info_argmodes(ProcInfo, Modes)
->
OurProcId = ProcId
;
get_matching_procedure(Procs, Modes, OurProcId)
).
%-----------------------------------------------------------------------------%
% Warn about variables which occur only once but don't start with
% an underscore, or about variables which do start with an underscore
% but occur more than once.
%
:- pred maybe_warn_overlap(list(quant_warning), varset,
pred_or_func, pred_call_id,
io__state, io__state).
:- mode maybe_warn_overlap(in, in, in, in, di, uo) is det.
maybe_warn_overlap(Warnings, VarSet, PredOrFunc, PredCallId) -->
globals__io_lookup_bool_option(warn_overlapping_scopes,
WarnOverlappingScopes),
( { WarnOverlappingScopes = yes } ->
warn_overlap(Warnings, VarSet, PredOrFunc, PredCallId)
;
[]
).
:- pred warn_overlap(list(quant_warning), varset, pred_or_func, pred_call_id,
io__state, io__state).
:- mode warn_overlap(in, in, in, in, di, uo) is det.
warn_overlap([], _, _, _) --> [].
warn_overlap([Warn|Warns], VarSet, PredOrFunc, PredCallId) -->
{ Warn = warn_overlap(Vars, Context) },
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
prog_out__write_context(Context),
io__write_string(StdErr, "In clause for "),
hlds_out__write_call_id(PredOrFunc, PredCallId),
io__write_string(StdErr, ":\n"),
prog_out__write_context(Context),
( { Vars = [Var] } ->
io__write_string(StdErr, " Warning: variable `"),
mercury_output_var(Var, VarSet),
report_warning(StdErr, "' has overlapping scopes.\n")
;
io__write_string(StdErr, " Warning: variables `"),
mercury_output_vars(Vars, VarSet),
report_warning(StdErr, "'\n"),
prog_out__write_context(Context),
report_warning(StdErr, " each have overlapping scopes.\n")
),
io__set_output_stream(OldStream, _),
warn_overlap(Warns, VarSet, PredOrFunc, PredCallId).
%-----------------------------------------------------------------------------%
% Warn about variables which occur only once but don't start with
% an underscore, or about variables which do start with an underscore
% but occur more than once.
%
:- pred maybe_warn_singletons(varset, pred_call_id, hlds__goal,
io__state, io__state).
:- mode maybe_warn_singletons(in, in, in, di, uo) is det.
maybe_warn_singletons(VarSet, PredCallId, Body) -->
globals__io_lookup_bool_option(warn_singleton_vars, WarnSingletonVars),
( { WarnSingletonVars = yes } ->
{ set__init(QuantVars) },
warn_singletons_in_goal(Body, QuantVars, VarSet, PredCallId)
;
[]
).
:- pred warn_singletons_in_goal(hlds__goal, set(var), varset, pred_call_id,
io__state, io__state).
:- mode warn_singletons_in_goal(in, in, in, in, di, uo) is det.
warn_singletons_in_goal(Goal - GoalInfo, QuantVars, VarSet, PredCallId) -->
warn_singletons_in_goal_2(Goal, GoalInfo, QuantVars, VarSet,
PredCallId).
:- pred warn_singletons_in_goal_2(hlds__goal_expr, hlds__goal_info, set(var),
varset, pred_call_id, io__state, io__state).
:- mode warn_singletons_in_goal_2(in, in, in, in, in, di, uo) is det.
warn_singletons_in_goal_2(conj(Goals), _GoalInfo, QuantVars, VarSet,
PredCallId) -->
warn_singletons_in_goal_list(Goals, QuantVars, VarSet, PredCallId).
warn_singletons_in_goal_2(disj(Goals), _GoalInfo, QuantVars, VarSet,
PredCallId) -->
warn_singletons_in_goal_list(Goals, QuantVars, VarSet, PredCallId).
warn_singletons_in_goal_2(switch(_Var, _CanFail, Cases),
_GoalInfo, QuantVars, VarSet, PredCallId) -->
warn_singletons_in_cases(Cases, QuantVars, VarSet, PredCallId).
warn_singletons_in_goal_2(not(Goal), _GoalInfo, QuantVars, VarSet, PredCallId)
-->
warn_singletons_in_goal(Goal, QuantVars, VarSet, PredCallId).
warn_singletons_in_goal_2(some(Vars, SubGoal), GoalInfo, QuantVars, VarSet,
PredCallId) -->
%
% warn if any quantified variables occur only in the quantifier
%
( { Vars \= [] } ->
{ goal_vars(SubGoal, SubGoalVars) },
{ goal_info_context(GoalInfo, Context) },
{ set__init(EmptySet) },
warn_singletons(Vars, EmptySet, SubGoalVars, VarSet, Context,
PredCallId)
;
[]
),
{ set__insert_list(QuantVars, Vars, QuantVars1) },
warn_singletons_in_goal(SubGoal, QuantVars1, VarSet, PredCallId).
warn_singletons_in_goal_2(if_then_else(Vars, Cond, Then, Else), GoalInfo,
QuantVars, VarSet, PredCallId) -->
%
% warn if any quantified variables do not occur in the condition
% or the "then" part of the if-then-else
%
( { Vars \= [] } ->
{ goal_vars(Cond, CondVars) },
{ goal_vars(Then, ThenVars) },
{ set__union(CondVars, ThenVars, CondThenVars) },
{ goal_info_context(GoalInfo, Context) },
{ set__init(EmptySet) },
warn_singletons(Vars, EmptySet, CondThenVars, VarSet,
Context, PredCallId)
;
[]
),
{ set__insert_list(QuantVars, Vars, QuantVars1) },
warn_singletons_in_goal(Cond, QuantVars1, VarSet, PredCallId),
warn_singletons_in_goal(Then, QuantVars1, VarSet, PredCallId),
warn_singletons_in_goal(Else, QuantVars, VarSet, PredCallId).
