Files
mercury/compiler/lambda.m
Simon Taylor 18430aaef1 Aditi compilation.
Estimated hours taken: 1200

Aditi compilation.

compiler/options.m:
	The documentation for these is commented out because the Aditi
	system is not currently useful to the general public.
	--aditi: enable Aditi compilation.
	--dump-rl: write the intermediate RL to `<module>.rl_dump'.
	--dump-rl-bytecode: write a text version of the bytecodes
		to `<module>.rla'
	--aditi-only: don't produce a `.c' file.
	--filenames-from-stdin: accept a list of filenames to compile
		from stdin. This is used by the query shell.
	--optimize-rl, --optimize-rl-cse, --optimize-rl-invariants,
	--optimize-rl-index, --detect-rl-streams:
		Options to control RL optimization passes.
	--aditi-user:
		Default owner of any Aditi procedures,
		defaults to $USER or "guest".
	--generate-schemas:
		write schemas for base relations to `<module>'.base_schema
		and schemas for derived relations to `<module>'.derived_schema.
		This is used by the query shell.

compiler/handle_options.m:
	Handle the default for --aditi-user.

compiler/hlds_pred.m:
compiler/prog_data.m:
compiler/prog_io_pragma.m:
compiler/make_hlds.m:
	Add some Aditi pragma declarations - `aditi', `supp_magic', `context',
	`naive', `psn' (predicate semi-naive), `aditi_memo', `aditi_no_memo',
	`base_relation', `owner' and `index'.
	Separate out code to parse a predicate name and arity.

compiler/hlds_pred.m:
	Add predicates to identify Aditi procedures.
	Added markers `generate_inline' and `aditi_interface', which
	are used internally for Aditi code generation.
	Add an `owner' field to pred_infos, which is used for database
	security checks.
	Add a field to pred_infos to hold the list of indexes for a base
	relation.

compiler/make_hlds.m:
	Some pragmas must be exported if the corresponding predicates
	are exported, check this.
	Make sure stratification of Aditi procedures is checked.
	Predicates with a mode declaration but no type declaration
	are no longer assumed to be local.
	Set the `do_aditi_compilation' field of the module_info if there
	are any local Aditi procedures or base relations.
	Check that `--aditi' is set if Aditi compilation is required.

compiler/post_typecheck.m:
	Check that every Aditi predicate has an `aditi__state' argument,
	which is used to ensure sequencing of updates and that Aditi
	procedures are only called within transactions.

compiler/dnf.m:
	Changed the definition of disjunctive normal form slightly
	so that a call followed by some atomic goals not including
	any database calls is considered atomic. magic.m can handle
	this kind of goal, and it results in more efficient RL code.

compiler/hlds_module.m:
compiler/dependency_graph.m:
	Added dependency_graph__get_scc_entry_points which finds
	the procedures in an SCC which could be called from outside.
	Added a new field to the dependency_info, the
	aditi_dependency_ordering. This contains all Aditi SCCs of
	the original program, with multiple SCCs merged where
	possible to improve the effectiveness of differential evaluation
	and the low level RL optimizations.

compiler/hlds_module.m:
	Add a field to record whether there are any local Aditi procedures
	in the current module.
	Added versions of module_info_pred_proc_info and
	module_info_set_pred_proc_info which take a pred_proc_id,
	not a separate pred_id and proc_id.

compiler/polymorphism.m:
compiler/lambda.m:
	Make sure that predicates created for closures in Aditi procedures
	have the correct markers.

compiler/goal_util.m:
	Added goal_util__switch_to_disjunction,
	goal_util__case_to_disjunct (factored out from simplify.m)
	and goal_util__if_then_else_to_disjunction. These are
	require because supplementary magic sets can't handle
	if-then-elses or switches.

compiler/type_util.m:
	Added type_is_aditi_state/1.

compiler/mode_util.m:
	Added partition_args/5 which partitions a list of arguments
	into inputs and others.

compiler/inlining.m:
	Don't inline memoed procedures.
	Don't inline Aditi procedures into non-Aditi procedures.

compiler/intermod.m:
	Handle Aditi markers.
	Clean up handling of markers which should not appear in `.opt' files.

compiler/simplify.m:
	Export a slightly different interface for use by magic.m.
	Remove explicit quantifications where possible.
	Merge multiple nested quantifications.
	Don't report infinite recursion warnings for Aditi procedures.

compiler/prog_out.m:
	Generalised the code to output a module list to write any list.

