Files
mercury/compiler/export.m
Thomas Conway 5c955626f2 These changes make var' and term' polymorphic.
Estimated hours taken: 20

These changes make `var' and `term' polymorphic. This allows us to make
variables and terms representing types of a different type to those
representing program terms and those representing insts.

These changes do not *fix* any existing problems (for instance
there was a messy conflation of program variables and inst variables,
and where necessary I've just called varset__init(InstVarSet) with
an XXX comment).

NEWS:
	Mention the changes to the standard library.

library/term.m:
	Make term, var and var_supply polymorphic.
	Add new predicates:
		term__generic_term/1
		term__coerce/2
		term__coerce_var/2
		term__coerce_var_supply/2

library/varset.m:
	Make varset polymorphic.
	Add the new predicate:
		varset__coerce/2

compiler/prog_data.m:
	Introduce type equivalences for the different kinds of
	vars, terms, and varsets that we use (tvar and tvarset
	were already there but have been changed to use the
	polymorphic var and term).

	Also change the various kinds of items to use the appropriate
	kinds of var/varset.

compiler/*.m:
	Thousands of boring changes to make the compiler type correct
	with the different types for type, program and inst vars and
	varsets.
1998-11-20 04:10:36 +00:00

568 lines
18 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% This module defines predicates to produce the functions which are
% exported to C via a `pragma export' declaration.
% Note: any changes here might also require similar changes to the handling
% of `pragma import' declarations, which are handled in make_hlds.m.
% Main authors: dgj.
%-----------------------------------------------------------------------------%
:- module export.
:- interface.
:- import_module hlds_module, prog_data, llds.
:- import_module io.
% From the module_info, get a list of c_export_decls,
% each of which holds information about the declaration
% of a C function named in a `pragma export' declaration,
% which is used to allow a call to be made to a Mercury
% procedure from C.
:- pred export__get_c_export_decls(module_info, c_export_decls).
:- mode export__get_c_export_decls(in, out) is det.
% From the module_info, get a list of c_export_defns,
% each of which is a string containing the C code
% for defining a C function named in a `pragma export' decl.
:- pred export__get_c_export_defns(module_info, c_export_defns).
:- mode export__get_c_export_defns(in, out) is det.
% Produce a header file containing prototypes for the exported C
% functions
:- pred export__produce_header_file(c_export_decls, module_name,
io__state, io__state).
:- mode export__produce_header_file(in, in, di, uo) is det.
% Convert the type, to a string corresponding to its C type.
% (Defaults to Word).
:- pred export__type_to_type_string(type, string).
:- mode export__type_to_type_string(in, out) is det.
% Generate C code to convert an rval (represented as a string), from
% a C type to a mercury C type (ie. convert strings and floats to
% words) and return the resulting C code as a string.
:- pred convert_type_to_mercury(string, type, string).
:- mode convert_type_to_mercury(in, in, out) is det.
% Generate C code to convert an rval (represented as a string), from
% a mercury C type to a C type. (ie. convert words to strings and
% floats if required) and return the resulting C code as a string.
:- pred convert_type_from_mercury(string, type, string).
:- mode convert_type_from_mercury(in, in, out) is det.
% Certain types, namely io__state and store__store(S),
% are just dummy types used to ensure logical semantics;
% there is no need to actually pass them, and so when
% importing or exporting procedures to/from C, we don't
% include arguments with these types.