warn_singletons_in_goal_2(call(_, _, Args, _, _, _, _),
GoalInfo, QuantVars, VarSet, PredCallId) -->
{ goal_info_get_nonlocals(GoalInfo, NonLocals) },
{ goal_info_context(GoalInfo, Context) },
warn_singletons(Args, NonLocals, QuantVars, VarSet, Context,
PredCallId).
warn_singletons_in_goal_2(unify(Var, RHS, _, _, _),
GoalInfo, QuantVars, VarSet, PredCallId) -->
warn_singletons_in_unify(Var, RHS, GoalInfo, QuantVars, VarSet,
PredCallId).
warn_singletons_in_goal_2(pragma_c_code(C_Code,_,_,Args,ArgNameMap),
GoalInfo, _QuantVars, _VarSet, PredCallId) -->
{ goal_info_context(GoalInfo, Context) },
warn_singletons_in_pragma_c_code(C_Code, Args, ArgNameMap, Context,
PredCallId).
:- pred warn_singletons_in_goal_list(list(hlds__goal), set(var), varset,
pred_call_id, io__state, io__state).
:- mode warn_singletons_in_goal_list(in, in, in, in, di, uo) is det.
warn_singletons_in_goal_list([], _, _, _) --> [].
warn_singletons_in_goal_list([Goal|Goals], QuantVars, VarSet, CallPredId) -->
warn_singletons_in_goal(Goal, QuantVars, VarSet, CallPredId),
warn_singletons_in_goal_list(Goals, QuantVars, VarSet, CallPredId).
:- pred warn_singletons_in_cases(list(case), set(var), varset, pred_call_id,
io__state, io__state).
:- mode warn_singletons_in_cases(in, in, in, in, di, uo) is det.
warn_singletons_in_cases([], _, _, _) --> [].
warn_singletons_in_cases([Case|Cases], QuantVars, VarSet, CallPredId) -->
{ Case = case(_ConsId, Goal) },
warn_singletons_in_goal(Goal, QuantVars, VarSet, CallPredId),
warn_singletons_in_cases(Cases, QuantVars, VarSet, CallPredId).
:- pred warn_singletons_in_unify(var, unify_rhs, hlds__goal_info, set(var),
varset, pred_call_id, io__state, io__state).
:- mode warn_singletons_in_unify(in, in, in, in, in, in, di, uo) is det.
warn_singletons_in_unify(X, var(Y), GoalInfo, QuantVars, VarSet, CallPredId) -->
{ goal_info_get_nonlocals(GoalInfo, NonLocals) },
{ goal_info_context(GoalInfo, Context) },
warn_singletons([X, Y], NonLocals, QuantVars, VarSet,
Context, CallPredId).
warn_singletons_in_unify(X, functor(_ConsId, Vars), GoalInfo, QuantVars, VarSet,
CallPredId) -->
{ goal_info_get_nonlocals(GoalInfo, NonLocals) },
{ goal_info_context(GoalInfo, Context) },
warn_singletons([X | Vars], NonLocals, QuantVars, VarSet,
Context, CallPredId).
warn_singletons_in_unify(X, lambda_goal(LambdaVars, _Modes, _Det, LambdaGoal),
GoalInfo, QuantVars, VarSet, CallPredId) -->
%
% warn if any lambda-quantified variables occur only in the quantifier
%
{ LambdaGoal = _ - LambdaGoalInfo },
{ goal_info_get_nonlocals(LambdaGoalInfo, LambdaNonLocals) },
{ goal_info_context(GoalInfo, Context) },
warn_singletons(LambdaVars, LambdaNonLocals, QuantVars, VarSet,
Context, CallPredId),
%
% warn if X (the variable we're unifying the lambda expression with)
% is singleton
%
{ goal_info_get_nonlocals(GoalInfo, NonLocals) },
warn_singletons([X], NonLocals, QuantVars, VarSet, Context, CallPredId),
%
% warn if the lambda-goal contains singletons
%
warn_singletons_in_goal(LambdaGoal, QuantVars, VarSet, CallPredId).
%-----------------------------------------------------------------------------%
% warn_singletons_in_pragma_c_code checks to see if each variable is
% a substring of the given c code. If not, it gives a warning
:- pred warn_singletons_in_pragma_c_code(string, list(var), map(var, string),
term__context, pred_call_id, io__state, io__state).
:- mode warn_singletons_in_pragma_c_code(in, in, in, in, in, di, uo) is det.
warn_singletons_in_pragma_c_code(C_Code, Args, ArgNameMap,
Context, PredCallId) -->
{ c_code_to_name_list(C_Code, C_CodeList) },
{ warn_singletons_in_pragma_c_code_2(C_CodeList, Args, ArgNameMap,
Context, SingletonVars) },
( { SingletonVars = [] } ->
[]
;
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
prog_out__write_context(Context),
( { SingletonVars = [_] } ->
io__write_string("Warning: variable `"),
write_string_list(SingletonVars),
io__write_string("' does not occur in C code\n")
;
io__write_string("Warning: variables `"),
write_string_list(SingletonVars),
io__write_string("' do not occur in C code\n")
),
prog_out__write_context(Context),
io__write_string(" in pragma(c_code, ...) for "),
hlds_out__write_call_id(predicate, PredCallId),
io__write_string(".\n"),
io__set_output_stream(OldStream, _)
).
%-----------------------------------------------------------------------------%
:- pred warn_singletons_in_pragma_c_code_2(list(string), list(var),
map(var, string), term__context, list(string)).
