Files
mercury/compiler/context.m
Simon Taylor 18430aaef1 Aditi compilation.
Estimated hours taken: 1200

Aditi compilation.

compiler/options.m:
	The documentation for these is commented out because the Aditi
	system is not currently useful to the general public.
	--aditi: enable Aditi compilation.
	--dump-rl: write the intermediate RL to `<module>.rl_dump'.
	--dump-rl-bytecode: write a text version of the bytecodes
		to `<module>.rla'
	--aditi-only: don't produce a `.c' file.
	--filenames-from-stdin: accept a list of filenames to compile
		from stdin. This is used by the query shell.
	--optimize-rl, --optimize-rl-cse, --optimize-rl-invariants,
	--optimize-rl-index, --detect-rl-streams:
		Options to control RL optimization passes.
	--aditi-user:
		Default owner of any Aditi procedures,
		defaults to $USER or "guest".
	--generate-schemas:
		write schemas for base relations to `<module>'.base_schema
		and schemas for derived relations to `<module>'.derived_schema.
		This is used by the query shell.

compiler/handle_options.m:
	Handle the default for --aditi-user.

compiler/hlds_pred.m:
compiler/prog_data.m:
compiler/prog_io_pragma.m:
compiler/make_hlds.m:
	Add some Aditi pragma declarations - `aditi', `supp_magic', `context',
	`naive', `psn' (predicate semi-naive), `aditi_memo', `aditi_no_memo',
	`base_relation', `owner' and `index'.
	Separate out code to parse a predicate name and arity.

compiler/hlds_pred.m:
	Add predicates to identify Aditi procedures.
	Added markers `generate_inline' and `aditi_interface', which
	are used internally for Aditi code generation.
	Add an `owner' field to pred_infos, which is used for database
	security checks.
	Add a field to pred_infos to hold the list of indexes for a base
	relation.

compiler/make_hlds.m:
	Some pragmas must be exported if the corresponding predicates
	are exported, check this.
	Make sure stratification of Aditi procedures is checked.
	Predicates with a mode declaration but no type declaration
	are no longer assumed to be local.
	Set the `do_aditi_compilation' field of the module_info if there
	are any local Aditi procedures or base relations.
	Check that `--aditi' is set if Aditi compilation is required.

compiler/post_typecheck.m:
	Check that every Aditi predicate has an `aditi__state' argument,
	which is used to ensure sequencing of updates and that Aditi
	procedures are only called within transactions.

compiler/dnf.m:
	Changed the definition of disjunctive normal form slightly
	so that a call followed by some atomic goals not including
	any database calls is considered atomic. magic.m can handle
	this kind of goal, and it results in more efficient RL code.

compiler/hlds_module.m:
compiler/dependency_graph.m:
	Added dependency_graph__get_scc_entry_points which finds
	the procedures in an SCC which could be called from outside.
	Added a new field to the dependency_info, the
	aditi_dependency_ordering. This contains all Aditi SCCs of
	the original program, with multiple SCCs merged where
	possible to improve the effectiveness of differential evaluation
	and the low level RL optimizations.

compiler/hlds_module.m:
	Add a field to record whether there are any local Aditi procedures
	in the current module.
	Added versions of module_info_pred_proc_info and
	module_info_set_pred_proc_info which take a pred_proc_id,
	not a separate pred_id and proc_id.

compiler/polymorphism.m:
compiler/lambda.m:
	Make sure that predicates created for closures in Aditi procedures
	have the correct markers.

compiler/goal_util.m:
	Added goal_util__switch_to_disjunction,
	goal_util__case_to_disjunct (factored out from simplify.m)
	and goal_util__if_then_else_to_disjunction. These are
	require because supplementary magic sets can't handle
	if-then-elses or switches.

compiler/type_util.m:
	Added type_is_aditi_state/1.

compiler/mode_util.m:
	Added partition_args/5 which partitions a list of arguments
	into inputs and others.

compiler/inlining.m:
	Don't inline memoed procedures.
	Don't inline Aditi procedures into non-Aditi procedures.

compiler/intermod.m:
	Handle Aditi markers.
	Clean up handling of markers which should not appear in `.opt' files.

compiler/simplify.m:
	Export a slightly different interface for use by magic.m.
	Remove explicit quantifications where possible.
	Merge multiple nested quantifications.
	Don't report infinite recursion warnings for Aditi procedures.

compiler/prog_out.m:
	Generalised the code to output a module list to write any list.

compiler/code_gen.m:
compiler/arg_info.m:
	Don't process Aditi procedures.