:- pred export__exclude_argument_type(type).
:- mode export__exclude_argument_type(in) is semidet.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module code_gen, code_util, hlds_pred, llds_out, modules.
:- import_module term, varset.
:- import_module library, map, int, string, std_util, assoc_list, require.
:- import_module list, bool.
%-----------------------------------------------------------------------------%
export__get_c_export_decls(HLDS, C_ExportDecls) :-
module_info_get_predicate_table(HLDS, PredicateTable),
predicate_table_get_preds(PredicateTable, Preds),
module_info_get_pragma_exported_procs(HLDS, ExportedProcs),
export__get_c_export_decls_2(Preds, ExportedProcs, C_ExportDecls).
:- pred export__get_c_export_decls_2(pred_table, list(pragma_exported_proc),
list(c_export_decl)).
:- mode export__get_c_export_decls_2(in, in, out) is det.
export__get_c_export_decls_2(_Preds, [], []).
export__get_c_export_decls_2(Preds, [E|ExportedProcs], C_ExportDecls) :-
E = pragma_exported_proc(PredId, ProcId, C_Function),
get_export_info(Preds, PredId, ProcId, C_RetType,
_DeclareReturnVal, _FailureAction, _SuccessAction,
HeadArgInfoTypes),
get_argument_declarations(HeadArgInfoTypes, no, ArgDecls),
C_ExportDecl = c_export_decl(C_RetType, C_Function, ArgDecls),
export__get_c_export_decls_2(Preds, ExportedProcs, C_ExportDecls0),
C_ExportDecls = [C_ExportDecl | C_ExportDecls0].
%-----------------------------------------------------------------------------%
export__get_c_export_defns(Module, ExportedProcsCode) :-
module_info_get_pragma_exported_procs(Module, ExportedProcs),
module_info_get_predicate_table(Module, PredicateTable),
predicate_table_get_preds(PredicateTable, Preds),
export__to_c(Preds, ExportedProcs, Module, ExportedProcsCode).
% For each exported procedure, produce a C function.
% The code we generate is in the form
%
% #if SEMIDET
% bool
% #elif FUNCTION
% Word
% #else
% void
% #endif
% <function name>(Word Mercury__Argument1, Word *Mercury__Argument2...)
% /* Word for input, Word* for output */
% {
% #if NUM_REAL_REGS > 0
% Word c_regs[NUM_REAL_REGS];
% #endif
% #if FUNCTION
% Word retval;
% #endif
%
% /* save the registers that our C caller may be using */
% save_regs_to_mem(c_regs);
%
% /* restore Mercury's registers that were saved as */
% /* we entered C from Mercury (the process must */
% /* always start in Mercury so that we can */
% /* init_engine() etc.) */
% restore_registers();
% <copy input arguments from Mercury__Arguments into registers>
% /* save the registers which may be clobbered */
% /* by the C function call call_engine(). */
% save_transient_registers();
% {
% Declare_entry(<label of called proc>);
% call_engine(ENTRY(<label of called proc>);
% }
% /* restore the registers which may have been */
% /* clobbered by the return from the C function */
% /* call_engine() */
% restore_transient_registers();
% #if SEMIDET
% if (!r1) {
% restore_regs_from_mem(c_regs);
% return FALSE;
% }
% #elif FUNCTION
% <copy return value register into retval>
% #endif
% <copy output args from registers into *Mercury__Arguments>
% restore_regs_from_mem(c_regs);
% #if SEMIDET
% return TRUE;
% #elif FUNCTION
% return retval;
% #endif
% }
:- pred export__to_c(pred_table, list(pragma_exported_proc), module_info,
list(string)).
:- mode export__to_c(in, in, in, out) is det.
export__to_c(_Preds, [], _Module, []).
export__to_c(Preds, [E|ExportedProcs], Module, ExportedProcsCode) :-
E = pragma_exported_proc(PredId, ProcId, C_Function),
get_export_info(Preds, PredId, ProcId,
C_RetType, MaybeDeclareRetval, MaybeFail, MaybeSucceed,
ArgInfoTypes),
get_argument_declarations(ArgInfoTypes, yes, ArgDecls),
% work out which arguments are input, and which are output,
% and copy to/from the mercury registers.