:- mode warn_singletons_in_pragma_c_code_2(in, in, in, in, out) is det.
warn_singletons_in_pragma_c_code_2(_, [], _, _, []).
warn_singletons_in_pragma_c_code_2(C_CodeList, [Arg|Args], ArgNameMap,
Context, SingletonVars) :-
warn_singletons_in_pragma_c_code_2(C_CodeList, Args,
ArgNameMap, Context, SingletonVars0),
map__lookup(ArgNameMap, Arg, Name),
(
( string__prefix(Name, "_")
; list__member(Name, C_CodeList)
)
->
SingletonVars = SingletonVars0
;
SingletonVars = [Name|SingletonVars0]
).
%-----------------------------------------------------------------------------%
% c_code_to_name_list(Code, List) is true iff List is a list of the
% identifiers used in the C code in Code.
:- pred c_code_to_name_list(string, list(string)).
:- mode c_code_to_name_list(in, out) is det.
c_code_to_name_list(Code, List) :-
string__to_char_list(Code, CharList),
c_code_to_name_list_2(CharList, List).
:- pred c_code_to_name_list_2(list(char), list(string)).
:- mode c_code_to_name_list_2(in, out) is det.
c_code_to_name_list_2(C_Code, List) :-
get_first_c_name(C_Code, NameCharList, TheRest),
(
NameCharList = []
->
% no names left
List = []
;
c_code_to_name_list_2(TheRest, Names),
string__from_char_list(NameCharList, Name),
List = [Name|Names]
).
:- pred get_first_c_name(list(char), list(char), list(char)).
:- mode get_first_c_name(in, out, out) is det.
get_first_c_name([], [], []).
get_first_c_name([C|CodeChars], NameCharList, TheRest) :-
(
char__is_alnum_or_underscore(C)
->
get_first_c_name_in_word(CodeChars, NameCharList0, TheRest),
NameCharList = [C|NameCharList0]
;
% strip off any characters in the C code which
% don't form part of an identifier.
get_first_c_name(CodeChars, NameCharList, TheRest)
).
:- pred get_first_c_name_in_word(list(char), list(char), list(char)).
:- mode get_first_c_name_in_word(in, out, out) is det.
get_first_c_name_in_word([], [], []).
get_first_c_name_in_word([C|CodeChars], NameCharList, TheRest) :-
(
char__is_alnum_or_underscore(C)
->
% There are more characters in the word
get_first_c_name_in_word(CodeChars, NameCharList0, TheRest),
NameCharList = [C|NameCharList0]
;
% The word is finished
NameCharList = [],
TheRest = CodeChars
).
%-----------------------------------------------------------------------------%
:- pred write_string_list(list(string), io__state, io__state).
:- mode write_string_list(in, di, uo) is det.
write_string_list([]) --> [].
write_string_list([X|Xs]) -->
io__write_string(X),
(
{ Xs = [] }
->
[]
;
io__write_string(", "),
write_string_list(Xs)
).
%-----------------------------------------------------------------------------%
% warn_singletons(Vars, NonLocals, QuantVars, ...):
% Warn if any of the non-underscore variables in Vars don't
% occur in NonLocals and don't have the same name as any variable
% in QuantVars, or if any of the underscore variables
% in Vars do occur in NonLocals.
:- pred warn_singletons(list(var), set(var), set(var), varset, term__context,
pred_call_id, io__state, io__state).
:- mode warn_singletons(in, in, in, in, in, in, di, uo) is det.
warn_singletons(GoalVars, NonLocals, QuantVars, VarSet, Context, PredCallId) -->
io__stderr_stream(StdErr),
% find all the variables in the goal that don't occur outside the
% goal (i.e. are singleton), have a variable name that doesn't
% start with "_" or "DCG_", and don't have the same name as any
% variable in QuantVars (i.e. weren't explicitly quantified).
{ solutions(lambda([Var::out] is nondet, (
list__member(Var, GoalVars),
\+ set__member(Var, NonLocals),
varset__search_name(VarSet, Var, Name),
\+ string__prefix(Name, "_"),
\+ string__prefix(Name, "DCG_"),
\+ (
set__member(QuantVar, QuantVars),
varset__search_name(VarSet, QuantVar, Name)
)
)), SingletonVars) },
% if there were any such variables, issue a warning
( { SingletonVars = [] } ->
[]
;
prog_out__write_context(Context),
io__write_string(StdErr, "In clause for predicate `"),
hlds_out__write_pred_call_id(PredCallId),
io__write_string(StdErr, "':\n"),
prog_out__write_context(Context),
( { SingletonVars = [_] } ->
io__write_string(StdErr, " Warning: variable `"),
mercury_output_vars(SingletonVars, VarSet),
report_warning(StdErr, "' occurs only once in this scope.\n")
;
io__write_string(StdErr, " Warning: variables `"),
mercury_output_vars(SingletonVars, VarSet),
report_warning(StdErr, "' occur only once in this scope.\n")
)
),
% find all the variables in the goal that do occur outside the
% goal (i.e. are not singleton) and have a variable name that starts
% with "_".
{ solutions(lambda([Var2::out] is nondet, (
list__member(Var2, GoalVars),
set__member(Var2, NonLocals),
varset__search_name(VarSet, Var2, Name2),
string__prefix(Name2, "_")
)), MultiVars) },
% if there were any such variables, issue a warning
( { MultiVars = [] } ->
[]
;
prog_out__write_context(Context),
io__write_string(StdErr, "In clause for predicate `"),
hlds_out__write_pred_call_id(PredCallId),
io__write_string(StdErr, "':\n"),
prog_out__write_context(Context),
( { MultiVars = [_] } ->
io__write_string(StdErr, " Warning: variable `"),
mercury_output_vars(MultiVars, VarSet),
report_warning(StdErr, "' occurs more than once in this scope.\n")
;
io__write_string(StdErr, " Warning: variables `"),
mercury_output_vars(MultiVars, VarSet),
report_warning(StdErr, "' occur more than once in this scope.\n")
)
).
%-----------------------------------------------------------------------------
clauses_info_init(Arity, clauses_info(VarSet, VarTypes, HeadVars, [])) :-
map__init(VarTypes),
varset__init(VarSet0),
make_n_fresh_vars(Arity, VarSet0, HeadVars, VarSet).
