Files
mercury/compiler/opt_util.m
Simon Taylor 18430aaef1 Aditi compilation.
Estimated hours taken: 1200

Aditi compilation.

compiler/options.m:
	The documentation for these is commented out because the Aditi
	system is not currently useful to the general public.
	--aditi: enable Aditi compilation.
	--dump-rl: write the intermediate RL to `<module>.rl_dump'.
	--dump-rl-bytecode: write a text version of the bytecodes
		to `<module>.rla'
	--aditi-only: don't produce a `.c' file.
	--filenames-from-stdin: accept a list of filenames to compile
		from stdin. This is used by the query shell.
	--optimize-rl, --optimize-rl-cse, --optimize-rl-invariants,
	--optimize-rl-index, --detect-rl-streams:
		Options to control RL optimization passes.
	--aditi-user:
		Default owner of any Aditi procedures,
		defaults to $USER or "guest".
	--generate-schemas:
		write schemas for base relations to `<module>'.base_schema
		and schemas for derived relations to `<module>'.derived_schema.
		This is used by the query shell.

compiler/handle_options.m:
	Handle the default for --aditi-user.

compiler/hlds_pred.m:
compiler/prog_data.m:
compiler/prog_io_pragma.m:
compiler/make_hlds.m:
	Add some Aditi pragma declarations - `aditi', `supp_magic', `context',
	`naive', `psn' (predicate semi-naive), `aditi_memo', `aditi_no_memo',
	`base_relation', `owner' and `index'.
	Separate out code to parse a predicate name and arity.

compiler/hlds_pred.m:
	Add predicates to identify Aditi procedures.
	Added markers `generate_inline' and `aditi_interface', which
	are used internally for Aditi code generation.
	Add an `owner' field to pred_infos, which is used for database
	security checks.
	Add a field to pred_infos to hold the list of indexes for a base
	relation.

compiler/make_hlds.m:
	Some pragmas must be exported if the corresponding predicates
	are exported, check this.
	Make sure stratification of Aditi procedures is checked.
	Predicates with a mode declaration but no type declaration
	are no longer assumed to be local.
	Set the `do_aditi_compilation' field of the module_info if there
	are any local Aditi procedures or base relations.
	Check that `--aditi' is set if Aditi compilation is required.

compiler/post_typecheck.m:
	Check that every Aditi predicate has an `aditi__state' argument,
	which is used to ensure sequencing of updates and that Aditi
	procedures are only called within transactions.

compiler/dnf.m:
	Changed the definition of disjunctive normal form slightly
	so that a call followed by some atomic goals not including
	any database calls is considered atomic. magic.m can handle
	this kind of goal, and it results in more efficient RL code.

compiler/hlds_module.m:
compiler/dependency_graph.m:
	Added dependency_graph__get_scc_entry_points which finds
	the procedures in an SCC which could be called from outside.
	Added a new field to the dependency_info, the
	aditi_dependency_ordering. This contains all Aditi SCCs of
	the original program, with multiple SCCs merged where
	possible to improve the effectiveness of differential evaluation
	and the low level RL optimizations.

compiler/hlds_module.m:
	Add a field to record whether there are any local Aditi procedures
	in the current module.
	Added versions of module_info_pred_proc_info and
	module_info_set_pred_proc_info which take a pred_proc_id,
	not a separate pred_id and proc_id.

compiler/polymorphism.m:
compiler/lambda.m:
	Make sure that predicates created for closures in Aditi procedures
	have the correct markers.

compiler/goal_util.m:
	Added goal_util__switch_to_disjunction,
	goal_util__case_to_disjunct (factored out from simplify.m)
	and goal_util__if_then_else_to_disjunction. These are
	require because supplementary magic sets can't handle
	if-then-elses or switches.

compiler/type_util.m:
	Added type_is_aditi_state/1.

compiler/mode_util.m:
	Added partition_args/5 which partitions a list of arguments
	into inputs and others.

compiler/inlining.m:
	Don't inline memoed procedures.
	Don't inline Aditi procedures into non-Aditi procedures.

compiler/intermod.m:
	Handle Aditi markers.
	Clean up handling of markers which should not appear in `.opt' files.

compiler/simplify.m:
	Export a slightly different interface for use by magic.m.
	Remove explicit quantifications where possible.
	Merge multiple nested quantifications.
	Don't report infinite recursion warnings for Aditi procedures.

compiler/prog_out.m:
	Generalised the code to output a module list to write any list.

compiler/code_gen.m:
compiler/arg_info.m:
	Don't process Aditi procedures.

compiler/mercury_compile.m:
	Call magic.m and rl_gen.m.
	Don't perform the low-level annotation passes on Aditi procedures.
	Remove calls to constraint.m - sometime soon a rewritten version
	will be called directly from deforestation.

compiler/passes_aux.m:
	Add predicates to process only non-Aditi procedures.

compiler/llds.m:
compiler/llds_out.m:
	Added new `code_addr' enum members, do_{det,semidet,nondet}_aditi_call,
	which are defined in extras/aditi/aditi.m.

compiler/call_gen.m:
	Handle generation of do_*_aditi_call.

compiler/llds_out.m:
	Write the RL code for the module as a constant char array
	in the `.c' file.

compiler/term_errors.m:
compiler/error_util.m:
	Move code to describe predicates into error_util.m
	Allow the caller to explicitly add line breaks.
	Added error_util:list_to_pieces to format a list of
	strings.
	Reordered some arguments for currying.

compiler/hlds_out.m:
	Don't try to print clauses if there are none.

runtime/mercury_init.h:
util/mkinit.c:
scripts/c2init.in:
	Added a function `mercury__load_aditi_rl_code()' to the generated
	`<module>_init.c' file which throws all the RL code for the program
	at the database. This should be called at connection time by
	`aditi__connect'.
	Added an option `--aditi' which controls the output
	`mercury__load_aditi_rl_code()'.

compiler/notes/compiler_design.html:
	Document the new files.

Mmakefile:
bindist/Mmakefile:
	Don't distribute extras/aditi yet.

New files:

compiler/magic.m:
compiler/magic_util.m:
	Supplementary magic sets transformation. Report errors
	for constructs that Aditi can't handle.

compiler/context.m:
	Supplementary context transformation.

compiler/rl_gen.m:
compiler/rl_relops.m:
	Aditi code generation.

compiler/rl_info.m:
	Code generator state.

compiler/rl.m:
	Intermediate RL representation.

compiler/rl_util:
	Predicates to collect information about RL instructions.

compiler/rl_dump.m:
	Print out the representation in rl.m.

compiler/rl_opt.m:
	Control low-level RL optimizations.

compiler/rl_block.m:
	Break a procedure into basic blocks.

compiler/rl_analyse.m:
	Generic dataflow analysis for RL procedures.

compiler/rl_liveness.m:
	Make sure all relations are initialised before used, clear
	references to relations that are no longer required.

compiler/rl_loop.m:
	Loop invariant removal.

compiler/rl_block_opt.m:
	CSE and instruction merging on basic blocks.

compiler/rl_key.m:
	Detect upper/lower bounds for which a goal could succeed.

compiler/rl_sort.m:
	Use indexing for joins and projections.
	Optimize away unnecessary sorting and indexing.

compiler/rl_stream.m:
	Detect relations which don't need to be materialised.

compiler/rl_code.m:
	RL bytecode definitions. Automatically generated from the Aditi
	header files.

compiler/rl_out.m:
compiler/rl_file.m:
	Output the RL bytecodes in binary to <module>.rlo (for use by Aditi)
	and in text to <module>.rla (for use by the RL interpreter).
	Also output the schema information if --generate-schemas is set.

compiler/rl_exprn.m:
	Generate bytecodes for join conditions.

extras/aditi/Mmakefile:
extras/aditi/aditi.m:
	Definitions of some Aditi library predicates and the
	interfacing and transaction processing code.
1998-12-06 23:49:14 +00:00