compiler/mercury_compile.m:
	Call magic.m and rl_gen.m.
	Don't perform the low-level annotation passes on Aditi procedures.
	Remove calls to constraint.m - sometime soon a rewritten version
	will be called directly from deforestation.

compiler/passes_aux.m:
	Add predicates to process only non-Aditi procedures.

compiler/llds.m:
compiler/llds_out.m:
	Added new `code_addr' enum members, do_{det,semidet,nondet}_aditi_call,
	which are defined in extras/aditi/aditi.m.

compiler/call_gen.m:
	Handle generation of do_*_aditi_call.

compiler/llds_out.m:
	Write the RL code for the module as a constant char array
	in the `.c' file.

compiler/term_errors.m:
compiler/error_util.m:
	Move code to describe predicates into error_util.m
	Allow the caller to explicitly add line breaks.
	Added error_util:list_to_pieces to format a list of
	strings.
	Reordered some arguments for currying.

compiler/hlds_out.m:
	Don't try to print clauses if there are none.

runtime/mercury_init.h:
util/mkinit.c:
scripts/c2init.in:
	Added a function `mercury__load_aditi_rl_code()' to the generated
	`<module>_init.c' file which throws all the RL code for the program
	at the database. This should be called at connection time by
	`aditi__connect'.
	Added an option `--aditi' which controls the output
	`mercury__load_aditi_rl_code()'.

compiler/notes/compiler_design.html:
	Document the new files.

Mmakefile:
bindist/Mmakefile:
	Don't distribute extras/aditi yet.

New files:

compiler/magic.m:
compiler/magic_util.m:
	Supplementary magic sets transformation. Report errors
	for constructs that Aditi can't handle.

compiler/context.m:
	Supplementary context transformation.

compiler/rl_gen.m:
compiler/rl_relops.m:
	Aditi code generation.

compiler/rl_info.m:
	Code generator state.

compiler/rl.m:
	Intermediate RL representation.

compiler/rl_util:
	Predicates to collect information about RL instructions.

compiler/rl_dump.m:
	Print out the representation in rl.m.

compiler/rl_opt.m:
	Control low-level RL optimizations.

compiler/rl_block.m:
	Break a procedure into basic blocks.

compiler/rl_analyse.m:
	Generic dataflow analysis for RL procedures.

compiler/rl_liveness.m:
	Make sure all relations are initialised before used, clear
	references to relations that are no longer required.

compiler/rl_loop.m:
	Loop invariant removal.

compiler/rl_block_opt.m:
	CSE and instruction merging on basic blocks.

compiler/rl_key.m:
	Detect upper/lower bounds for which a goal could succeed.

compiler/rl_sort.m:
	Use indexing for joins and projections.
	Optimize away unnecessary sorting and indexing.

compiler/rl_stream.m:
	Detect relations which don't need to be materialised.

compiler/rl_code.m:
	RL bytecode definitions. Automatically generated from the Aditi
	header files.

compiler/rl_out.m:
compiler/rl_file.m:
	Output the RL bytecodes in binary to <module>.rlo (for use by Aditi)
	and in text to <module>.rla (for use by the RL interpreter).
	Also output the schema information if --generate-schemas is set.

compiler/rl_exprn.m:
	Generate bytecodes for join conditions.

extras/aditi/Mmakefile:
extras/aditi/aditi.m:
	Definitions of some Aditi library predicates and the
	interfacing and transaction processing code.
1998-12-06 23:49:14 +00:00