:- pred clauses_info_add_clause(clauses_info::in,
list(proc_id)::in, varset::in, list(term)::in, goal::in,
term__context::in,
hlds__goal::out, varset::out, clauses_info::out,
list(quant_warning)::out) is det.
clauses_info_add_clause(ClausesInfo0, ModeIds, CVarSet, Args, Body,
Context, Goal, VarSet, ClausesInfo, Warnings) :-
ClausesInfo0 = clauses_info(VarSet0, VarTypes, HeadVars, ClauseList0),
varset__merge_subst(VarSet0, CVarSet, VarSet1, Subst),
transform(Subst, HeadVars, Args, Body, VarSet1, Context, Goal, VarSet,
Warnings),
% XXX we should avoid append - this gives O(N*N)
list__append(ClauseList0, [clause(ModeIds, Goal, Context)], ClauseList),
ClausesInfo = clauses_info(VarSet, VarTypes, HeadVars, ClauseList).
%-----------------------------------------------------------------------------
% Add the pragma_c_code goal to the clauses_info for this procedure.
% To do so, we must also insert unifications between the variables in the
% pragma(c_code, ...) dec and the head vars of the pred. Also return the
% hlds__goal.
:- pred clauses_info_add_pragma_c_code(clauses_info, pred_id, proc_id, varset,
list(pragma_var), string, term__context, clauses_info,
hlds__goal) is det.
:- mode clauses_info_add_pragma_c_code(in, in, in, in, in, in, in, out,
out) is det.
clauses_info_add_pragma_c_code(ClausesInfo0, PredId, ModeId, PVarSet, PVars,
C_Code, Context, ClausesInfo, HldsGoal) :-
ClausesInfo0 = clauses_info(VarSet0, VarTypes, HeadVars, ClauseList),
pragma_get_vars(PVars, Args0),
pragma_get_var_names(PVars, Names),
% merge the varsets of the proc and the new pragma_c_code
varset__merge_subst(VarSet0, PVarSet, VarSet1, Subst),
map__apply_to_list(Args0, Subst, TermArgs),
term__term_list_to_var_list(TermArgs, Args),
% build the pragma_c_code
map__from_corresponding_lists(Args, Names, ArgNameMap),
goal_info_init(GoalInfo0),
goal_info_set_context(GoalInfo0, Context, GoalInfo),
HldsGoal0 = pragma_c_code(C_Code, PredId, ModeId, Args, ArgNameMap) -
GoalInfo,
% Insert unifications with the head args.
insert_arg_unifications(HeadVars, TermArgs, Context, head, HldsGoal0,
VarSet1, HldsGoal1, VarSet2),
map__init(Empty),
implicitly_quantify_clause_body(HeadVars, HldsGoal1, VarSet2, Empty,
HldsGoal, VarSet, _, _Warnings),
NewClause = clause([ModeId], HldsGoal, Context),
ClausesInfo = clauses_info(VarSet, VarTypes, HeadVars,
[NewClause|ClauseList]).
%-----------------------------------------------------------------------------
:- pred transform(substitution, list(var), list(term), goal, varset,
term__context, hlds__goal, varset, list(quant_warning)).
:- mode transform(in, in, in, in, in, in, out, out, out) is det.
transform(Subst, HeadVars, Args0, Body, VarSet0, Context,
Goal, VarSet, Warnings) :-
transform_goal(Body, VarSet0, Subst, Goal1, VarSet1),
term__apply_substitution_to_list(Args0, Subst, Args),
insert_arg_unifications(HeadVars, Args, Context, head, Goal1, VarSet1,
Goal2, VarSet2),
map__init(Empty),
implicitly_quantify_clause_body(HeadVars, Goal2, VarSet2, Empty,
Goal, VarSet, _, Warnings).
%-----------------------------------------------------------------------------%
% Convert goals from the prog_io `goal' structure into the
% hlds `hlds__goal' structure. At the same time, convert
% it to super-homogeneous form by unravelling all the complex
% unifications, and annotate those unifications with a unify_context
% so that we can still give good error messages.
% And also at the same time, apply the given substitution to
% the goal, to rename it apart from the other clauses.
:- pred transform_goal(goal, varset, substitution, hlds__goal, varset).
:- mode transform_goal(in, in, in, out, out) is det.
transform_goal(Goal0 - Context, VarSet0, Subst, Goal1 - GoalInfo1, VarSet) :-
transform_goal_2(Goal0, Context, VarSet0, Subst,
Goal1 - GoalInfo0, VarSet),
goal_info_set_context(GoalInfo0, Context, GoalInfo1).
:- pred transform_goal_2(goal_expr, term__context, varset, substitution,
hlds__goal, varset).
:- mode transform_goal_2(in, in, in, in, out, out) is det.
transform_goal_2(fail, _, VarSet, _, disj([]) - GoalInfo, VarSet) :-
goal_info_init(GoalInfo).
transform_goal_2(true, _, VarSet, _, conj([]) - GoalInfo, VarSet) :-
goal_info_init(GoalInfo).