get_input_args(ArgInfoTypes, 0, InputArgs),
copy_output_args(ArgInfoTypes, 0, OutputArgs),
code_util__make_proc_label(Module, PredId, ProcId, ProcLabel),
llds_out__get_proc_label(ProcLabel, yes, ProcLabelString),
string__append_list([ "\n",
C_RetType, "\n",
C_Function, "(", ArgDecls, ")\n{\n",
"#if NUM_REAL_REGS > 0\n",
"\tWord c_regs[NUM_REAL_REGS];\n",
"#endif\n",
MaybeDeclareRetval,
"\n",
"\tsave_regs_to_mem(c_regs);\n",
"\trestore_registers();\n",
InputArgs,
"\tsave_transient_registers();\n",
"\t{\n\tDeclare_entry(",
ProcLabelString,
");\n",
"\tcall_engine(ENTRY(",
ProcLabelString,
"));\n\t}\n",
"\trestore_transient_registers();\n",
MaybeFail,
OutputArgs,
"\trestore_regs_from_mem(c_regs);\n",
MaybeSucceed,
"}\n\n"],
Code),
export__to_c(Preds, ExportedProcs, Module, TheRest),
ExportedProcsCode = [Code|TheRest].
% get_export_info(Preds, PredId, ProcId,
% C_RetType, MaybeDeclareRetval, MaybeFail, MaybeSuccess,
% ArgInfoTypes):
% Figure out the C return type, the actions on success
% and failure, and the argument locations/modes/types
% for a given procedure.
:- pred get_export_info(pred_table, pred_id, proc_id,
string, string, string, string,
assoc_list(arg_info, type)).
:- mode get_export_info(in, in, in, out, out, out, out, out) is det.
get_export_info(Preds, PredId, ProcId, C_RetType,
MaybeDeclareRetval, MaybeFail, MaybeSucceed, ArgInfoTypes) :-
map__lookup(Preds, PredId, PredInfo),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
pred_info_procedures(PredInfo, ProcTable),
map__lookup(ProcTable, ProcId, ProcInfo),
proc_info_arg_info(ProcInfo, ArgInfos),
pred_info_arg_types(PredInfo, ArgTypes),
proc_info_interface_code_model(ProcInfo, CodeModel),
assoc_list__from_corresponding_lists(ArgInfos, ArgTypes,
ArgInfoTypes0),
% figure out what the C return type should be,
% and build the `return' instructions (if any)
( CodeModel = model_det,
(
PredOrFunc = function,
pred_args_to_func_args(ArgInfoTypes0, ArgInfoTypes1,
arg_info(RetArgLoc, RetArgMode) - RetType),
RetArgMode = top_out,
\+ export__exclude_argument_type(RetType)
->
export__type_to_type_string(RetType, C_RetType),
argloc_to_string(RetArgLoc, RetArgString0),
convert_type_from_mercury(RetArgString0, RetType,
RetArgString),
string__append_list(["\t", C_RetType,
" return_value;\n"],
MaybeDeclareRetval),
string__append_list(["\treturn_value = ", RetArgString,
";\n"], MaybeFail),
string__append_list(["\treturn return_value;\n"],
MaybeSucceed),
ArgInfoTypes2 = ArgInfoTypes1
;
C_RetType = "void",
MaybeDeclareRetval = "",
MaybeFail = "",
MaybeSucceed = "",
ArgInfoTypes2 = ArgInfoTypes0
)
; CodeModel = model_semi,
% we treat semidet functions the same as semidet predicates,
% which means that for Mercury functions the Mercury return
% value becomes the last argument, and the C return value
% is a bool that is used to indicate success or failure.
C_RetType = "bool",
MaybeDeclareRetval = "",
string__append_list([
"\tif (!r1) {\n",
"\t\trestore_regs_from_mem(c_regs);\n",
"\treturn FALSE;\n",
"\t}\n"
], MaybeFail),
MaybeSucceed = "\treturn TRUE;\n",
ArgInfoTypes2 = ArgInfoTypes0
; CodeModel = model_non,
% we should probably check this earlier, e.g. in make_hlds.m,
% but better we catch this error late than never...
C_RetType = "\n#error ""cannot export nondet procedure""\n",
MaybeDeclareRetval = "",
MaybeFail = "",
MaybeSucceed = "",
ArgInfoTypes2 = ArgInfoTypes0
),
list__filter(export__include_arg, ArgInfoTypes2, ArgInfoTypes).
% export__include_arg(ArgInfoType):
% Succeeds iff the specified argument should be included in
% the arguments of the exported C function.
%
:- pred export__include_arg(pair(arg_info, type)::in) is semidet.
export__include_arg(arg_info(_Loc, Mode) - Type) :-
Mode \= top_unused,
\+ export__exclude_argument_type(Type).
% get_argument_declarations(Args, NameThem, DeclString):