compiler/code_gen.m:
compiler/arg_info.m:
	Don't process Aditi procedures.

compiler/mercury_compile.m:
	Call magic.m and rl_gen.m.
	Don't perform the low-level annotation passes on Aditi procedures.
	Remove calls to constraint.m - sometime soon a rewritten version
	will be called directly from deforestation.

compiler/passes_aux.m:
	Add predicates to process only non-Aditi procedures.

compiler/llds.m:
compiler/llds_out.m:
	Added new `code_addr' enum members, do_{det,semidet,nondet}_aditi_call,
	which are defined in extras/aditi/aditi.m.

compiler/call_gen.m:
	Handle generation of do_*_aditi_call.

compiler/llds_out.m:
	Write the RL code for the module as a constant char array
	in the `.c' file.

compiler/term_errors.m:
compiler/error_util.m:
	Move code to describe predicates into error_util.m
	Allow the caller to explicitly add line breaks.
	Added error_util:list_to_pieces to format a list of
	strings.
	Reordered some arguments for currying.

compiler/hlds_out.m:
	Don't try to print clauses if there are none.

runtime/mercury_init.h:
util/mkinit.c:
scripts/c2init.in:
	Added a function `mercury__load_aditi_rl_code()' to the generated
	`<module>_init.c' file which throws all the RL code for the program
	at the database. This should be called at connection time by
	`aditi__connect'.
	Added an option `--aditi' which controls the output
	`mercury__load_aditi_rl_code()'.

compiler/notes/compiler_design.html:
	Document the new files.

Mmakefile:
bindist/Mmakefile:
	Don't distribute extras/aditi yet.

New files:

compiler/magic.m:
compiler/magic_util.m:
	Supplementary magic sets transformation. Report errors
	for constructs that Aditi can't handle.

compiler/context.m:
	Supplementary context transformation.

compiler/rl_gen.m:
compiler/rl_relops.m:
	Aditi code generation.

compiler/rl_info.m:
	Code generator state.

compiler/rl.m:
	Intermediate RL representation.

compiler/rl_util:
	Predicates to collect information about RL instructions.

compiler/rl_dump.m:
	Print out the representation in rl.m.

compiler/rl_opt.m:
	Control low-level RL optimizations.

compiler/rl_block.m:
	Break a procedure into basic blocks.

compiler/rl_analyse.m:
	Generic dataflow analysis for RL procedures.

compiler/rl_liveness.m:
	Make sure all relations are initialised before used, clear
	references to relations that are no longer required.

compiler/rl_loop.m:
	Loop invariant removal.

compiler/rl_block_opt.m:
	CSE and instruction merging on basic blocks.

compiler/rl_key.m:
	Detect upper/lower bounds for which a goal could succeed.

compiler/rl_sort.m:
	Use indexing for joins and projections.
	Optimize away unnecessary sorting and indexing.

compiler/rl_stream.m:
	Detect relations which don't need to be materialised.

compiler/rl_code.m:
	RL bytecode definitions. Automatically generated from the Aditi
	header files.

compiler/rl_out.m:
compiler/rl_file.m:
	Output the RL bytecodes in binary to <module>.rlo (for use by Aditi)
	and in text to <module>.rla (for use by the RL interpreter).
	Also output the schema information if --generate-schemas is set.

compiler/rl_exprn.m:
	Generate bytecodes for join conditions.

extras/aditi/Mmakefile:
extras/aditi/aditi.m:
	Definitions of some Aditi library predicates and the
	interfacing and transaction processing code.
1998-12-06 23:49:14 +00:00