% Convert `all [Vars] Goal' into `not some [Vars] not Goal'.
transform_goal_2(all(Vars0, Goal0), Context, VarSet0, Subst, Goal, VarSet) :-
TransformedGoal = not(some(Vars0, not(Goal0) - Context) - Context),
transform_goal_2(TransformedGoal, Context, VarSet0, Subst,
Goal, VarSet).
transform_goal_2(some(Vars0, Goal0), _, VarSet0, Subst,
some(Vars, Goal) - GoalInfo, VarSet) :-
substitute_vars(Vars0, Subst, Vars),
transform_goal(Goal0, VarSet0, Subst, Goal, VarSet),
goal_info_init(GoalInfo).
transform_goal_2(if_then_else(Vars0, A0, B0, C0), _, VarSet0, Subst,
if_then_else(Vars, A, B, C) - GoalInfo, VarSet) :-
substitute_vars(Vars0, Subst, Vars),
transform_goal(A0, VarSet0, Subst, A, VarSet1),
transform_goal(B0, VarSet1, Subst, B, VarSet2),
transform_goal(C0, VarSet2, Subst, C, VarSet),
goal_info_init(GoalInfo).
transform_goal_2(if_then(Vars0, A0, B0), Context, Subst, VarSet0,
Goal, VarSet) :-
transform_goal_2(if_then_else(Vars0, A0, B0, true - Context),
Context, Subst, VarSet0, Goal, VarSet).
transform_goal_2(not(A0), _, VarSet0, Subst, Goal, VarSet) :-
transform_goal(A0, VarSet0, Subst, A, VarSet),
% eliminate double negations
( A = not(Goal1) - _ ->
Goal = Goal1
;
goal_info_init(GoalInfo),
Goal = not(A) - GoalInfo
).
transform_goal_2((A0,B0), _, VarSet0, Subst, Goal, VarSet) :-
get_conj(B0, Subst, [], VarSet0, L0, VarSet1),
get_conj(A0, Subst, L0, VarSet1, L, VarSet),
goal_info_init(GoalInfo),
conj_list_to_goal(L, GoalInfo, Goal).
transform_goal_2((A0;B0), _, VarSet0, Subst, Goal, VarSet) :-
get_disj(B0, Subst, [], VarSet0, L0, VarSet1),
get_disj(A0, Subst, L0, VarSet1, L, VarSet),
goal_info_init(GoalInfo),
disj_list_to_goal(L, GoalInfo, Goal).
transform_goal_2(implies(P, Q), Context, VarSet0, Subst, Goal, VarSet) :-
% `P => Q' is defined as `not (P, not Q)'
TransformedGoal = not( (P, not(Q) - Context) - Context ),
transform_goal_2(TransformedGoal, Context, VarSet0, Subst,
Goal, VarSet).
transform_goal_2(equivalent(P, Q), Context, VarSet0, Subst, Goal, VarSet) :-
% `P <=> Q' is defined as `(P => Q), (Q => P)'
TransformedGoal = (implies(P, Q) - Context, implies(Q, P) - Context),
transform_goal_2(TransformedGoal, Context, VarSet0, Subst,
Goal, VarSet).
transform_goal_2(call(Name, Goals0), Context, VarSet0, Subst, Goal, VarSet) :-
(
Name = qualified(ModuleName, PredName)
;
Name = unqualified(PredName),
ModuleName = ""
),
(
PredName = "\\=",
Goals0 = [LHS,RHS]
->
% `LHS \= RHS' is defined as `not (RHS = RHS)'
transform_goal_2(not(unify(LHS, RHS) - Context), Context,
VarSet0, Subst, Goal, VarSet)
;
% fill unused slots with any old junk
ModeId = 0,
hlds__is_builtin_make_builtin(no, no, Builtin),
term__context_init(Context0),
term__apply_substitution(term__functor(term__atom(PredName),
Goals0, Context0), Subst, Goal1),
( Goal1 = term__functor(term__atom(PredName0), Args0, _) ->
( ModuleName = "" ->
SymName = unqualified(PredName0)
;
SymName = qualified(ModuleName, PredName0)
),
Args = Args0
;
% If the called term is not an atom, then it is
% either a variable, or something stupid like a number.
% In the first case, we want to transform it to a call
% to builtin:call/1, and in the latter case, we
% want to report an error.
% In either case, we transform it to a call to call/1.
% The error in the latter case will be caught by the
% type-checker.
SymName = qualified("mercury_builtin", "call"),
Args = [Goal1]
),
list__length(Args, Arity),
PredCallId = SymName/Arity,
make_fresh_arg_vars(Args, VarSet0, HeadVars, VarSet1),
invalid_pred_id(PredId),
map__init(Follow),
goal_info_init(GoalInfo0),
goal_info_set_context(GoalInfo0, Context, GoalInfo),
Goal2 = call(PredId, ModeId, HeadVars, Builtin, no,
SymName, Follow) -
GoalInfo,
insert_arg_unifications(HeadVars, Args,
Context, call(PredCallId),
Goal2, VarSet1, Goal, VarSet)
).
transform_goal_2(unify(A0, B0), Context, VarSet0, Subst, Goal, VarSet) :-
term__apply_substitution(A0, Subst, A),
term__apply_substitution(B0, Subst, B),
unravel_unification(A, B, Context, explicit, [], VarSet0, Goal, VarSet).
%-----------------------------------------------------------------------------
% `insert_arg_unifications' takes a list of variables,
% a list of terms to unify them with, and a goal, and
% inserts the appropriate unifications onto the front of
% the goal. It calls `unravel_unification' to ensure
% that each unification gets reduced to superhomogeneous form.
% It also gets passed a `arg_context', which indicates
% where the terms came from.
:- type arg_context
---> head % the arguments in the head of the clause
; call(pred_call_id) % the arguments in a call to a predicate
; functor( % the arguments in a functor
cons_id,
unify_main_context,
unify_sub_contexts
).
:- pred insert_arg_unifications(list(var), list(term),
term__context, arg_context,
hlds__goal, varset, hlds__goal, varset).
:- mode insert_arg_unifications(in, in, in, in, in, in, out, out) is det.
insert_arg_unifications(HeadVars, Args, Context, ArgContext, Goal0, VarSet0,
Goal, VarSet) :-
( HeadVars = [] ->
Goal = Goal0,
VarSet = VarSet0
;
Goal0 = _ - GoalInfo,
goal_to_conj_list(Goal0, List0),
insert_arg_unifications_2(HeadVars, Args, Context, ArgContext,
0, List0, VarSet0, List, VarSet),
conj_list_to_goal(List, GoalInfo, Goal)
).