1624 lines
58 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% Utilities for LLDS to LLDS peephole optimization.
% Main author: zs.
%-----------------------------------------------------------------------------%
:- module opt_util.
:- interface.
:- import_module bool, map, list, std_util.
:- import_module llds.
:- type instrmap == map(label, instruction).
:- type lvalmap == map(label, maybe(instruction)).
:- type tailmap == map(label, list(instruction)).
:- type succmap == map(label, bool).
:- pred opt_util__get_prologue(list(instruction), proc_label, instruction,
list(instruction), list(instruction)).
:- mode opt_util__get_prologue(in, out, out, out, out) is det.
:- pred opt_util__gather_comments(list(instruction),
list(instruction), list(instruction)).
:- mode opt_util__gather_comments(in, out, out) is det.
:- pred opt_util__gather_comments_livevals(list(instruction),
list(instruction), list(instruction)).
:- mode opt_util__gather_comments_livevals(in, out, out) is det.
:- pred opt_util__skip_comments(list(instruction), list(instruction)).
% :- mode opt_util__skip_comments(di, uo) is det.
:- mode opt_util__skip_comments(in, out) is det.
:- pred opt_util__skip_comments_livevals(list(instruction), list(instruction)).
:- mode opt_util__skip_comments_livevals(in, out) is det.
:- pred opt_util__skip_comments_labels(list(instruction), list(instruction)).
:- mode opt_util__skip_comments_labels(in, out) is det.
:- pred opt_util__skip_comments_livevals_labels(list(instruction),
list(instruction)).
:- mode opt_util__skip_comments_livevals_labels(in, out) is det.
% Find the next assignment to the redoip of the frame whose address
% is given by the base addresses in the second argument, provided
% it is guaranteed to be reached from here.
:- pred opt_util__next_assign_to_redoip(list(instruction), list(lval),
list(instruction), code_addr, list(instruction), list(instruction)).
:- mode opt_util__next_assign_to_redoip(in, in, in, out, out, out) is semidet.
% See if these instructions touch nondet stack controls, i.e.
% the virtual machine registers that point to the nondet stack
% (curfr and maxfr) and the fixed slots in nondet stack frames.
:- pred opt_util__touches_nondet_ctrl(list(instruction), bool).
:- mode opt_util__touches_nondet_ctrl(in, out) is det.
% Find the instructions up to and including
% the next one that cannot fall through
:- pred opt_util__find_no_fallthrough(list(instruction), list(instruction)).
:- mode opt_util__find_no_fallthrough(in, out) is det.
% Find the first label in the instruction stream.
:- pred opt_util__find_first_label(list(instruction), label).
:- mode opt_util__find_first_label(in, out) is det.
% Skip to the next label, returning the code before the label,
% and the label together with the code after the label.
:- pred opt_util__skip_to_next_label(list(instruction),
list(instruction), list(instruction)).
% :- mode opt_util__skip_to_next_label(di, uo, uo) is det.
:- mode opt_util__skip_to_next_label(in, out, out) is det.
% Check whether the named label follows without any intervening code.
% If yes, return the instructions after the label.
:- pred opt_util__is_this_label_next(label, list(instruction),
list(instruction)).
:- mode opt_util__is_this_label_next(in, in, out) is semidet.
% Is a proceed instruction (i.e. a goto(succip) instruction)
% next in the instruction list, possibly preceded by a restoration
% of succip and a det stack frame removal? If yes, return the
% instructions up to the proceed.
:- pred opt_util__is_proceed_next(list(instruction), list(instruction)).
:- mode opt_util__is_proceed_next(in, out) is semidet.
% Is a proceed instruction (i.e. a goto(succip) instruction)
% next in the instruction list, possibly preceded by an assignment
% to r1, a restoration of succip and a det stack frame removal?
% If yes, return the instructions up to the proceed.
:- pred opt_util__is_sdproceed_next(list(instruction), list(instruction)).
:- mode opt_util__is_sdproceed_next(in, out) is semidet.
% Same as the previous predicate, but also return whether it is
% a success or a fail.
:- pred opt_util__is_sdproceed_next_sf(list(instruction), list(instruction),
bool).
:- mode opt_util__is_sdproceed_next_sf(in, out, out) is semidet.
% Is a succeed instruction (i.e. a goto(do_succeed(_)) instruction)
% next in the instruction list? If yes, return the instructions
% up to and including the succeed.
:- pred opt_util__is_succeed_next(list(instruction), list(instruction)).
:- mode opt_util__is_succeed_next(in, out) is semidet.
% Is the following code a test of r1, followed in both continuations
% by a semidet proceed? Is the code in both continuations the same,
% modulo livevals annotations and the value assigned to r1? Is TRUE
% assigned to r1 in the success continuation and FALSE in the failure
% continuation? If the answer is yes to all these questions, return
% the code shared by the two continuations.
:- pred opt_util__is_forkproceed_next(list(instruction), tailmap,
list(instruction)).
:- mode opt_util__is_forkproceed_next(in, in, out) is semidet.
% Remove the assignment to r1 from the list returned by
% opt_util__is_sdproceed_next.
:- pred opt_util__filter_out_r1(list(instruction), maybe(rval_const),
list(instruction)).
:- mode opt_util__filter_out_r1(in, out, out) is det.
% Does the following code consist of straighline instructions
% that do not modify nondet frame linkages, plus possibly
% if_val(..., dofail), and then a succeed?
% If yes, then return all the instructions up to the succeed,
% and all the following instructions.
:- pred opt_util__straight_alternative(list(instruction), list(instruction),
list(instruction)).
:- mode opt_util__straight_alternative(in, out, out) is semidet.
% Find and return the initial sequence of instructions that do not
% refer to stackvars and do not branch.
:- pred opt_util__no_stack_straight_line(list(instruction),
list(instruction), list(instruction)).
:- mode opt_util__no_stack_straight_line(in, out, out) is det.
% Remove the labels from a block of code for jumpopt.
:- pred opt_util__filter_out_labels(list(instruction), list(instruction)).
:- mode opt_util__filter_out_labels(in, out) is det.
% Remove any livevals instructions that do not precede an instruction
% that needs one.
:- pred opt_util__filter_out_bad_livevals(list(instruction), list(instruction)).
:- mode opt_util__filter_out_bad_livevals(in, out) is det.
% Remove the livevals instruction from the list returned by
% opt_util__is_proceed_next.
:- pred opt_util__filter_out_livevals(list(instruction), list(instruction)).
:- mode opt_util__filter_out_livevals(in, out) is det.
% Get just the livevals instructions from a list of instructions.
:- pred opt_util__filter_in_livevals(list(instruction), list(instruction)).
:- mode opt_util__filter_in_livevals(in, out) is det.
% See if the condition of an if-then-else is constant,
% and if yes, whether the branch will be taken or not.
:- pred opt_util__is_const_condition(rval, bool).
:- mode opt_util__is_const_condition(in, out) is semidet.
% Check whether an instruction can possibly branch away.
:- pred opt_util__can_instr_branch_away(instr, bool).
:- mode opt_util__can_instr_branch_away(in, out) is det.
% Check whether an instruction can possibly fall through
% to the next instruction without using its label.
:- pred opt_util__can_instr_fall_through(instr, bool).
:- mode opt_util__can_instr_fall_through(in, out) is det.
% Check whether a code_addr, when the target of a goto, represents
% either a call or a proceed/succeed; if so, it is the end of an
% extended basic block and needs a livevals in front of it.
:- pred opt_util__livevals_addr(code_addr, bool).
:- mode opt_util__livevals_addr(in, out) is det.
% Determine all the labels and code addresses which are referenced
% by an instruction. The code addresses that are labels are returned
% in both output arguments.
:- pred opt_util__instr_labels(instr, list(label), list(code_addr)).
:- mode opt_util__instr_labels(in, out, out) is det.
% Determine all the labels and code addresses which are referenced
% by a list of instructions.