516 lines
20 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% file: lambda.m
% main author: fjh
% This module is a pass over the HLDS to deal with lambda expressions.
%
% Lambda expressions are converted into separate predicates, so for
% example we translate
%
% :- pred p(int::in) is det.
% p(X) :-
% V__1 = lambda([Y::out] is nondet, q(Y, X))),
% solutions(V__1, List),
% ...
% :- pred q(int::out, int::in) is nondet.
%
% into
%
% p(X) :-
% V__1 = '__LambdaGoal__1'(X)
% solutions(V__1, List),
% ...
%
% :- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
% '__LambdaGoal__1'(X, Y) :- q(Y, X).
%
%
% Note that the mode checker requires that a lambda expression
% not bind any of the non-local variables such as `X' in the above
% example.
%
% Similarly, a lambda expression may not bind any of the type_infos for
% those variables; that is, none of the non-local variables
% should be existentially typed (from the perspective of the lambda goal).
% When we run the polymorphism.m pass before mode checking, this will
% be checked by mode analysis. XXX But currently it is not checked.
%
% It might be OK to allow the parameters of the lambda goal to be
% existentially typed, but currently that is not supported.
% One difficulty is that it's hard to determine here which type variables
% should be existentially quantified. The information is readily
% available during type inference, and really type inference should save
% that information in a field in the lambda_goal struct, but currently it
% doesn't; it saves the head_type_params field in the pred_info, which
% tells us which type variables where produced by the body, but for
% any given lambda goal we don't know whether the type variable was
% produced by something outside the lambda goal or by something inside
% the lambda goal (only in the latter case should it be existentially
% quantified).
% The other difficulty is that taking the address of a predicate with an
% existential type would require second-order polymorphism: for a predicate
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
% type `some [T] pred(int, T)', which is quite a different thing to saying
% that there is some type `T' for which `p' has type `pred(int, T)' --
% we don't know what `T' is until the predicate is called, and it might
% be different for each call.
% Currently we don't support second-order polymorphism, so we
% don't support existentially typed lambda expressions either.
%
%-----------------------------------------------------------------------------%
:- module (lambda).
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, prog_data.
:- import_module list, map, set.
:- pred lambda__process_pred(pred_id, module_info, module_info).
:- mode lambda__process_pred(in, in, out) is det.
:- pred lambda__transform_lambda(pred_or_func, string, list(prog_var),
list(mode), determinism, list(prog_var), set(prog_var),
hlds_goal, unification, prog_varset, map(prog_var, type),
class_constraints, tvarset, map(tvar, type_info_locn),
map(class_constraint, prog_var), pred_markers, aditi_owner,
module_info, unify_rhs, unification, module_info).
:- mode lambda__transform_lambda(in, in, in, in, in, in, in, in, in,
in, in, in, in, in, in, in, in, in, out, out, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module make_hlds, globals, options, term, varset.
:- import_module goal_util, prog_util, mode_util, inst_match, llds, arg_info.
:- import_module bool, string, std_util, require.
:- type lambda_info --->
lambda_info(
prog_varset, % from the proc_info
map(prog_var, type), % from the proc_info
class_constraints, % from the pred_info
tvarset, % from the proc_info
map(tvar, type_info_locn),
% from the proc_info
% (typeinfos)
map(class_constraint, prog_var),
% from the proc_info
% (typeclass_infos)
pred_markers, % from the pred_info
pred_or_func,
string, % pred/func name
aditi_owner,
module_info
).
%-----------------------------------------------------------------------------%
% This whole section just traverses the module structure.
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
pred_info_procids(PredInfo, ProcIds),
lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
:- pred lambda__process_procs(pred_id, list(proc_id), module_info, module_info).
:- mode lambda__process_procs(in, in, in, out) is det.
lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).
:- pred lambda__process_proc(pred_id, proc_id, module_info, module_info).
:- mode lambda__process_proc(in, in, in, out) is det.