:- pred insert_arg_unifications_2(list(var), list(term),
term__context, arg_context, int,
list(hlds__goal), varset,
list(hlds__goal), varset).
:- mode insert_arg_unifications_2(in, in, in, in, in, in, in, out, out) is det.
:- insert_arg_unifications_2(A, B, _, _, _, _, _, _, _) when A and B.
insert_arg_unifications_2([], [_|_], _, _, _, _, _, _, _) :-
error("insert_arg_unifications_2: length mismatch").
insert_arg_unifications_2([_|_], [], _, _, _, _, _, _, _) :-
error("insert_arg_unifications_2: length mismatch").
insert_arg_unifications_2([], [], _, _, _, List, VarSet, List, VarSet).
insert_arg_unifications_2([Var|Vars], [Arg|Args], Context, ArgContext, N0,
List0, VarSet0, List, VarSet) :-
N1 is N0 + 1,
% skip unifications of the form `X = X'
( Arg = term__variable(Var) ->
insert_arg_unifications_2(Vars, Args, Context, ArgContext, N1,
List0, VarSet0, List, VarSet)
;
arg_context_to_unify_context(ArgContext, N1,
UnifyMainContext, UnifySubContext),
unravel_unification(term__variable(Var), Arg, Context,
UnifyMainContext, UnifySubContext,
VarSet0, Goal, VarSet1),
goal_to_conj_list(Goal, ConjList),
list__append(ConjList, List1, List),
insert_arg_unifications_2(Vars, Args, Context, ArgContext, N1,
List0, VarSet1, List1, VarSet)
).
% append_arg_unifications is the same as insert_arg_unifications,
% except that the unifications are added after the goal rather
% than before the goal.
:- pred append_arg_unifications(list(var), list(term),
term__context, arg_context,
hlds__goal, varset, hlds__goal, varset).
:- mode append_arg_unifications(in, in, in, in, in, in, out, out) is det.
append_arg_unifications(HeadVars, Args, Context, ArgContext, Goal0, VarSet0,
Goal, VarSet) :-
( HeadVars = [] ->
Goal = Goal0,
VarSet = VarSet0
;
Goal0 = _ - GoalInfo,
goal_to_conj_list(Goal0, List0),
append_arg_unifications_2(HeadVars, Args, Context, ArgContext,
0, List0, VarSet0, List, VarSet),
conj_list_to_goal(List, GoalInfo, Goal)
).
:- pred append_arg_unifications_2(list(var), list(term),
term__context, arg_context, int,
list(hlds__goal), varset,
list(hlds__goal), varset).
:- mode append_arg_unifications_2(in, in, in, in, in, in, in, out, out) is det.
:- append_arg_unifications_2(A, B, _, _, _, _, _, _, _) when A and B.
append_arg_unifications_2([], [_|_], _, _, _, _, _, _, _) :-
error("append_arg_unifications_2: length mismatch").
append_arg_unifications_2([_|_], [], _, _, _, _, _, _, _) :-
error("append_arg_unifications_2: length mismatch").
append_arg_unifications_2([], [], _, _, _, List, VarSet, List, VarSet).
append_arg_unifications_2([Var|Vars], [Arg|Args], Context, ArgContext, N0,
List0, VarSet0, List, VarSet) :-
N1 is N0 + 1,
% skip unifications of the form `X = X'
( Arg = term__variable(Var) ->
append_arg_unifications_2(Vars, Args, Context, ArgContext, N1,
List0, VarSet0, List, VarSet)
;
arg_context_to_unify_context(ArgContext, N1,
UnifyMainContext, UnifySubContext),
unravel_unification(term__variable(Var), Arg,
Context, UnifyMainContext, UnifySubContext,
VarSet0, Goal, VarSet1),
goal_to_conj_list(Goal, ConjList),
list__append(List0, ConjList, List1),
append_arg_unifications_2(Vars, Args, Context, ArgContext, N1,
List1, VarSet1, List, VarSet)
).
:- pred arg_context_to_unify_context(arg_context, int,
unify_main_context, unify_sub_contexts).
:- mode arg_context_to_unify_context(in, in, out, out) is det.
arg_context_to_unify_context(head, N, head(N), []).
arg_context_to_unify_context(call(PredId), N, call(PredId, N), []).
arg_context_to_unify_context(functor(ConsId, MainContext, SubContexts), N,
MainContext, [ConsId - N | SubContexts]).
%-----------------------------------------------------------------------------%
% make_fresh_arg_vars(Args, VarSet0, Vars, VarSet):
% `Vars' is a list of distinct variables corresponding to
% the terms in `Args'. For each term in `Args', if
% the term is a variable V which is distinct from the
% variables already produced, then the corresponding
% variable in `Vars' is just V, otherwise a fresh variable
% is allocated from `VarSet0'. `VarSet' is the resulting
% varset after all the necessary variables have been allocated.
%
% For efficiency, the list `Vars' is constructed backwards
% and then reversed to get the correct order.
:- pred make_fresh_arg_vars(list(term), varset, list(var), varset).
:- mode make_fresh_arg_vars(in, in, out, out) is det.
make_fresh_arg_vars(Args, VarSet0, Vars, VarSet) :-
make_fresh_arg_vars_2(Args, [], VarSet0, Vars1, VarSet),
list__reverse(Vars1, Vars).
:- pred make_fresh_arg_vars_2(list(term), list(var), varset,
list(var), varset).
:- mode make_fresh_arg_vars_2(in, in, in, out, out) is det.
make_fresh_arg_vars_2([], Vars, VarSet, Vars, VarSet).
make_fresh_arg_vars_2([Arg | Args], Vars0, VarSet0, Vars, VarSet) :-
( Arg = term__variable(ArgVar), \+ list__member(ArgVar, Vars0) ->
Var = ArgVar,
VarSet1 = VarSet0
;
varset__new_var(VarSet0, Var, VarSet1)
),
make_fresh_arg_vars_2(Args, [Var | Vars0], VarSet1, Vars, VarSet).