:- pred opt_util__instr_list_labels(list(instruction),
list(label), list(code_addr)).
:- mode opt_util__instr_list_labels(in, out, out) is det.
% Find a label number that does not occur in the instruction list,
% starting the search at a given number.
:- pred opt_util__new_label_no(list(instruction), int, int).
:- mode opt_util__new_label_no(in, in, out) is det.
% Find the maximum temp variable number used.
:- pred opt_util__count_temps_instr_list(list(instruction), int, int, int, int).
:- mode opt_util__count_temps_instr_list(in, in, out, in, out) is det.
:- pred opt_util__count_temps_instr(instr, int, int, int, int).
:- mode opt_util__count_temps_instr(in, in, out, in, out) is det.
% See whether an lval references any stackvars.
:- pred opt_util__lval_refers_stackvars(lval, bool).
:- mode opt_util__lval_refers_stackvars(in, out) is det.
% See whether an rval references any stackvars.
:- pred opt_util__rval_refers_stackvars(rval, bool).
:- mode opt_util__rval_refers_stackvars(in, out) is det.
% See whether a list of maybe rvals references any stackvars.
:- pred opt_util__rvals_refer_stackvars(list(maybe(rval)), bool).
:- mode opt_util__rvals_refer_stackvars(in, out) is det.
% See whether instructions until the next decr_sp (if any) refer to
% any stackvars or branch away. If not, return the instructions up to
% the decr_sp. A restoration of succip from the bottom stack slot
% is allowed; this instruction is not returned in the output.
% The same thing applies to assignments to detstackvars; these are
% not useful if we throw away the stack frame.
:- pred opt_util__no_stackvars_til_decr_sp(list(instruction), int,
list(instruction), list(instruction)).
% :- mode opt_util__no_stackvars_til_decr_sp(di, in, uo, uo) is semidet.
:- mode opt_util__no_stackvars_til_decr_sp(in, in, out, out) is semidet.
% See whether a list of instructions references any stackvars.
:- pred opt_util__block_refers_stackvars(list(instruction), bool).
:- mode opt_util__block_refers_stackvars(in, out) is det.
% Format a label for verbose messages during compilation
:- pred opt_util__format_label(label, string).
:- mode opt_util__format_label(in, out) is det.
% Find out if an instruction sequence has both incr_sp and decr_sp.
:- pred opt_util__has_both_incr_decr_sp(list(instruction)).
:- mode opt_util__has_both_incr_decr_sp(in) is semidet.
% Find out what rvals, if any, are needed to access an lval.
:- pred opt_util__lval_access_rvals(lval, list(rval)).
:- mode opt_util__lval_access_rvals(in, out) is det.
% See whether an rval is free of references to a given lval.
:- pred opt_util__rval_free_of_lval(rval, lval).
:- mode opt_util__rval_free_of_lval(in, in) is semidet.
% See whether a list of rvals is free of references to a given lval.
:- pred opt_util__rvals_free_of_lval(list(rval), lval).
:- mode opt_util__rvals_free_of_lval(in, in) is semidet.
% Count the number of hp increments in a block of code.
:- pred opt_util__count_incr_hp(list(instruction), int).
:- mode opt_util__count_incr_hp(in, out) is det.
% Whenever the input list of instructions contains two livevals
% pseudo-ops without an intervening no-fall-through instruction,
% ensure that the first of these registers as live every lval
% that is live in the second, except those that are assigned to
% by intervening instructions. This makes the shadowing of the
% second livevals by the first benign.
:- pred opt_util__propagate_livevals(list(instruction), list(instruction)).
:- mode opt_util__propagate_livevals(in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module exprn_aux, llds_out, hlds_pred.
:- import_module int, string, set, require.
opt_util__get_prologue(Instrs0, ProcLabel, LabelInstr, Comments, Instrs) :-
opt_util__gather_comments(Instrs0, Comments1, Instrs1),
(
Instrs1 = [Instr1 | Instrs2],
Instr1 = label(FirstLabel) - _
->
LabelInstr = Instr1,
( FirstLabel = exported(ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
; FirstLabel = local(ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
error("procedure begins with bad label type")
),
opt_util__gather_comments(Instrs2, Comments2, Instrs),
list__append(Comments1, Comments2, Comments)
;
error("procedure does not begin with label")
).
opt_util__gather_comments(Instrs0, Comments, Instrs) :-
(
Instrs0 = [Instr0 | Instrs1],
Instr0 = comment(_) - _
->
opt_util__gather_comments(Instrs1, Comments0, Instrs),
Comments = [Instr0 | Comments0]
;
Instrs = Instrs0,
Comments = []
).
opt_util__gather_comments_livevals(Instrs0, Comments, Instrs) :-
(
Instrs0 = [Instr0 | Instrs1],
( Instr0 = comment(_) - _ ; Instr0 = livevals(_) - _ )
->
opt_util__gather_comments_livevals(Instrs1, Comments0, Instrs),
Comments = [Instr0 | Comments0]
;
Instrs = Instrs0,
Comments = []
).
% Given a list of instructions, skip past any comment instructions
% at the start and return the remaining instructions.
% We do this because comment instructions get in the way of
% peephole optimization.
opt_util__skip_comments(Instrs0, Instrs) :-
( Instrs0 = [comment(_) - _ | Instrs1] ->
opt_util__skip_comments(Instrs1, Instrs)
;
Instrs = Instrs0
).
opt_util__skip_comments_livevals(Instrs0, Instrs) :-
( Instrs0 = [comment(_) - _ | Instrs1] ->
opt_util__skip_comments(Instrs1, Instrs)
; Instrs0 = [livevals(_) - _ | Instrs1] ->
opt_util__skip_comments_livevals(Instrs1, Instrs)
;
Instrs = Instrs0
).
opt_util__skip_comments_labels(Instrs0, Instrs) :-
( Instrs0 = [comment(_) - _ | Instrs1] ->
opt_util__skip_comments_labels(Instrs1, Instrs)
; Instrs0 = [label(_) - _ | Instrs1] ->
opt_util__skip_comments_labels(Instrs1, Instrs)
;
Instrs = Instrs0
).
opt_util__skip_comments_livevals_labels(Instrs0, Instrs) :-
( Instrs0 = [comment(_) - _ | Instrs1] ->
opt_util__skip_comments_livevals_labels(Instrs1, Instrs)
; Instrs0 = [livevals(_) - _ | Instrs1] ->
opt_util__skip_comments_livevals_labels(Instrs1, Instrs)
; Instrs0 = [label(_) - _ | Instrs1] ->
opt_util__skip_comments_livevals_labels(Instrs1, Instrs)
;
Instrs = Instrs0
).
opt_util__next_assign_to_redoip([Instr | Instrs], AllowedBases,
RevSkip, Redoip, Skip, Rest) :-
Instr = Uinstr - _Comment,
(
Uinstr = assign(redoip(lval(Fr)),
const(code_addr_const(Redoip0))),
list__member(Fr, AllowedBases)
->
Redoip = Redoip0,
list__reverse(RevSkip, Skip),
Rest = Instrs
;
Uinstr = mkframe(_, _)
->
fail
;
opt_util__can_instr_branch_away(Uinstr, Canbranchaway),
( Canbranchaway = no ->
opt_util__next_assign_to_redoip(Instrs, AllowedBases,
[Instr | RevSkip], Redoip, Skip, Rest)
;
fail
)
).
opt_util__find_no_fallthrough([], []).
opt_util__find_no_fallthrough([Instr0 | Instrs0], Instrs) :-
(
Instr0 = Uinstr0 - _,
opt_util__can_instr_fall_through(Uinstr0, no)
->
Instrs = [Instr0]
;
opt_util__find_no_fallthrough(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
opt_util__find_first_label([], _) :-
error("cannot find first label").
opt_util__find_first_label([Instr0 | Instrs0], Label) :-
( Instr0 = label(LabelPrime) - _ ->
Label = LabelPrime
;
opt_util__find_first_label(Instrs0, Label)
).
opt_util__skip_to_next_label([], [], []).
opt_util__skip_to_next_label([Instr0 | Instrs0], Before, Remain) :-
( Instr0 = label(_) - _ ->
Before = [],
Remain = [Instr0 | Instrs0]
;
opt_util__skip_to_next_label(Instrs0, Before1, Remain),
Before = [Instr0 | Before1]
).
opt_util__is_this_label_next(Label, [Instr | Moreinstr], Remainder) :-
Instr = Uinstr - _Comment,
( Uinstr = comment(_) ->
opt_util__is_this_label_next(Label, Moreinstr, Remainder)
; Uinstr = livevals(_) ->
% this is questionable
opt_util__is_this_label_next(Label, Moreinstr, Remainder)
; Uinstr = label(NextLabel) ->
( Label = NextLabel ->
Remainder = Moreinstr
;
opt_util__is_this_label_next(Label, Moreinstr,
Remainder)
)
;
fail
).
opt_util__is_proceed_next(Instrs0, InstrsBetween) :-
opt_util__skip_comments_labels(Instrs0, Instrs1),
Instrs1 = [Instr1 | Instrs2],
( Instr1 = assign(succip, lval(stackvar(_))) - _ ->
Instr1use = Instr1,
opt_util__skip_comments_labels(Instrs2, Instrs3)
;
Instr1use = comment("no succip restoration") - "",
Instrs3 = Instrs1
),
Instrs3 = [Instr3 | Instrs4],
( Instr3 = decr_sp(_) - _ ->
Instr3use = Instr3,
opt_util__skip_comments_labels(Instrs4, Instrs5)