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo1, ModuleInfo1),
pred_info_procedures(PredInfo1, ProcTable1),
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
module_info_preds(ModuleInfo1, PredTable1),
map__det_update(PredTable1, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo1, PredTable, ModuleInfo).
:- pred lambda__process_proc_2(proc_info, pred_info, module_info,
proc_info, pred_info, module_info).
:- mode lambda__process_proc_2(in, in, in, out, out, out) is det.
lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo, ModuleInfo) :-
% grab the appropriate fields from the pred_info and proc_info
pred_info_name(PredInfo0, PredName),
pred_info_get_is_pred_or_func(PredInfo0, PredOrFunc),
pred_info_typevarset(PredInfo0, TypeVarSet0),
pred_info_get_markers(PredInfo0, Markers),
pred_info_get_class_context(PredInfo0, Constraints0),
pred_info_get_aditi_owner(PredInfo0, Owner),
proc_info_varset(ProcInfo0, VarSet0),
proc_info_vartypes(ProcInfo0, VarTypes0),
proc_info_goal(ProcInfo0, Goal0),
proc_info_typeinfo_varmap(ProcInfo0, TVarMap0),
proc_info_typeclass_info_varmap(ProcInfo0, TCVarMap0),
% process the goal
Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
TVarMap0, TCVarMap0, Markers, PredOrFunc,
PredName, Owner, ModuleInfo0),
lambda__process_goal(Goal0, Goal, Info0, Info),
Info = lambda_info(VarSet, VarTypes, Constraints, TypeVarSet,
TVarMap, TCVarMap, _, _, _, _, ModuleInfo),
% set the new values of the fields in proc_info and pred_info
proc_info_set_goal(ProcInfo0, Goal, ProcInfo1),
proc_info_set_varset(ProcInfo1, VarSet, ProcInfo2),
proc_info_set_vartypes(ProcInfo2, VarTypes, ProcInfo3),
proc_info_set_typeinfo_varmap(ProcInfo3, TVarMap, ProcInfo4),
proc_info_set_typeclass_info_varmap(ProcInfo4, TCVarMap, ProcInfo),
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1),
pred_info_set_class_context(PredInfo1, Constraints, PredInfo).
:- pred lambda__process_goal(hlds_goal, hlds_goal,
lambda_info, lambda_info).
:- mode lambda__process_goal(in, out, in, out) is det.
lambda__process_goal(Goal0 - GoalInfo0, Goal) -->
lambda__process_goal_2(Goal0, GoalInfo0, Goal).
:- pred lambda__process_goal_2(hlds_goal_expr, hlds_goal_info,
hlds_goal, lambda_info, lambda_info).
:- mode lambda__process_goal_2(in, in, out, in, out) is det.
lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
Unify - GoalInfo) -->
( { Y = lambda_goal(PredOrFunc, NonLocalVars, Vars,
Modes, Det, LambdaGoal0) } ->
% for lambda expressions, we must convert the lambda expression
% into a new predicate
lambda__process_lambda(PredOrFunc, Vars, Modes, Det,
NonLocalVars, LambdaGoal0,
Unification, Y1, Unification1),
{ Unify = unify(XVar, Y1, Mode, Unification1, Context) }
;
% ordinary unifications are left unchanged
{ Unify = unify(XVar, Y, Mode, Unification, Context) }
).
% the rest of the clauses just process goals recursively
lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo) -->
lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(par_conj(Goals0, SM), GoalInfo,
par_conj(Goals, SM) - GoalInfo) -->
lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(disj(Goals0, SM), GoalInfo, disj(Goals, SM) - GoalInfo)
-->
lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo) -->
lambda__process_goal(Goal0, Goal).
lambda__process_goal_2(switch(Var, CanFail, Cases0, SM), GoalInfo,
switch(Var, CanFail, Cases, SM) - GoalInfo) -->
lambda__process_cases(Cases0, Cases).
lambda__process_goal_2(some(Vars, Goal0), GoalInfo,
some(Vars, Goal) - GoalInfo) -->
lambda__process_goal(Goal0, Goal).
lambda__process_goal_2(if_then_else(Vars, A0, B0, C0, SM), GoalInfo,
if_then_else(Vars, A, B, C, SM) - GoalInfo) -->
lambda__process_goal(A0, A),
lambda__process_goal(B0, B),
lambda__process_goal(C0, C).
lambda__process_goal_2(higher_order_call(A,B,C,D,E,F), GoalInfo,
higher_order_call(A,B,C,D,E,F) - GoalInfo) -->
[].
lambda__process_goal_2(class_method_call(A,B,C,D,E,F), GoalInfo,
class_method_call(A,B,C,D,E,F) - GoalInfo) -->
[].
lambda__process_goal_2(call(A,B,C,D,E,F), GoalInfo,
call(A,B,C,D,E,F) - GoalInfo) -->
[].
lambda__process_goal_2(pragma_c_code(A,B,C,D,E,F,G), GoalInfo,
pragma_c_code(A,B,C,D,E,F,G) - GoalInfo) -->
[].
:- pred lambda__process_goal_list(list(hlds_goal), list(hlds_goal),
lambda_info, lambda_info).
:- mode lambda__process_goal_list(in, out, in, out) is det.
lambda__process_goal_list([], []) --> [].
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals]) -->
lambda__process_goal(Goal0, Goal),
lambda__process_goal_list(Goals0, Goals).