%-----------------------------------------------------------------------------%
% `X = Y' needs no unravelling.
unravel_unification(term__variable(X), term__variable(Y), Context, MainContext,
SubContext, VarSet0, Goal, VarSet) :-
create_atomic_unification(X, var(Y), Context, MainContext, SubContext,
Goal),
VarSet0 = VarSet.
% If we find a unification of the form
% X = f(A1, A2, A3)
% we replace it with
% X = f(NewVar1, NewVar2, NewVar3),
% NewVar1 = A1,
% NewVar2 = A2,
% NewVar3 = A3.
% In the trivial case `X = c', no unravelling occurs.
unravel_unification(term__variable(X), term__functor(F, Args, FunctorContext),
Context, MainContext, SubContext, VarSet0,
Goal, VarSet) :-
(
( % handle lambda expressions
F = term__atom("lambda"),
Args = [LambdaExpressionTerm, GoalTerm0],
parse_lambda_expression(LambdaExpressionTerm,
Vars0, Modes0, Det0)
->
Vars1 = Vars0, Modes1 = Modes0, Det1 = Det0,
GoalTerm = GoalTerm0
;
% handle higher-order pred expressions -
% same semantics as lambda expressions, different syntax
% (the original lambda expression syntax is now deprecated)
F = term__atom(":-"),
Args = [PredTerm, GoalTerm0],
parse_pred_expression(PredTerm, Vars0, Modes0, Det0)
->
Vars1 = Vars0, Modes1 = Modes0, Det1 = Det0,
GoalTerm = GoalTerm0
;
parse_pred_expression(term__functor(F, Args, FunctorContext),
Vars1, Modes1, Det1),
GoalTerm = term__functor(term__atom("true"), [], Context)
)
->
Modes = Modes1,
Det = Det1,
make_fresh_arg_vars(Vars1, VarSet0, Vars, VarSet1),
parse_goal(GoalTerm, VarSet1, ParsedGoal, VarSet2),
map__init(Substitution),
transform_goal(ParsedGoal, VarSet2, Substitution,
HLDS_Goal, VarSet),
create_atomic_unification(X,
lambda_goal(Vars, Modes, Det, HLDS_Goal),
Context, MainContext, SubContext, Goal)
; Args = [] ->
create_atomic_unification(X, functor(F, []),
Context, MainContext, SubContext, Goal),
VarSet = VarSet0
;
make_fresh_arg_vars(Args, VarSet0, HeadVars, VarSet1),
create_atomic_unification(X,
functor(F, HeadVars),
Context, MainContext, SubContext, Goal0),
list__length(Args, Arity),
make_functor_cons_id(F, Arity, ConsId),
ArgContext = functor(ConsId, MainContext, SubContext),
append_arg_unifications(HeadVars, Args,
FunctorContext, ArgContext,
Goal0, VarSet1, Goal, VarSet)
).
% Handle `f(...) = X' in the same way as `X = f(...)'.
unravel_unification(term__functor(F, As, FC), term__variable(Y),
C, MC, SC, VarSet0, Goal, VarSet) :-
unravel_unification(term__variable(Y), term__functor(F, As, FC),
C, MC, SC, VarSet0, Goal, VarSet).
% If we find a unification of the form `f1(...) = f2(...)',
% then we replace it with `Tmp = f1(...), Tmp = f2(...)',
% and then process it according to the rule above.
% Note that we can't simplify it yet, because we might simplify
% away type errors.
unravel_unification(term__functor(LeftF, LeftAs, LeftC),
term__functor(RightF, RightAs, RightC),
Context, MainContext, SubContext, VarSet0,
Goal, VarSet) :-
varset__new_var(VarSet0, TmpVar, VarSet1),
unravel_unification(
term__variable(TmpVar), term__functor(LeftF, LeftAs, LeftC),
Context, MainContext, SubContext, VarSet1, Goal0, VarSet2),
unravel_unification(
term__variable(TmpVar), term__functor(RightF, RightAs, RightC),
Context, MainContext, SubContext, VarSet2, Goal1, VarSet),
goal_info_init(GoalInfo),
goal_to_conj_list(Goal0, ConjList0),
goal_to_conj_list(Goal1, ConjList1),
list__append(ConjList0, ConjList1, ConjList),
conj_list_to_goal(ConjList, GoalInfo, Goal).
% create the hlds__goal for a unification which cannot be
% further simplified, filling in all the as yet
% unknown slots with dummy values
create_atomic_unification(A, B, Context, UnifyMainContext, UnifySubContext,
Goal) :-
UMode = ((free - free) -> (free - free)),
Mode = ((free -> free) - (free -> free)),
map__init(Follow),
UnifyInfo = complicated_unify(UMode, can_fail, Follow),
UnifyC = unify_context(UnifyMainContext, UnifySubContext),
goal_info_init(GoalInfo0),
goal_info_set_context(GoalInfo0, Context, GoalInfo),
Goal = unify(A, B, Mode, UnifyInfo, UnifyC) - GoalInfo.
%-----------------------------------------------------------------------------%
% substitute_vars(Vars0, Subst, Vars)
% apply substitiution `Subst' (which must only rename vars) to `Vars0',
% and return the result in `Vars'.
:- pred substitute_vars(list(var), substitution, list(var)).
:- mode substitute_vars(in, in, out) is det.
substitute_vars([], _, []).
substitute_vars([Var0 | Vars0], Subst, [Var | Vars]) :-
term__apply_substitution(term__variable(Var0), Subst, Term),
( Term = term__variable(Var1) ->
Var = Var1
;
error("substitute_vars: invalid substitution")
),
substitute_vars(Vars0, Subst, Vars).