% build a string to declare the argument types (and if
% NameThem = yes, the argument names) of a C function.
:- pred get_argument_declarations(assoc_list(arg_info, type), bool, string).
:- mode get_argument_declarations(in, in, out) is det.
get_argument_declarations([], _, "void").
get_argument_declarations([X|Xs], NameThem, Result) :-
get_argument_declarations_2([X|Xs], 0, NameThem, Result).
:- pred get_argument_declarations_2(assoc_list(arg_info, type), int, bool,
string).
:- mode get_argument_declarations_2(in, in, in, out) is det.
get_argument_declarations_2([], _, _, "").
get_argument_declarations_2([AT|ATs], Num0, NameThem, Result) :-
AT = ArgInfo - Type,
Num is Num0 + 1,
get_argument_declaration(ArgInfo, Type, Num, NameThem,
TypeString, ArgName),
(
ATs = []
->
string__append(TypeString, ArgName, Result)
;
get_argument_declarations_2(ATs, Num, NameThem, TheRest),
string__append_list([TypeString, ArgName, ", ", TheRest],
Result)
).
:- pred get_argument_declaration(arg_info, type, int, bool, string, string).
:- mode get_argument_declaration(in, in, in, in, out, out) is det.
get_argument_declaration(ArgInfo, Type, Num, NameThem, TypeString, ArgName) :-
ArgInfo = arg_info(_Loc, Mode),
( NameThem = yes ->
string__int_to_string(Num, NumString),
string__append(" Mercury__argument", NumString, ArgName)
;
ArgName = ""
),
export__type_to_type_string(Type, TypeString0),
(
Mode = top_out
->
% output variables are passed as pointers
string__append(TypeString0, " *", TypeString)
;
TypeString = TypeString0
).
:- pred get_input_args(assoc_list(arg_info, type), int, string).
:- mode get_input_args(in, in, out) is det.
get_input_args([], _, "").
get_input_args([AT|ATs], Num0, Result) :-
AT = ArgInfo - Type,
ArgInfo = arg_info(ArgLoc, Mode),
Num is Num0 + 1,
(
Mode = top_in,
string__int_to_string(Num, NumString),
string__append("Mercury__argument", NumString, ArgName0),
convert_type_to_mercury(ArgName0, Type, ArgName),
argloc_to_string(ArgLoc, ArgLocString),
string__append_list(
["\t", ArgLocString, " = ", ArgName, ";\n" ],
InputArg)
;
Mode = top_out,
InputArg = ""
;
Mode = top_unused,
InputArg = ""
),
get_input_args(ATs, Num, TheRest),
string__append(InputArg, TheRest, Result).
:- pred copy_output_args(assoc_list(arg_info, type), int, string).
:- mode copy_output_args(in, in, out) is det.
copy_output_args([], _, "").
copy_output_args([AT|ATs], Num0, Result) :-
AT = ArgInfo - Type,
ArgInfo = arg_info(ArgLoc, Mode),
Num is Num0 + 1,
(
Mode = top_in,
OutputArg = ""
;
Mode = top_out,
string__int_to_string(Num, NumString),
string__append("Mercury__argument", NumString, ArgName),
argloc_to_string(ArgLoc, ArgLocString0),
convert_type_from_mercury(ArgLocString0, Type, ArgLocString),
string__append_list(
["\t*", ArgName, " = ", ArgLocString, ";\n" ],
OutputArg)
;
Mode = top_unused,
OutputArg = ""
),
copy_output_args(ATs, Num, TheRest),
string__append(OutputArg, TheRest, Result).
% convert an argument location (currently just a register number)
% to a string representing a C code fragment that names it.
:- pred argloc_to_string(arg_loc, string).
:- mode argloc_to_string(in, out) is det.
argloc_to_string(RegNum, RegName) :-
string__int_to_string(RegNum, RegNumString),
(
% XXX We should handle float registers
% XXX This magic number can't be good
RegNum > 32
->
string__append_list(["r(", RegNumString, ")"], RegName)
;
string__append("r", RegNumString, RegName)
).
convert_type_to_mercury(Rval, Type, ConvertedRval) :-
(
Type = term__functor(term__atom("string"), [], _)
->
string__append("(Word) ", Rval, ConvertedRval)
;
Type = term__functor(term__atom("float"), [], _)
->
string__append_list(["float_to_word(", Rval, ")" ],
ConvertedRval)
;
Type = term__functor(term__atom("character"), [], _)
->
% We need to explicitly cast to UnsignedChar