;
Instr3use = comment("no sp restoration") - "",
Instrs5 = Instrs3
),
Instrs5 = [Instr5 | Instrs6],
Instr5 = livevals(_) - _,
opt_util__skip_comments_labels(Instrs6, Instrs7),
Instrs7 = [Instr7 | _],
Instr7 = goto(succip) - _,
InstrsBetween = [Instr1use, Instr3use, Instr5].
opt_util__is_sdproceed_next(Instrs0, InstrsBetween) :-
opt_util__is_sdproceed_next_sf(Instrs0, InstrsBetween, _).
opt_util__is_sdproceed_next_sf(Instrs0, InstrsBetween, Success) :-
opt_util__skip_comments_labels(Instrs0, Instrs1),
Instrs1 = [Instr1 | Instrs2],
( Instr1 = assign(succip, lval(stackvar(_))) - _ ->
Instr1use = Instr1,
opt_util__skip_comments_labels(Instrs2, Instrs3)
;
Instr1use = comment("no succip restoration") - "",
Instrs3 = Instrs1
),
Instrs3 = [Instr3 | Instrs4],
( Instr3 = decr_sp(_) - _ ->
Instr3use = Instr3,
opt_util__skip_comments_labels(Instrs4, Instrs5)
;
Instr3use = comment("no sp restoration") - "",
Instrs5 = Instrs3
),
Instrs5 = [Instr5 | Instrs6],
Instr5 = assign(reg(r, 1), const(R1val)) - _,
(
R1val = true,
Success = yes
;
R1val = false,
Success = no
),
opt_util__skip_comments_labels(Instrs6, Instrs7),
Instrs7 = [Instr7 | Instrs8],
Instr7 = livevals(_) - _,
opt_util__skip_comments_labels(Instrs8, Instrs9),
Instrs9 = [Instr9 | _],
Instr9 = goto(succip) - _,
InstrsBetween = [Instr1use, Instr3use, Instr5, Instr7].
opt_util__is_succeed_next(Instrs0, InstrsBetweenIncl) :-
opt_util__skip_comments_labels(Instrs0, Instrs1),
Instrs1 = [Instr1 | Instrs2],
Instr1 = livevals(_) - _,
opt_util__skip_comments_labels(Instrs2, Instrs3),
Instrs3 = [Instr3 | _],
Instr3 = goto(do_succeed(_)) - _,
InstrsBetweenIncl = [Instr1, Instr3].
opt_util__is_forkproceed_next(Instrs0, Sdprocmap, Between) :-
opt_util__skip_comments_labels(Instrs0, Instrs1),
Instrs1 = [Instr1 | Instrs2],
( Instr1 = if_val(lval(reg(r, 1)), label(JumpLabel)) - _ ->
map__search(Sdprocmap, JumpLabel, BetweenJump),
opt_util__is_sdproceed_next(Instrs2, BetweenFall),
opt_util__filter_out_r1(BetweenJump, yes(true), BetweenTrue0),
opt_util__filter_out_livevals(BetweenTrue0, Between),
opt_util__filter_out_r1(BetweenFall, yes(false), BetweenFalse0),
opt_util__filter_out_livevals(BetweenFalse0, Between)
; Instr1 = if_val(unop(not, lval(reg(r, 1))), label(JumpLabel)) - _ ->
map__search(Sdprocmap, JumpLabel, BetweenJump),
opt_util__is_sdproceed_next(Instrs2, BetweenFall),
opt_util__filter_out_r1(BetweenJump, yes(false), BetweenFalse0),
opt_util__filter_out_livevals(BetweenFalse0, Between),
opt_util__filter_out_r1(BetweenFall, yes(true), BetweenTrue0),
opt_util__filter_out_livevals(BetweenTrue0, Between)
;
fail
).
opt_util__filter_out_r1([], no, []).
opt_util__filter_out_r1([Instr0 | Instrs0], Success, Instrs) :-
opt_util__filter_out_r1(Instrs0, Success0, Instrs1),
( Instr0 = assign(reg(r, 1), const(Success1)) - _ ->
Instrs = Instrs1,
Success = yes(Success1)
;
Instrs = [Instr0 | Instrs1],
Success = Success0
).
opt_util__straight_alternative(Instrs0, Between, After) :-
opt_util__straight_alternative_2(Instrs0, [], BetweenRev, After),
list__reverse(BetweenRev, Between).
:- pred opt_util__straight_alternative_2(list(instruction), list(instruction),
list(instruction), list(instruction)).
:- mode opt_util__straight_alternative_2(in, in, out, out) is semidet.
opt_util__straight_alternative_2([Instr0 | Instrs0], Between0, Between,
After) :-
Instr0 = Uinstr0 - _,
(
(
opt_util__can_instr_branch_away(Uinstr0, no),
opt_util__touches_nondet_ctrl_instr(Uinstr0, no)
;
Uinstr0 = if_val(_, CodeAddr),
( CodeAddr = do_fail ; CodeAddr = do_redo )
)
->
opt_util__straight_alternative_2(Instrs0, [Instr0 | Between0],
Between, After)
;
Uinstr0 = goto(do_succeed(no))
->
Between = Between0,
After = Instrs0
;
fail
).
opt_util__no_stack_straight_line(Instrs0, Shuffle, Instrs) :-
opt_util__no_stack_straight_line_2(Instrs0, [], RevShuffle, Instrs),
list__reverse(RevShuffle, Shuffle).
:- pred opt_util__no_stack_straight_line_2(list(instruction),
list(instruction), list(instruction), list(instruction)).
:- mode opt_util__no_stack_straight_line_2(in, in, out, out) is det.
opt_util__no_stack_straight_line_2([], After, After, []).
opt_util__no_stack_straight_line_2([Instr0 | Instrs0], After0, After, Instrs) :-
Instr0 = Uinstr - _,
(
(
Uinstr = comment(_)
;
Uinstr = livevals(_)
;
Uinstr = assign(Lval, Rval),
opt_util__lval_refers_stackvars(Lval, no),
opt_util__rval_refers_stackvars(Rval, no)
)
->
After1 = [Instr0 | After0],
opt_util__no_stack_straight_line_2(Instrs0, After1, After, Instrs)
;
After = After0,
Instrs = [Instr0 | Instrs0]
).
opt_util__lval_refers_stackvars(reg(_, _), no).
opt_util__lval_refers_stackvars(stackvar(_), yes).
opt_util__lval_refers_stackvars(framevar(_), yes).
opt_util__lval_refers_stackvars(succip, no).
opt_util__lval_refers_stackvars(maxfr, no).
opt_util__lval_refers_stackvars(curfr, no).
opt_util__lval_refers_stackvars(succfr(Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__lval_refers_stackvars(prevfr(Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__lval_refers_stackvars(redofr(Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__lval_refers_stackvars(redoip(Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__lval_refers_stackvars(succip(Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__lval_refers_stackvars(hp, no).
opt_util__lval_refers_stackvars(sp, no).
opt_util__lval_refers_stackvars(field(_, Rval, FieldNum), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers1),
opt_util__rval_refers_stackvars(FieldNum, Refers2),
bool__or(Refers1, Refers2, Refers).
opt_util__lval_refers_stackvars(lvar(_), _) :-
error("found lvar in lval_refers_stackvars").
opt_util__lval_refers_stackvars(temp(_, _), no).
opt_util__lval_refers_stackvars(mem_ref(Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
:- pred opt_util__mem_ref_refers_stackvars(mem_ref, bool).
:- mode opt_util__mem_ref_refers_stackvars(in, out) is det.
opt_util__mem_ref_refers_stackvars(stackvar_ref(_), yes).
opt_util__mem_ref_refers_stackvars(framevar_ref(_), yes).
opt_util__mem_ref_refers_stackvars(heap_ref(Rval, _, _), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__rval_refers_stackvars(lval(Lval), Refers) :-
opt_util__lval_refers_stackvars(Lval, Refers).
opt_util__rval_refers_stackvars(var(_), _) :-
error("found var in rval_refers_stackvars").
opt_util__rval_refers_stackvars(create(_, Rvals, _, _, _), Refers) :-
opt_util__rvals_refer_stackvars(Rvals, Refers).
opt_util__rval_refers_stackvars(mkword(_, Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__rval_refers_stackvars(const(_), no).
opt_util__rval_refers_stackvars(unop(_, Rval), Refers) :-
opt_util__rval_refers_stackvars(Rval, Refers).
opt_util__rval_refers_stackvars(binop(_, Rval1, Rval2), Refers) :-
opt_util__rval_refers_stackvars(Rval1, Refers1),
opt_util__rval_refers_stackvars(Rval2, Refers2),
bool__or(Refers1, Refers2, Refers).
opt_util__rval_refers_stackvars(mem_addr(MemRef), Refers) :-
opt_util__mem_ref_refers_stackvars(MemRef, Refers).
opt_util__rvals_refer_stackvars([], no).
opt_util__rvals_refer_stackvars([MaybeRval | Tail], Refers) :-
(
(
MaybeRval = no
;
MaybeRval = yes(Rval),
opt_util__rval_refers_stackvars(Rval, no)
)
->
opt_util__rvals_refer_stackvars(Tail, Refers)
;
Refers = yes
).
opt_util__no_stackvars_til_decr_sp([Instr0 | Instrs0], FrameSize,
Between, Remain) :-
Instr0 = Uinstr0 - _,
(
Uinstr0 = comment(_),
opt_util__no_stackvars_til_decr_sp(Instrs0, FrameSize,
Between0, Remain),
Between = [Instr0 | Between0]
;
Uinstr0 = livevals(_),
opt_util__no_stackvars_til_decr_sp(Instrs0, FrameSize,
Between0, Remain),
Between = [Instr0 | Between0]
;
Uinstr0 = assign(Lval, Rval),
(
Lval = stackvar(_),
opt_util__rval_refers_stackvars(Rval, no)
->
opt_util__no_stackvars_til_decr_sp(Instrs0, FrameSize,
Between, Remain)
;
Lval = succip,
Rval = lval(stackvar(FrameSize)),
opt_util__skip_comments(Instrs0, Instrs1),
Instrs1 = [decr_sp(FrameSize) - _ | Instrs2]
->
Between = [],
Remain = Instrs2
;
opt_util__lval_refers_stackvars(Lval, no),
opt_util__rval_refers_stackvars(Rval, no),
opt_util__no_stackvars_til_decr_sp(Instrs0, FrameSize,
Between0, Remain),
Between = [Instr0 | Between0]
)
;