:- pred lambda__process_cases(list(case), list(case),
lambda_info, lambda_info).
:- mode lambda__process_cases(in, out, in, out) is det.
lambda__process_cases([], []) --> [].
lambda__process_cases([case(ConsId, Goal0) | Cases0],
[case(ConsId, Goal) | Cases]) -->
lambda__process_goal(Goal0, Goal),
lambda__process_cases(Cases0, Cases).
:- pred lambda__process_lambda(pred_or_func, list(prog_var), list(mode),
determinism, list(prog_var), hlds_goal, unification,
unify_rhs, unification, lambda_info, lambda_info).
:- mode lambda__process_lambda(in, in, in, in, in, in, in, out, out,
in, out) is det.
lambda__process_lambda(PredOrFunc, Vars, Modes, Det, OrigNonLocals0, LambdaGoal,
Unification0, Functor, Unification, LambdaInfo0, LambdaInfo) :-
LambdaInfo0 = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
TVarMap, TCVarMap, Markers, POF, PredName, Owner, ModuleInfo0),
% XXX existentially typed lambda expressions are not yet supported
% (see the documentation at top of this file)
ExistQVars = [],
LambdaGoal = _ - LambdaGoalInfo,
goal_info_get_nonlocals(LambdaGoalInfo, LambdaNonLocals),
goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes,
ExistQVars, LambdaNonLocals, ExtraTypeInfos),
lambda__transform_lambda(PredOrFunc, PredName, Vars, Modes, Det,
OrigNonLocals0, ExtraTypeInfos, LambdaGoal, Unification0,
VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap,
Markers, Owner, ModuleInfo0, Functor, Unification, ModuleInfo),
LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
TVarMap, TCVarMap, Markers, POF, PredName, Owner, ModuleInfo).
lambda__transform_lambda(PredOrFunc, OrigPredName, Vars, Modes, Detism,
OrigVars, ExtraTypeInfos, LambdaGoal, Unification0,
VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap,
Markers, Owner, ModuleInfo0, Functor,
Unification, ModuleInfo) :-
(
Unification0 = construct(Var0, _, _, UniModes0)
->
Var = Var0,
UniModes1 = UniModes0
;
error("polymorphism__transform_lambda: weird unification")
),
% Optimize a special case: replace
% `lambda([Y1, Y2, ...] is Detism, p(X1, X2, ..., Y1, Y2, ...))'
% where `p' has determinism `Detism' with
% `p(X1, X2, ...)'
%
% This optimization is only valid if the modes of the Xi are
% input, since only input arguments can be curried.
% It's also only valid if all the inputs in the Yi precede the
% outputs. It's also not valid if any of the Xi are in the Yi.
LambdaGoal = _ - LambdaGoalInfo,
goal_info_get_nonlocals(LambdaGoalInfo, NonLocals0),
set__delete_list(NonLocals0, Vars, NonLocals1),
module_info_globals(ModuleInfo0, Globals),
% If typeinfo_liveness is set, all type_infos for the
% arguments should be included, not just the ones
% that are used.
globals__lookup_bool_option(Globals,
typeinfo_liveness, TypeInfoLiveness),
( TypeInfoLiveness = yes ->
set__union(NonLocals1, ExtraTypeInfos, NonLocals)
;
NonLocals = NonLocals1
),
set__to_sorted_list(NonLocals, ArgVars1),
(
LambdaGoal = call(PredId0, ProcId0, CallVars,
_, _, PredName0) - _,
module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0, _,
Call_ProcInfo),
% check that this procedure uses an args_method which
% is always directly higher-order callable.
proc_info_args_method(Call_ProcInfo, Call_ArgsMethod),
module_info_globals(ModuleInfo0, Globals),
arg_info__args_method_is_ho_callable(Globals,
Call_ArgsMethod, yes),
list__remove_suffix(CallVars, Vars, InitialVars),
% check that none of the variables that we're trying to
% use as curried arguments are lambda-bound variables
\+ (
list__member(InitialVar, InitialVars),
list__member(InitialVar, Vars)
),
proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
determinism_to_code_model(Detism, CodeModel),
% Check that the code models are compatible.
% Note that det is not compatible with semidet,
% and semidet is not compatible with nondet,
% since the arguments go in different registers.
% But det is compatible with nondet.
( CodeModel = Call_CodeModel
; CodeModel = model_non, Call_CodeModel = model_det
),
% check that the curried arguments are all input
proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
list__length(InitialVars, NumInitialVars),
list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
\+ ( list__member(Mode, CurriedArgModes),
\+ mode_is_input(ModuleInfo0, Mode)
)
->
ArgVars = InitialVars,
PredId = PredId0,
ProcId = ProcId0,
PredName = PredName0,
ModuleInfo = ModuleInfo0,
NumArgVars = NumInitialVars,
mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes,
ModuleInfo0, UniModes)
;