% to avoid problems with C compilers for which `char'
% is signed.
string__append("(UnsignedChar) ", Rval, ConvertedRval)
;
ConvertedRval = Rval
).
convert_type_from_mercury(Rval, Type, ConvertedRval) :-
(
Type = term__functor(term__atom("string"), [], _)
->
string__append("(String) ", Rval, ConvertedRval)
;
Type = term__functor(term__atom("float"), [], _)
->
string__append_list(["word_to_float(", Rval, ")" ],
ConvertedRval)
;
ConvertedRval = Rval
).
% Certain types, namely io__state and store__store(S),
% are just dummy types used to ensure logical semantics;
% there is no need to actually pass them, and so when
% importing or exporting procedures to/from C, we don't
% include arguments with these types.
export__exclude_argument_type(Type) :-
Type = term__functor(term__atom(":"), [
term__functor(term__atom(ModuleName), [], _),
term__functor(term__atom(TypeName), TypeArgs, _)
], _),
list__length(TypeArgs, TypeArity),
export__exclude_argument_type_2(ModuleName, TypeName, TypeArity).
:- pred export__exclude_argument_type_2(string::in, string::in, arity::in)
is semidet.
export__exclude_argument_type_2("io", "state", 0). % io:state/0
export__exclude_argument_type_2("store", "store", 1). % store:store/1.
%-----------------------------------------------------------------------------%
% Should this predicate go in llds_out.m?
export__produce_header_file([], _) --> [].
export__produce_header_file(C_ExportDecls, ModuleName) -->
{ C_ExportDecls = [_|_] },
module_name_to_file_name(ModuleName, ".h", yes, FileName),
io__tell(FileName, Result),
(
{ Result = ok }
->
module_name_to_file_name(ModuleName, ".m", no, SourceFileName),
{ library__version(Version) },
io__write_strings(["/*\n** Automatically generated from `",
SourceFileName,
".m' by the\n** Mercury compiler, version ", Version,
". Do not edit.\n*/\n"]),
{ llds_out__sym_name_mangle(ModuleName, MangledModuleName) },
{ string__to_upper(MangledModuleName, UppercaseModuleName) },
{ string__append(UppercaseModuleName, "_H", GuardMacroName) },
io__write_strings([
"#ifndef ", GuardMacroName, "\n",
"#define ", GuardMacroName, "\n",
"\n",
"#ifdef __cplusplus\n",
"extern ""C"" {\n",
"#endif\n",
"\n",
"#ifndef MERCURY_HDR_EXCLUDE_IMP_H\n",
"#include ""mercury_imp.h""\n",
"#endif\n",
"\n"]),
export__produce_header_file_2(C_ExportDecls),
io__write_strings([
"\n",
"#ifdef __cplusplus\n",
"}\n",
"#endif\n",
"\n",
"#endif /* ", GuardMacroName, " */\n"]),
io__told
;
io__progname_base("export.m", ProgName),
io__write_string("\n"),
io__write_string(ProgName),
io__write_string(": can't open `"),
io__write_string(FileName),
io__write_string("' for output\n"),
io__set_exit_status(1)
).
:- pred export__produce_header_file_2(c_export_decls, io__state, io__state).
:- mode export__produce_header_file_2(in, di, uo) is det.
export__produce_header_file_2([]) --> [].
export__produce_header_file_2([E|ExportedProcs]) -->
{ E = c_export_decl(C_RetType, C_Function, ArgDecls) },
% output the function header
io__write_string(C_RetType),
io__write_string(" "),
io__write_string(C_Function),
io__write_string("("),
io__write_string(ArgDecls),
io__write_string(");\n"),
export__produce_header_file_2(ExportedProcs).
% Convert a term representation of a variable type to a string which
% represents the C type of the variable
% Apart from special cases, local variables become Words
export__type_to_type_string(Type, Result) :-
( Type = term__functor(term__atom("int"), [], _) ->
Result = "Integer"
; Type = term__functor(term__atom("float"), [], _) ->
Result = "Float"
; Type = term__functor(term__atom("string"), [], _) ->
Result = "String"
; Type = term__functor(term__atom("character"), [], _) ->
Result = "Char"
;
Result = "Word"
).
%-----------------------------------------------------------------------------%