Uinstr0 = incr_hp(Lval, _, Rval, _),
opt_util__lval_refers_stackvars(Lval, no),
opt_util__rval_refers_stackvars(Rval, no),
opt_util__no_stackvars_til_decr_sp(Instrs0, FrameSize,
Between0, Remain),
Between = [Instr0 | Between0]
;
Uinstr0 = decr_sp(FrameSize),
Between = [],
Remain = Instrs0
).
opt_util__block_refers_stackvars([], no).
opt_util__block_refers_stackvars([Uinstr0 - _ | Instrs0], Need) :-
(
Uinstr0 = comment(_),
opt_util__block_refers_stackvars(Instrs0, Need)
;
Uinstr0 = livevals(_),
opt_util__block_refers_stackvars(Instrs0, Need)
;
Uinstr0 = block(_, _, BlockInstrs),
opt_util__block_refers_stackvars(BlockInstrs, Need)
;
Uinstr0 = assign(Lval, Rval),
opt_util__lval_refers_stackvars(Lval, Use1),
opt_util__rval_refers_stackvars(Rval, Use2),
bool__or(Use1, Use2, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = call(_, _, _, _),
Need = no
;
Uinstr0 = mkframe(_, _),
Need = no
;
Uinstr0 = label(_),
Need = no
;
Uinstr0 = goto(_),
Need = no
;
Uinstr0 = computed_goto(Rval, _),
opt_util__rval_refers_stackvars(Rval, Use),
( Use = yes ->
Need = yes
;
Need = no
)
;
Uinstr0 = c_code(_),
Need = no
;
Uinstr0 = if_val(Rval, _),
opt_util__rval_refers_stackvars(Rval, Use),
( Use = yes ->
Need = yes
;
Need = no
)
;
Uinstr0 = incr_hp(Lval, _, Rval, _),
opt_util__lval_refers_stackvars(Lval, Use1),
opt_util__rval_refers_stackvars(Rval, Use2),
bool__or(Use1, Use2, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = mark_hp(Lval),
opt_util__lval_refers_stackvars(Lval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = restore_hp(Rval),
opt_util__rval_refers_stackvars(Rval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = store_ticket(Lval),
opt_util__lval_refers_stackvars(Lval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = reset_ticket(Rval, _Reason),
opt_util__rval_refers_stackvars(Rval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = discard_ticket,
opt_util__block_refers_stackvars(Instrs0, Need)
;
Uinstr0 = mark_ticket_stack(Lval),
opt_util__lval_refers_stackvars(Lval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = discard_tickets_to(Rval),
opt_util__rval_refers_stackvars(Rval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
% handled specially
Uinstr0 = incr_sp(_, _),
Need = no
;
% handled specially
Uinstr0 = decr_sp(_),
Need = no
;
Uinstr0 = pragma_c(_, _, _, _, _),
Need = no
;
Uinstr0 = init_sync_term(Lval, _),
opt_util__lval_refers_stackvars(Lval, Need)
;
Uinstr0 = fork(_, _, _),
Need = no
;
Uinstr0 = join_and_terminate(Lval),
opt_util__lval_refers_stackvars(Lval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
;
Uinstr0 = join_and_continue(Lval, _),
opt_util__lval_refers_stackvars(Lval, Use),
( Use = yes ->
Need = yes
;
opt_util__block_refers_stackvars(Instrs0, Need)
)
).
opt_util__filter_out_labels([], []).
opt_util__filter_out_labels([Instr0 | Instrs0], Instrs) :-
opt_util__filter_out_labels(Instrs0, Instrs1),
( Instr0 = label(_) - _ ->
Instrs = Instrs1
;
Instrs = [Instr0 | Instrs1]
).
opt_util__filter_out_bad_livevals([], []).
opt_util__filter_out_bad_livevals([Instr0 | Instrs0], Instrs) :-
opt_util__filter_out_bad_livevals(Instrs0, Instrs1),
(
Instr0 = livevals(_) - _,
opt_util__skip_comments(Instrs1, Instrs2),
Instrs2 = [Uinstr2 - _ | _],
opt_util__can_use_livevals(Uinstr2, no)
->
Instrs = Instrs1
;
Instrs = [Instr0 | Instrs1]
).
opt_util__filter_out_livevals([], []).
opt_util__filter_out_livevals([Instr0 | Instrs0], Instrs) :-
opt_util__filter_out_livevals(Instrs0, Instrs1),
( Instr0 = livevals(_) - _ ->
Instrs = Instrs1
;
Instrs = [Instr0 | Instrs1]
).
opt_util__filter_in_livevals([], []).
opt_util__filter_in_livevals([Instr0 | Instrs0], Instrs) :-
opt_util__filter_in_livevals(Instrs0, Instrs1),
( Instr0 = livevals(_) - _ ->
Instrs = [Instr0 | Instrs1]
;
Instrs = Instrs1
).
% We recognize only a subset of all constant conditions.
% The time to extend this predicate is when the rest of the compiler
% generates more complicated constant conditions.
opt_util__is_const_condition(const(Const), Taken) :-
( Const = true ->
Taken = yes
; Const = false ->
Taken = no
;
error("non-boolean constant as if-then-else condition")
).
opt_util__is_const_condition(unop(Op, Rval1), Taken) :-
Op = (not),
opt_util__is_const_condition(Rval1, Taken1),
bool__not(Taken1, Taken).
opt_util__is_const_condition(binop(Op, Rval1, Rval2), Taken) :-
Op = eq,
Rval1 = Rval2,
Taken = yes.
opt_util__new_label_no([], N, N).
opt_util__new_label_no([Instr0 | Instrs0], N0, N) :-
(
Instr0 = label(local(_, K)) - _,
K >= N0
->
N1 is K + 1
;
N1 = N0
),
opt_util__new_label_no(Instrs0, N1, N).
opt_util__can_instr_branch_away(comment(_), no).
opt_util__can_instr_branch_away(livevals(_), no).
opt_util__can_instr_branch_away(block(_, _, _), yes).
opt_util__can_instr_branch_away(assign(_, _), no).
opt_util__can_instr_branch_away(call(_, _, _, _), yes).
opt_util__can_instr_branch_away(mkframe(_, _), no).
opt_util__can_instr_branch_away(label(_), no).
opt_util__can_instr_branch_away(goto(_), yes).
opt_util__can_instr_branch_away(computed_goto(_, _), yes).
opt_util__can_instr_branch_away(c_code(_), no).
opt_util__can_instr_branch_away(if_val(_, _), yes).
opt_util__can_instr_branch_away(incr_hp(_, _, _, _), no).
opt_util__can_instr_branch_away(mark_hp(_), no).
opt_util__can_instr_branch_away(restore_hp(_), no).
opt_util__can_instr_branch_away(store_ticket(_), no).
opt_util__can_instr_branch_away(reset_ticket(_, _), no).
opt_util__can_instr_branch_away(discard_ticket, no).
opt_util__can_instr_branch_away(mark_ticket_stack(_), no).
opt_util__can_instr_branch_away(discard_tickets_to(_), no).
opt_util__can_instr_branch_away(incr_sp(_, _), no).
opt_util__can_instr_branch_away(decr_sp(_), no).
opt_util__can_instr_branch_away(init_sync_term(_, _), no).
opt_util__can_instr_branch_away(fork(_, _, _), yes).
opt_util__can_instr_branch_away(join_and_terminate(_), no).
opt_util__can_instr_branch_away(join_and_continue(_, _), yes).
opt_util__can_instr_branch_away(pragma_c(_, Comps, _, _, _), BranchAway) :-
opt_util__can_components_branch_away(Comps, BranchAway).
:- pred opt_util__can_components_branch_away(list(pragma_c_component), bool).
:- mode opt_util__can_components_branch_away(in, out) is det.
opt_util__can_components_branch_away([], no).
opt_util__can_components_branch_away([Component | Components], BranchAway) :-
opt_util__can_component_branch_away(Component, BranchAway1),
( BranchAway1 = yes ->
BranchAway = yes
;
opt_util__can_components_branch_away(Components, BranchAway)
).
:- pred opt_util__can_component_branch_away(pragma_c_component, bool).
:- mode opt_util__can_component_branch_away(in, out) is det.
% The input and output components get expanded to straight line code.
% Some of the raw_code components we generate for nondet pragma C codes
% invoke succeed(), which definitely does branch away.
% Also the raw_code components for semidet pragma C codes can
% branch to a label on failure.
% User-written C code cannot branch away because users do not know
% how to do that. (They can call other functions, but those functions
% will return, so control will still go to the instruction following
% this one. We the developers could write C code that branched away,
% but we are careful to preserve a declarative interface, and that
% is incompatible with branching away.)
opt_util__can_component_branch_away(pragma_c_inputs(_), no).
opt_util__can_component_branch_away(pragma_c_outputs(_), no).
opt_util__can_component_branch_away(pragma_c_raw_code(Code), CanBranchAway) :-
( Code = "" -> CanBranchAway = yes ; CanBranchAway = no ).
opt_util__can_component_branch_away(pragma_c_user_code(_, _), no).
opt_util__can_instr_fall_through(comment(_), yes).
opt_util__can_instr_fall_through(livevals(_), yes).
opt_util__can_instr_fall_through(block(_, _, Instrs), FallThrough) :-
opt_util__can_block_fall_through(Instrs, FallThrough).
opt_util__can_instr_fall_through(assign(_, _), yes).
opt_util__can_instr_fall_through(call(_, _, _, _), no).
opt_util__can_instr_fall_through(mkframe(_, _), yes).
opt_util__can_instr_fall_through(label(_), yes).
opt_util__can_instr_fall_through(goto(_), no).
opt_util__can_instr_fall_through(computed_goto(_, _), no).