% Prepare to create a new predicate for the lambda
% expression: work out the arguments, module name, predicate
% name, arity, arg types, determinism,
% context, status, etc. for the new predicate.
ArgVars = ArgVars1,
list__append(ArgVars, Vars, AllArgVars),
module_info_name(ModuleInfo0, ModuleName),
module_info_next_lambda_count(ModuleInfo0, LambdaCount,
ModuleInfo1),
goal_info_get_context(LambdaGoalInfo, OrigContext),
term__context_line(OrigContext, OrigLine),
make_pred_name_with_context(ModuleName, "IntroducedFrom",
PredOrFunc, OrigPredName, OrigLine,
LambdaCount, PredName),
goal_info_get_context(LambdaGoalInfo, LambdaContext),
% The TVarSet is a superset of what it really ought be,
% but that shouldn't matter.
% XXX existentially typed lambda expressions are not
% yet supported (see the documentation at top of this file)
ExistQVars = [],
lambda__uni_modes_to_modes(UniModes1, OrigArgModes),
% We have to jump through hoops to work out the mode
% of the lambda predicate. For introduced
% type_info arguments, we use the mode "in". For the original
% non-local vars, we use the modes from `UniModes1'.
% For the lambda var arguments at the end,
% we use the mode in the lambda expression.
list__length(ArgVars, NumArgVars),
in_mode(In),
list__duplicate(NumArgVars, In, InModes),
map__from_corresponding_lists(ArgVars, InModes,
ArgModesMap),
map__from_corresponding_lists(OrigVars, OrigArgModes,
OrigArgModesMap),
map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),
% Recompute the uni_modes.
mode_util__modes_to_uni_modes(ArgModes1, ArgModes1,
ModuleInfo1, UniModes),
list__append(ArgModes1, Modes, AllArgModes),
map__apply_to_list(AllArgVars, VarTypes, ArgTypes),
(
% Pass through the aditi markers for
% aggregate query closures.
% XXX we should differentiate between normal
% top-down closures and aggregate query closures,
% possibly by using a different type for aggregate
% queries. Currently all nondet lambda expressions
% within Aditi predicates are treated as aggregate
% inputs.
determinism_components(Detism, _, at_most_many),
check_marker(Markers, aditi)
->
markers_to_marker_list(Markers, MarkerList0),
list__filter(
lambda([Marker::in] is semidet,
% Pass through only Aditi markers.
% Don't pass through `context' markers, since
% they are useless for non-recursive predicates
% such as the created predicate.
( Marker = aditi
; Marker = dnf
; Marker = psn
; Marker = naive
; Marker = supp_magic
; Marker = aditi_memo
; Marker = aditi_no_memo
)),
MarkerList0, MarkerList),
marker_list_to_markers(MarkerList, LambdaMarkers)
;
init_markers(LambdaMarkers)
),
% Choose an args_method which is always directly callable
% from do_call_*_closure even if the inputs don't preceed
% the outputs in the declaration. mercury_ho_call.c requires
% that procedures which are directly higher-order-called use
% the compact args_method.
%
% Previously we permuted the argument variables so that
% inputs came before outputs, but that resulted in the
% HLDS not being type or mode correct which caused problems
% for some transformations and for rerunning mode analysis.
arg_info__ho_call_args_method(Globals, ArgsMethod),
% Now construct the proc_info and pred_info for the new
% single-mode predicate, using the information computed above
proc_info_create(VarSet, VarTypes, AllArgVars,
AllArgModes, Detism, LambdaGoal, LambdaContext,
TVarMap, TCVarMap, ArgsMethod, ProcInfo),
pred_info_create(ModuleName, PredName, TVarSet, ExistQVars,
ArgTypes, true, LambdaContext, local, LambdaMarkers,
PredOrFunc, Constraints, Owner, ProcInfo,
ProcId, PredInfo),
% save the new predicate in the predicate table
module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
predicate_table_insert(PredicateTable0, PredInfo,
PredId, PredicateTable),
module_info_set_predicate_table(ModuleInfo1, PredicateTable,
ModuleInfo)
),
Functor = functor(cons(PredName, NumArgVars), ArgVars),
ConsId = pred_const(PredId, ProcId),
Unification = construct(Var, ConsId, ArgVars, UniModes).
:- pred lambda__uni_modes_to_modes(list(uni_mode), list(mode)).
:- mode lambda__uni_modes_to_modes(in, out) is det.
% This predicate works out the modes of the original non-local
% variables of a lambda expression based on the list of uni_mode
% in the unify_info for the lambda unification.
lambda__uni_modes_to_modes([], []).
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
Mode = (Initial1 -> Initial1),
lambda__uni_modes_to_modes(UniModes, Modes).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%