%-----------------------------------------------------------------------------%
% get_conj(Goal, Conj0, Subst, Conj) :
% Goal is a tree of conjuncts. Flatten it into a list (applying Subst),
% append Conj0, and return the result in Conj.
:- pred get_conj(goal, substitution, list(hlds__goal), varset,
list(hlds__goal), varset).
:- mode get_conj(in, in, in, in, out, out) is det.
get_conj(Goal, Subst, Conj0, VarSet0, Conj, VarSet) :-
(
Goal = (A,B) - _Context
->
get_conj(B, Subst, Conj0, VarSet0, Conj1, VarSet1),
get_conj(A, Subst, Conj1, VarSet1, Conj, VarSet)
;
transform_goal(Goal, VarSet0, Subst, Goal1, VarSet),
goal_to_conj_list(Goal1, ConjList),
list__append(ConjList, Conj0, Conj)
).
% get_disj(Goal, Subst, Disj0, Disj) :
% Goal is a tree of disjuncts. Flatten it into a list (applying Subst)
% append Disj0, and return the result in Disj.
:- pred get_disj(goal, substitution, list(hlds__goal), varset,
list(hlds__goal), varset).
:- mode get_disj(in, in, in, in, out, out) is det.
get_disj(Goal, Subst, Disj0, VarSet0, Disj, VarSet) :-
(
Goal = (A;B) - _Context
->
get_disj(B, Subst, Disj0, VarSet0, Disj1, VarSet1),
get_disj(A, Subst, Disj1, VarSet1, Disj, VarSet)
;
transform_goal(Goal, VarSet0, Subst, Goal1, VarSet),
Disj = [Goal1 | Disj0]
).
%-----------------------------------------------------------------------------%
% Predicates to write out the different warning and error messages.
:- pred multiple_def_error(sym_name, int, string, term__context, term__context,
io__state, io__state).
:- mode multiple_def_error(in, in, in, in, in, di, uo) is det.
multiple_def_error(Name, Arity, DefType, Context, OrigContext) -->
io__set_exit_status(1),
prog_out__write_context(Context),
io__write_string("Error: "),
io__write_string(DefType),
io__write_string(" `"),
prog_out__write_sym_name(Name),
io__write_string("/"),
io__write_int(Arity),
io__write_string("' multiply defined.\n"),
prog_out__write_context(OrigContext),
io__write_string(
" Here is the previous definition of "),
io__write_string(DefType),
io__write_string(" `"),
prog_out__write_sym_name(Name),
io__write_string("/"),
io__write_int(Arity),
io__write_string("'.\n").
:- pred undefined_pred_error(sym_name, int, pred_or_func, term__context,
string, io__state, io__state).
:- mode undefined_pred_error(in, in, in, in, in, di, uo) is det.
undefined_pred_error(Name, Arity, PredOrFunc, Context, Description) -->
io__set_exit_status(1),
prog_out__write_context(Context),
io__write_string("Error: "),
io__write_string(Description),
io__write_string(" for "),
hlds_out__write_call_id(PredOrFunc, Name/Arity),
io__write_string(" without preceding `"),
( { PredOrFunc = predicate },
io__write_string("pred")
; { PredOrFunc = function },
io__write_string("func")
), !,
io__write_string("' declaration\n").
:- pred unspecified_det_warning(sym_name, arity, pred_or_func, term__context,
io__state, io__state).
:- mode unspecified_det_warning(in, in, in, in, di, uo) is det.
unspecified_det_warning(Name, Arity, PredOrFunc, Context) -->
prog_out__write_context(Context),
report_warning("Warning: no determinism declaration for local\n"),
prog_out__write_context(Context),
io__write_string(" "),
hlds_out__write_call_id(PredOrFunc, Name/Arity),
io__write_string(".\n"),
globals__io_lookup_bool_option(verbose_errors, VerboseErrors),
( { VerboseErrors = yes } ->
prog_out__write_context(Context),
io__write_string(" (The determinism of this predicate or function will be\n"),
prog_out__write_context(Context),
io__write_string(" automatically inferred by the compiler. To suppress this\n"),
prog_out__write_context(Context),
io__write_string(" warning, use the `--no-warn-missing-det-decls' option.)\n")
;
[]
).
:- pred unspecified_det_error(sym_name, arity, pred_or_func, term__context,
io__state, io__state).
:- mode unspecified_det_error(in, in, in, in, di, uo) is det.
unspecified_det_error(Name, Arity, PredOrFunc, Context) -->
io__set_exit_status(1),
prog_out__write_context(Context),
io__write_string("Error: no determinism declaration for exported\n"),
prog_out__write_context(Context),
io__write_string(" "),
hlds_out__write_call_id(PredOrFunc, Name/Arity),
io__write_string(".\n").
:- pred clause_for_imported_pred_error(sym_name, arity, pred_or_func,
term__context, io__state, io__state).
:- mode clause_for_imported_pred_error(in, in, in, in, di, uo) is det.
clause_for_imported_pred_error(Name, Arity, PredOrFunc, Context) -->
io__set_exit_status(1),
prog_out__write_context(Context),
io__write_string("Error: clause for imported "),
hlds_out__write_call_id(PredOrFunc, Name/Arity),
io__write_string(".\n").
:- pred unqualified_pred_error(sym_name, int, term__context,
io__state, io__state).
:- mode unqualified_pred_error(in, in, in, di, uo) is det.
unqualified_pred_error(PredName, Arity, Context) -->
io__set_exit_status(1),
prog_out__write_context(Context),
io__write_string("Internal error: an unqualified predicate name `"),
prog_out__write_sym_name(PredName),
io__write_string("/"),
io__write_int(Arity),
io__write_string("'.\n"),
prog_out__write_context(Context),
io__write_string(" should have been qualified by prog_io.m.\n").
%-----------------------------------------------------------------------------%