opt_util__can_instr_fall_through(c_code(_), yes).
opt_util__can_instr_fall_through(if_val(_, _), yes).
opt_util__can_instr_fall_through(incr_hp(_, _, _, _), yes).
opt_util__can_instr_fall_through(mark_hp(_), yes).
opt_util__can_instr_fall_through(restore_hp(_), yes).
opt_util__can_instr_fall_through(store_ticket(_), yes).
opt_util__can_instr_fall_through(reset_ticket(_, _), yes).
opt_util__can_instr_fall_through(discard_ticket, yes).
opt_util__can_instr_fall_through(mark_ticket_stack(_), yes).
opt_util__can_instr_fall_through(discard_tickets_to(_), yes).
opt_util__can_instr_fall_through(incr_sp(_, _), yes).
opt_util__can_instr_fall_through(decr_sp(_), yes).
opt_util__can_instr_fall_through(init_sync_term(_, _), yes).
opt_util__can_instr_fall_through(fork(_, _, _), no).
opt_util__can_instr_fall_through(join_and_terminate(_), no).
opt_util__can_instr_fall_through(join_and_continue(_, _), no).
opt_util__can_instr_fall_through(pragma_c(_, _, _, _, _), yes).
% Check whether an instruction sequence can possibly fall through
% to the next instruction without using its label.
:- pred opt_util__can_block_fall_through(list(instruction), bool).
:- mode opt_util__can_block_fall_through(in, out) is det.
opt_util__can_block_fall_through([], yes).
opt_util__can_block_fall_through([Instr - _ | Instrs], FallThrough) :-
( opt_util__can_instr_fall_through(Instr, no) ->
FallThrough = no
;
opt_util__can_block_fall_through(Instrs, FallThrough)
).
:- pred opt_util__can_use_livevals(instr, bool).
:- mode opt_util__can_use_livevals(in, out) is det.
opt_util__can_use_livevals(comment(_), no).
opt_util__can_use_livevals(livevals(_), no).
opt_util__can_use_livevals(block(_, _, _), no).
opt_util__can_use_livevals(assign(_, _), no).
opt_util__can_use_livevals(call(_, _, _, _), yes).
opt_util__can_use_livevals(mkframe(_, _), no).
opt_util__can_use_livevals(label(_), no).
opt_util__can_use_livevals(goto(_), yes).
opt_util__can_use_livevals(computed_goto(_, _), no).
opt_util__can_use_livevals(c_code(_), no).
opt_util__can_use_livevals(if_val(_, _), yes).
opt_util__can_use_livevals(incr_hp(_, _, _, _), no).
opt_util__can_use_livevals(mark_hp(_), no).
opt_util__can_use_livevals(restore_hp(_), no).
opt_util__can_use_livevals(store_ticket(_), no).
opt_util__can_use_livevals(reset_ticket(_, _), no).
opt_util__can_use_livevals(discard_ticket, no).
opt_util__can_use_livevals(mark_ticket_stack(_), no).
opt_util__can_use_livevals(discard_tickets_to(_), no).
opt_util__can_use_livevals(incr_sp(_, _), no).
opt_util__can_use_livevals(decr_sp(_), no).
opt_util__can_use_livevals(init_sync_term(_, _), no).
opt_util__can_use_livevals(fork(_, _, _), no).
opt_util__can_use_livevals(join_and_terminate(_), no).
opt_util__can_use_livevals(join_and_continue(_, _), no).
opt_util__can_use_livevals(pragma_c(_, _, _, _, _), no).
% determine all the labels and code_addresses that are referenced by Instr
opt_util__instr_labels(Instr, Labels, CodeAddrs) :-
opt_util__instr_labels_2(Instr, Labels0, CodeAddrs1),
opt_util__instr_rvals_and_lvals(Instr, Rvals, Lvals),
exprn_aux__rval_list_addrs(Rvals, CodeAddrs2, _),
exprn_aux__lval_list_addrs(Lvals, CodeAddrs3, _),
list__append(CodeAddrs1, CodeAddrs2, CodeAddrs12),
list__append(CodeAddrs12, CodeAddrs3, CodeAddrs),
opt_util__find_label_code_addrs(CodeAddrs, Labels0, Labels).
:- pred opt_util__find_label_code_addrs(list(code_addr),
list(label), list(label)).
:- mode opt_util__find_label_code_addrs(in, in, out) is det.
% Find out which code addresses are also labels.
opt_util__find_label_code_addrs([], Labels, Labels).
opt_util__find_label_code_addrs([CodeAddr | Rest], Labels0, Labels) :-
( CodeAddr = label(Label) ->
Labels1 = [Label | Labels0]
;
Labels1 = Labels0
),
opt_util__find_label_code_addrs(Rest, Labels1, Labels).
:- pred opt_util__instr_labels_2(instr, list(label), list(code_addr)).
:- mode opt_util__instr_labels_2(in, out, out) is det.
% determine all the labels and code_addresses that are directly
% referenced by an instruction (not counting ones referenced indirectly
% via rvals or lvals)
opt_util__instr_labels_2(comment(_), [], []).
opt_util__instr_labels_2(livevals(_), [], []).
opt_util__instr_labels_2(block(_, _, Instrs), Labels, CodeAddrs) :-
opt_util__instr_list_labels(Instrs, Labels, CodeAddrs).
opt_util__instr_labels_2(assign(_,_), [], []).
opt_util__instr_labels_2(call(Target, Ret, _, _), [], [Target, Ret]).
opt_util__instr_labels_2(mkframe(_, Addr), [], [Addr]).
opt_util__instr_labels_2(label(_), [], []).
opt_util__instr_labels_2(goto(Addr), [], [Addr]).
opt_util__instr_labels_2(computed_goto(_, Labels), Labels, []).
opt_util__instr_labels_2(c_code(_), [], []).
opt_util__instr_labels_2(if_val(_, Addr), [], [Addr]).
opt_util__instr_labels_2(incr_hp(_, _, _, _), [], []).
opt_util__instr_labels_2(mark_hp(_), [], []).
opt_util__instr_labels_2(restore_hp(_), [], []).
opt_util__instr_labels_2(store_ticket(_), [], []).
opt_util__instr_labels_2(reset_ticket(_, _), [], []).
opt_util__instr_labels_2(discard_ticket, [], []).
opt_util__instr_labels_2(mark_ticket_stack(_), [], []).
opt_util__instr_labels_2(discard_tickets_to(_), [], []).
opt_util__instr_labels_2(incr_sp(_, _), [], []).
opt_util__instr_labels_2(decr_sp(_), [], []).
opt_util__instr_labels_2(init_sync_term(_, _), [], []).
opt_util__instr_labels_2(fork(Child, Parent, _), [Child, Parent], []).
opt_util__instr_labels_2(join_and_terminate(_), [], []).
opt_util__instr_labels_2(join_and_continue(_, Label), [Label], []).
opt_util__instr_labels_2(pragma_c(_, _, _, MaybeLabel, _), Labels, []) :-
( MaybeLabel = yes(Label) ->
Labels = [Label]
;
Labels = []
).
:- pred opt_util__instr_rvals_and_lvals(instr, list(rval), list(lval)).
:- mode opt_util__instr_rvals_and_lvals(in, out, out) is det.
% determine all the rvals and lvals referenced by an instruction
opt_util__instr_rvals_and_lvals(comment(_), [], []).
opt_util__instr_rvals_and_lvals(livevals(_), [], []).
opt_util__instr_rvals_and_lvals(block(_, _, Instrs), Labels, CodeAddrs) :-
opt_util__instr_list_rvals_and_lvals(Instrs, Labels, CodeAddrs).
opt_util__instr_rvals_and_lvals(assign(Lval,Rval), [Rval], [Lval]).
opt_util__instr_rvals_and_lvals(call(_, _, _, _), [], []).
opt_util__instr_rvals_and_lvals(mkframe(_, _), [], []).
opt_util__instr_rvals_and_lvals(label(_), [], []).
opt_util__instr_rvals_and_lvals(goto(_), [], []).
opt_util__instr_rvals_and_lvals(computed_goto(Rval, _), [Rval], []).
opt_util__instr_rvals_and_lvals(c_code(_), [], []).
opt_util__instr_rvals_and_lvals(if_val(Rval, _), [Rval], []).
opt_util__instr_rvals_and_lvals(incr_hp(Lval, _, Rval, _), [Rval], [Lval]).
opt_util__instr_rvals_and_lvals(mark_hp(Lval), [], [Lval]).
opt_util__instr_rvals_and_lvals(restore_hp(Rval), [Rval], []).
opt_util__instr_rvals_and_lvals(store_ticket(Lval), [], [Lval]).
opt_util__instr_rvals_and_lvals(reset_ticket(Rval, _Reason), [Rval], []).
opt_util__instr_rvals_and_lvals(discard_ticket, [], []).
opt_util__instr_rvals_and_lvals(mark_ticket_stack(Lval), [], [Lval]).
opt_util__instr_rvals_and_lvals(discard_tickets_to(Rval), [Rval], []).
opt_util__instr_rvals_and_lvals(incr_sp(_, _), [], []).
opt_util__instr_rvals_and_lvals(decr_sp(_), [], []).
opt_util__instr_rvals_and_lvals(init_sync_term(Lval, _), [], [Lval]).
opt_util__instr_rvals_and_lvals(fork(_, _, _), [], []).
opt_util__instr_rvals_and_lvals(join_and_terminate(Lval), [], [Lval]).
opt_util__instr_rvals_and_lvals(join_and_continue(Lval, _), [], [Lval]).
opt_util__instr_rvals_and_lvals(pragma_c(_, Comps, _, _, _), Rvals, Lvals) :-
pragma_c_components_get_rvals_and_lvals(Comps, Rvals, Lvals).
% extract the rvals and lvals from the pragma_c_components
:- pred pragma_c_components_get_rvals_and_lvals(list(pragma_c_component),
list(rval), list(lval)).
:- mode pragma_c_components_get_rvals_and_lvals(in, out, out) is det.
pragma_c_components_get_rvals_and_lvals([], [], []).
pragma_c_components_get_rvals_and_lvals([Comp | Comps], Rvals, Lvals) :-
pragma_c_components_get_rvals_and_lvals(Comps, Rvals1, Lvals1),
pragma_c_component_get_rvals_and_lvals(Comp,
Rvals1, Rvals, Lvals1, Lvals).
% extract the rvals and lvals from the pragma_c_component
% and add them to the list.
:- pred pragma_c_component_get_rvals_and_lvals(pragma_c_component,
list(rval), list(rval), list(lval), list(lval)).
:- mode pragma_c_component_get_rvals_and_lvals(in, in, out, in, out) is det.
pragma_c_component_get_rvals_and_lvals(pragma_c_inputs(Inputs),
Rvals0, Rvals, Lvals, Lvals) :-
pragma_c_inputs_get_rvals(Inputs, Rvals1),
list__append(Rvals1, Rvals0, Rvals).
pragma_c_component_get_rvals_and_lvals(pragma_c_outputs(Outputs),
Rvals, Rvals, Lvals0, Lvals) :-
pragma_c_outputs_get_lvals(Outputs, Lvals1),
list__append(Lvals1, Lvals0, Lvals).
pragma_c_component_get_rvals_and_lvals(pragma_c_user_code(_, _),
Rvals, Rvals, Lvals, Lvals).
pragma_c_component_get_rvals_and_lvals(pragma_c_raw_code(_),
Rvals, Rvals, Lvals, Lvals).
% extract the rvals from the pragma_c_input
:- pred pragma_c_inputs_get_rvals(list(pragma_c_input), list(rval)).
:- mode pragma_c_inputs_get_rvals(in, out) is det.
pragma_c_inputs_get_rvals([], []).
pragma_c_inputs_get_rvals([I|Inputs], [R|Rvals]) :-
I = pragma_c_input(_Name, _Type, R),
pragma_c_inputs_get_rvals(Inputs, Rvals).
% extract the lvals from the pragma_c_output
:- pred pragma_c_outputs_get_lvals(list(pragma_c_output), list(lval)).
:- mode pragma_c_outputs_get_lvals(in, out) is det.
pragma_c_outputs_get_lvals([], []).
pragma_c_outputs_get_lvals([O|Outputs], [L|Lvals]) :-
O = pragma_c_output(L, _Type, _Name),
pragma_c_outputs_get_lvals(Outputs, Lvals).
% determine all the rvals and lvals referenced by a list of instructions
:- pred opt_util__instr_list_rvals_and_lvals(list(pair(instr, string)),
list(rval), list(lval)).
:- mode opt_util__instr_list_rvals_and_lvals(in, out, out) is det.
opt_util__instr_list_rvals_and_lvals([], [], []).
opt_util__instr_list_rvals_and_lvals([Instr - _|Instrs], Rvals, Lvals) :-
opt_util__instr_rvals_and_lvals(Instr, Rvals0, Lvals0),
opt_util__instr_list_rvals_and_lvals(Instrs, Rvals1, Lvals1),
list__append(Rvals0, Rvals1, Rvals),
list__append(Lvals0, Lvals1, Lvals).
opt_util__instr_list_labels([], [], []).
opt_util__instr_list_labels([Uinstr - _ | Instrs], Labels, CodeAddrs) :-
opt_util__instr_labels(Uinstr, Labels0, CodeAddrs0),
opt_util__instr_list_labels(Instrs, Labels1, CodeAddrs1),
list__append(Labels0, Labels1, Labels),
list__append(CodeAddrs0, CodeAddrs1, CodeAddrs).
opt_util__livevals_addr(label(Label), Result) :-
( Label = local(_, _) ->
Result = no
;
Result = yes
).
opt_util__livevals_addr(imported(_), yes).
opt_util__livevals_addr(succip, yes).
opt_util__livevals_addr(do_succeed(_), yes).
opt_util__livevals_addr(do_redo, no).
opt_util__livevals_addr(do_fail, no).
opt_util__livevals_addr(do_trace_redo_fail, no).
opt_util__livevals_addr(do_det_closure, yes).
opt_util__livevals_addr(do_semidet_closure, yes).
opt_util__livevals_addr(do_nondet_closure, yes).
opt_util__livevals_addr(do_det_class_method, yes).
opt_util__livevals_addr(do_semidet_class_method, yes).
opt_util__livevals_addr(do_nondet_class_method, yes).
opt_util__livevals_addr(do_det_aditi_call, yes).
opt_util__livevals_addr(do_semidet_aditi_call, yes).
opt_util__livevals_addr(do_nondet_aditi_call, yes).
opt_util__livevals_addr(do_not_reached, no).
opt_util__count_temps_instr_list([], R, R, F, F).
opt_util__count_temps_instr_list([Uinstr - _Comment | Instrs], R0, R, F0, F) :-
opt_util__count_temps_instr(Uinstr, R0, R1, F0, F1),
opt_util__count_temps_instr_list(Instrs, R1, R, F1, F).
opt_util__count_temps_instr(comment(_), R, R, F, F).
opt_util__count_temps_instr(livevals(_), R, R, F, F).
opt_util__count_temps_instr(block(_, _, _), R, R, F, F).
opt_util__count_temps_instr(assign(Lval, Rval), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R1, F0, F1),
opt_util__count_temps_rval(Rval, R1, R, F1, F).
opt_util__count_temps_instr(call(_, _, _, _), R, R, F, F).
opt_util__count_temps_instr(mkframe(_, _), R, R, F, F).
opt_util__count_temps_instr(label(_), R, R, F, F).
opt_util__count_temps_instr(goto(_), R, R, F, F).
opt_util__count_temps_instr(computed_goto(Rval, _), R0, R, F0, F) :-
opt_util__count_temps_rval(Rval, R0, R, F0, F).
opt_util__count_temps_instr(if_val(Rval, _), R0, R, F0, F) :-
opt_util__count_temps_rval(Rval, R0, R, F0, F).
opt_util__count_temps_instr(c_code(_), R, R, F, F).
opt_util__count_temps_instr(incr_hp(Lval, _, Rval, _), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R1, F0, F1),
opt_util__count_temps_rval(Rval, R1, R, F1, F).
opt_util__count_temps_instr(mark_hp(Lval), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R, F0, F).
opt_util__count_temps_instr(restore_hp(Rval), R0, R, F0, F) :-
opt_util__count_temps_rval(Rval, R0, R, F0, F).
opt_util__count_temps_instr(store_ticket(Lval), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R, F0, F).
opt_util__count_temps_instr(reset_ticket(Rval, _Reason), R0, R, F0, F) :-
opt_util__count_temps_rval(Rval, R0, R, F0, F).
opt_util__count_temps_instr(discard_ticket, R, R, F, F).
opt_util__count_temps_instr(mark_ticket_stack(Lval), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R, F0, F).
opt_util__count_temps_instr(discard_tickets_to(Rval), R0, R, F0, F) :-
opt_util__count_temps_rval(Rval, R0, R, F0, F).
opt_util__count_temps_instr(incr_sp(_, _), R, R, F, F).
opt_util__count_temps_instr(decr_sp(_), R, R, F, F).
opt_util__count_temps_instr(init_sync_term(Lval, _), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R, F0, F).
opt_util__count_temps_instr(fork(_, _, _), R, R, F, F).
opt_util__count_temps_instr(join_and_terminate(Lval), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R, F0, F).
opt_util__count_temps_instr(join_and_continue(Lval, _), R0, R, F0, F) :-
opt_util__count_temps_lval(Lval, R0, R, F0, F).
opt_util__count_temps_instr(pragma_c(_, _, _, _, _), R, R, F, F).
:- pred opt_util__count_temps_lval(lval, int, int, int, int).
:- mode opt_util__count_temps_lval(in, in, out, in, out) is det.
opt_util__count_temps_lval(Lval, R0, R, F0, F) :-
( Lval = temp(Type, N) ->
(
Type = r,
int__max(R0, N, R),
F = F0
;
Type = f,
int__max(F0, N, F),
R = R0
)
; Lval = field(_, Rval, FieldNum) ->
opt_util__count_temps_rval(Rval, R0, R1, F0, F1),
opt_util__count_temps_rval(FieldNum, R1, R, F1, F)
;
R = R0,
F = F0
).
:- pred opt_util__count_temps_rval(rval, int, int, int, int).
:- mode opt_util__count_temps_rval(in, in, out, in, out) is det.
% XXX assume that we don't generate code
% that uses a temp var without defining it.
opt_util__count_temps_rval(_, R, R, F, F).
opt_util__format_label(local(ProcLabel, _), Str) :-
opt_util__format_proclabel(ProcLabel, Str).
opt_util__format_label(c_local(ProcLabel), Str) :-
opt_util__format_proclabel(ProcLabel, Str).
opt_util__format_label(local(ProcLabel), Str) :-
opt_util__format_proclabel(ProcLabel, Str).
opt_util__format_label(exported(ProcLabel), Str) :-
opt_util__format_proclabel(ProcLabel, Str).
:- pred opt_util__format_proclabel(proc_label, string).
:- mode opt_util__format_proclabel(in, out) is det.
opt_util__format_proclabel(proc(_Module, _PredOrFunc, _, Name, Arity, ProcId),
Str) :-
string__int_to_string(Arity, ArityStr),
proc_id_to_int(ProcId, Mode),
string__int_to_string(Mode, ModeStr),
string__append_list([Name, "/", ArityStr, " mode ", ModeStr], Str).
opt_util__format_proclabel(special_proc(_Module, Pred, _, Type, Arity, ProcId),
Str) :-
string__int_to_string(Arity, ArityStr),
proc_id_to_int(ProcId, Mode),
string__int_to_string(Mode, ModeStr),
string__append_list(
[Pred, "_", Type, "/", ArityStr, " mode ", ModeStr], Str).
opt_util__has_both_incr_decr_sp(Instrs) :-
opt_util__has_both_incr_decr_sp_2(Instrs, no, yes, no, yes).
:- pred opt_util__has_both_incr_decr_sp_2(list(instruction),
bool, bool, bool, bool).
:- mode opt_util__has_both_incr_decr_sp_2(in, in, out, in, out) is det.
opt_util__has_both_incr_decr_sp_2([], HasIncr, HasIncr, HasDecr, HasDecr).
opt_util__has_both_incr_decr_sp_2([Uinstr - _ | Instrs],
HasIncr0, HasIncr, HasDecr0, HasDecr) :-
( Uinstr = incr_sp(_, _) ->
HasIncr1 = yes
;
HasIncr1 = HasIncr0
),
( Uinstr = decr_sp(_) ->
HasDecr1 = yes
;
HasDecr1 = HasDecr0
),
opt_util__has_both_incr_decr_sp_2(Instrs,
HasIncr1, HasIncr, HasDecr1, HasDecr).
opt_util__touches_nondet_ctrl([], no).
opt_util__touches_nondet_ctrl([Uinstr - _ | Instrs], Touch) :-
opt_util__touches_nondet_ctrl_instr(Uinstr, Touch0),
(
Touch0 = yes,
Touch = yes
;
Touch0 = no,
opt_util__touches_nondet_ctrl(Instrs, Touch)
).
:- pred opt_util__touches_nondet_ctrl_instr(instr, bool).
:- mode opt_util__touches_nondet_ctrl_instr(in, out) is det.
opt_util__touches_nondet_ctrl_instr(Uinstr, Touch) :-
( Uinstr = assign(Lval, Rval) ->
opt_util__touches_nondet_ctrl_lval(Lval, TouchLval),
opt_util__touches_nondet_ctrl_rval(Rval, TouchRval),
bool__or(TouchLval, TouchRval, Touch)
; Uinstr = incr_hp(Lval, _, Rval, _) ->
opt_util__touches_nondet_ctrl_lval(Lval, TouchLval),
opt_util__touches_nondet_ctrl_rval(Rval, TouchRval),
bool__or(TouchLval, TouchRval, Touch)
; Uinstr = mark_hp(Lval) ->
opt_util__touches_nondet_ctrl_lval(Lval, Touch)
; Uinstr = restore_hp(Rval) ->
opt_util__touches_nondet_ctrl_rval(Rval, Touch)
; Uinstr = pragma_c(_, Components, _, _, _) ->
opt_util__touches_nondet_ctrl_components(Components, Touch)
;
Touch = yes
).
:- pred opt_util__touches_nondet_ctrl_lval(lval, bool).
:- mode opt_util__touches_nondet_ctrl_lval(in, out) is det.
opt_util__touches_nondet_ctrl_lval(reg(_, _), no).
opt_util__touches_nondet_ctrl_lval(stackvar(_), no).
opt_util__touches_nondet_ctrl_lval(framevar(_), no).
opt_util__touches_nondet_ctrl_lval(succip, no).
opt_util__touches_nondet_ctrl_lval(maxfr, yes).
opt_util__touches_nondet_ctrl_lval(curfr, yes).
opt_util__touches_nondet_ctrl_lval(succfr(_), yes).
opt_util__touches_nondet_ctrl_lval(prevfr(_), yes).
opt_util__touches_nondet_ctrl_lval(redofr(_), yes).
opt_util__touches_nondet_ctrl_lval(redoip(_), yes).
opt_util__touches_nondet_ctrl_lval(succip(_), yes).
opt_util__touches_nondet_ctrl_lval(hp, no).
opt_util__touches_nondet_ctrl_lval(sp, no).
opt_util__touches_nondet_ctrl_lval(field(_, Rval1, Rval2), Touch) :-
opt_util__touches_nondet_ctrl_rval(Rval1, Touch1),
opt_util__touches_nondet_ctrl_rval(Rval2, Touch2),
bool__or(Touch1, Touch2, Touch).
opt_util__touches_nondet_ctrl_lval(lvar(_), no).
opt_util__touches_nondet_ctrl_lval(temp(_, _), no).
opt_util__touches_nondet_ctrl_lval(mem_ref(Rval), Touch) :-
opt_util__touches_nondet_ctrl_rval(Rval, Touch).
:- pred opt_util__touches_nondet_ctrl_rval(rval, bool).
:- mode opt_util__touches_nondet_ctrl_rval(in, out) is det.
opt_util__touches_nondet_ctrl_rval(lval(Lval), Touch) :-
opt_util__touches_nondet_ctrl_lval(Lval, Touch).
opt_util__touches_nondet_ctrl_rval(var(_), no).
opt_util__touches_nondet_ctrl_rval(create(_, _, _, _, _), no).
opt_util__touches_nondet_ctrl_rval(mkword(_, Rval), Touch) :-
opt_util__touches_nondet_ctrl_rval(Rval, Touch).
opt_util__touches_nondet_ctrl_rval(const(_), no).
opt_util__touches_nondet_ctrl_rval(unop(_, Rval), Touch) :-
opt_util__touches_nondet_ctrl_rval(Rval, Touch).
opt_util__touches_nondet_ctrl_rval(binop(_, Rval1, Rval2), Touch) :-
opt_util__touches_nondet_ctrl_rval(Rval1, Touch1),
opt_util__touches_nondet_ctrl_rval(Rval2, Touch2),
bool__or(Touch1, Touch2, Touch).
opt_util__touches_nondet_ctrl_rval(mem_addr(MemRef), Touch) :-
opt_util__touches_nondet_ctrl_mem_ref(MemRef, Touch).
:- pred opt_util__touches_nondet_ctrl_mem_ref(mem_ref, bool).
:- mode opt_util__touches_nondet_ctrl_mem_ref(in, out) is det.
opt_util__touches_nondet_ctrl_mem_ref(stackvar_ref(_), no).
opt_util__touches_nondet_ctrl_mem_ref(framevar_ref(_), no).
opt_util__touches_nondet_ctrl_mem_ref(heap_ref(Rval, _, _), Touch) :-
opt_util__touches_nondet_ctrl_rval(Rval, Touch).
:- pred opt_util__touches_nondet_ctrl_components(list(pragma_c_component),
bool).
:- mode opt_util__touches_nondet_ctrl_components(in, out) is det.
opt_util__touches_nondet_ctrl_components([], no).
opt_util__touches_nondet_ctrl_components([C | Cs], Touch) :-
opt_util__touches_nondet_ctrl_component(C, Touch1),
opt_util__touches_nondet_ctrl_components(Cs, Touch2),
bool__or(Touch1, Touch2, Touch).
:- pred opt_util__touches_nondet_ctrl_component(pragma_c_component, bool).
:- mode opt_util__touches_nondet_ctrl_component(in, out) is det.
% The inputs and outputs components get emitted as simple
% straight-line code that do not refer to control slots.
% The compiler does not generate raw_code that refers to control slots.
% User code shouldn't either, but until we have prohibited the
% use of ordinary pragma C codes for model_non procedures,
% some user code will need to ignore this restriction.
opt_util__touches_nondet_ctrl_component(pragma_c_inputs(_), no).
opt_util__touches_nondet_ctrl_component(pragma_c_outputs(_), no).
opt_util__touches_nondet_ctrl_component(pragma_c_raw_code(_), no).
opt_util__touches_nondet_ctrl_component(pragma_c_user_code(_, _), yes).
%-----------------------------------------------------------------------------%
opt_util__lval_access_rvals(reg(_, _), []).
opt_util__lval_access_rvals(stackvar(_), []).
opt_util__lval_access_rvals(framevar(_), []).
opt_util__lval_access_rvals(succip, []).
opt_util__lval_access_rvals(maxfr, []).
opt_util__lval_access_rvals(curfr, []).
opt_util__lval_access_rvals(redoip(Rval), [Rval]).
opt_util__lval_access_rvals(succip(Rval), [Rval]).
opt_util__lval_access_rvals(redofr(Rval), [Rval]).
opt_util__lval_access_rvals(prevfr(Rval), [Rval]).
opt_util__lval_access_rvals(succfr(Rval), [Rval]).
opt_util__lval_access_rvals(hp, []).
opt_util__lval_access_rvals(sp, []).
opt_util__lval_access_rvals(field(_, Rval1, Rval2), [Rval1, Rval2]).
opt_util__lval_access_rvals(temp(_, _), []).
opt_util__lval_access_rvals(lvar(_), _) :-
error("lvar detected in opt_util__lval_access_rvals").
opt_util__lval_access_rvals(mem_ref(Rval), [Rval]).
%-----------------------------------------------------------------------------%
opt_util__rvals_free_of_lval([], _).
opt_util__rvals_free_of_lval([Rval | Rvals], Forbidden) :-
opt_util__rval_free_of_lval(Rval, Forbidden),
opt_util__rvals_free_of_lval(Rvals, Forbidden).
opt_util__rval_free_of_lval(lval(Lval), Forbidden) :-
Lval \= Forbidden,
opt_util__lval_access_rvals(Lval, Rvals),
opt_util__rvals_free_of_lval(Rvals, Forbidden).
opt_util__rval_free_of_lval(var(_), _) :-
error("found var in opt_util__rval_free_of_lval").
opt_util__rval_free_of_lval(create(_, _, _, _, _), _).
opt_util__rval_free_of_lval(mkword(_, Rval), Forbidden) :-
opt_util__rval_free_of_lval(Rval, Forbidden).
opt_util__rval_free_of_lval(const(_), _).
opt_util__rval_free_of_lval(unop(_, Rval), Forbidden) :-
opt_util__rval_free_of_lval(Rval, Forbidden).
opt_util__rval_free_of_lval(binop(_, Rval1, Rval2), Forbidden) :-
opt_util__rval_free_of_lval(Rval1, Forbidden),
opt_util__rval_free_of_lval(Rval2, Forbidden).
%-----------------------------------------------------------------------------%
opt_util__count_incr_hp(Instrs, N) :-
opt_util__count_incr_hp_2(Instrs, 0, N).
:- pred opt_util__count_incr_hp_2(list(instruction), int, int).
:- mode opt_util__count_incr_hp_2(in, in, out) is det.
opt_util__count_incr_hp_2([], N, N).
opt_util__count_incr_hp_2([Uinstr0 - _ | Instrs], N0, N) :-
( Uinstr0 = incr_hp(_, _, _, _) ->
N1 is N0 + 1
;
N1 = N0
),
opt_util__count_incr_hp_2(Instrs, N1, N).
%-----------------------------------------------------------------------------%
opt_util__propagate_livevals(Instrs0, Instrs) :-
list__reverse(Instrs0, RevInstrs0),
set__init(Livevals),
opt_util__propagate_livevals_2(RevInstrs0, Livevals, RevInstrs),
list__reverse(RevInstrs, Instrs).
:- pred opt_util__propagate_livevals_2(list(instruction), set(lval),
list(instruction)).
:- mode opt_util__propagate_livevals_2(in, in, out) is det.
opt_util__propagate_livevals_2([], _, []).
opt_util__propagate_livevals_2([Instr0 | Instrs0], Livevals0,
[Instr | Instrs]) :-
Instr0 = Uinstr0 - Comment,
( Uinstr0 = livevals(ThisLivevals) ->
set__union(Livevals0, ThisLivevals, Livevals),
Instr = livevals(Livevals) - Comment
;
Instr = Instr0,
( Uinstr0 = assign(Lval, _) ->
set__delete(Livevals0, Lval, Livevals)
; opt_util__can_instr_fall_through(Uinstr0, no) ->
set__init(Livevals)
;
Livevals = Livevals0
)
),
opt_util__propagate_livevals_2(Instrs0, Livevals, Instrs).
%-----------------------------------------------------------------------------%