578 lines
22 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1998 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: context.m
% Main author: stayl
%
% Magic context transformation, used to transform queries for evaluation
% by the Aditi deductive database. This is an alternative to the supplementary
% magic set transformation implemented by magic.m - the two transformations
% are mutually exclusive.
%
% The transformation applies to predicates which are not mutually recursive
% and which are made up only of exit rules and linear recursive rules,
% e.g. ancestor.
%
% The special property of these predicates is that the magic predicate
% contains all the answers, so we if add some plumbing to pair the
% magic tuple with the input tuple from which it was derived, we get the
% set of answers to the query.
%
% We should do some preprocessing on the goal to attempt to put it
% into a form which is recognizable as linear. Also, some transformations
% (e.g. deforestation) can take linear rules and make them non-linear.
%
% See David Kemp's PhD thesis (available from http://www.cs.mu.oz.au/~kemp).
%-----------------------------------------------------------------------------%
:- module context.
:- interface.
:- import_module hlds_goal, hlds_pred, magic_util, prog_data.
:- import_module list.
% context__process_disjuncts(OrigPredProcId, Inputs, Outputs,
% Disjuncts0, Disjuncts).
%
% OrigPredProcId is the pred_proc_id from the original program
% before the preprocessing pass. Inputs and Outputs are the
% original inputs and outputs of the procedure, not including
% the input closures added in the preprocessing pass.
:- pred context__process_disjuncts(pred_proc_id::in, list(prog_var)::in,
list(prog_var)::in, list(hlds_goal)::in, list(hlds_goal)::out,
magic_info::in, magic_info::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds_data, hlds_module, (inst), instmap.
:- import_module goal_util.
:- import_module assoc_list, bool, map, require, set, std_util, varset.
context__process_disjuncts(OldPredProcId, Inputs, Outputs,
Disjuncts0, Disjuncts) -->
list__map_foldl(
context__categorize_rule(OldPredProcId, Inputs, Outputs),
Disjuncts0, ContextRules),
context__transform_rules(OldPredProcId, ContextRules,
Inputs, Outputs, [], Disjuncts).
%-----------------------------------------------------------------------------%
:- pred context__categorize_rule(pred_proc_id::in, list(prog_var)::in,
list(prog_var)::in, hlds_goal::in,
pair(context_rule, hlds_goal_info)::out,
magic_info::in, magic_info::out) is det.
context__categorize_rule(PredProcId, InputArgs, OutputArgs, Goal,
ContextRule - GoalInfo) -->
{ goal_to_conj_list(Goal, GoalList) },
magic_info_get_module_info(ModuleInfo),
{ Goal = _ - GoalInfo },
{ goal_info_get_context(GoalInfo, Context) },
magic_info_get_pred_map(PredMap),
{ context__get_db_calls(ModuleInfo, PredMap, GoalList,
[], [], CallList, AfterGoals) },
{ context__categorize_call_list(Context, PredProcId, InputArgs,
OutputArgs, CallList, AfterGoals, ContextRule) }.
%-----------------------------------------------------------------------------%
:- pred context__get_db_calls(module_info::in, magic_map::in,
list(hlds_goal)::in, list(hlds_goal)::in, db_call_list::in,
db_call_list::out, list(hlds_goal)::out) is det.
context__get_db_calls(_, _, [], RevGoals, Calls0, Calls, AfterGoals) :-
list__reverse(Calls0, Calls),
list__reverse(RevGoals, AfterGoals).
context__get_db_calls(ModuleInfo, MagicMap, [Goal | Goals],
RevBeforeGoals, Calls0, Calls, AfterGoals) :-
(
magic_util__goal_is_aditi_call(ModuleInfo, MagicMap,
Goal, Call, AfterCallGoals)
->
list__reverse(RevBeforeGoals, BeforeGoals),
Calls1 = [BeforeGoals - Call | Calls0],
list__reverse(AfterCallGoals, RevAfterCallGoals),
context__get_db_calls(ModuleInfo, MagicMap, Goals,
RevAfterCallGoals, Calls1, Calls, AfterGoals)
;
context__get_db_calls(ModuleInfo, MagicMap, Goals,
[Goal | RevBeforeGoals], Calls0, Calls, AfterGoals)
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- type context_rule
---> non_linear(assoc_list(linearity_error, prog_context))
; exit(db_call_list, list(hlds_goal))
; left_linear(db_call, db_call_list, list(hlds_goal))
; right_linear(db_call_list, list(hlds_goal), db_call)
; multi_linear(db_call_list, list(hlds_goal), db_call)
.
% Non-recursive goals, recursive call.
:- type db_call_list == assoc_list(list(hlds_goal), db_call).
:- pred context__categorize_call_list(term__context::in, pred_proc_id::in,
list(prog_var)::in, list(prog_var)::in, db_call_list::in,
list(hlds_goal)::in, context_rule::out) is det.
context__categorize_call_list(Context, PredProcId, InputArgs, OutputArgs,
Calls, AfterGoals, Result) :-
(
\+ (
list__member(_ - Call, Calls),
magic_util__db_call_pred_proc_id(Call, PredProcId)
)
->
Result = exit(Calls, AfterGoals)
;
context__check_left_linear_rule(PredProcId, InputArgs,
OutputArgs, Calls, AfterGoals, LeftResult),
% If context__check_left_linear_rule came up with reasons
% for the rule not being left-linear, it couldn't be
% right- or multi-linear.
( LeftResult = non_linear([]) ->
context__check_right_or_multi_linear_rule(Context,
PredProcId, InputArgs, OutputArgs, Calls,
AfterGoals, Result)
;
Result = LeftResult
)
).
%-----------------------------------------------------------------------------%
:- pred context__check_left_linear_rule(pred_proc_id::in, list(prog_var)::in,
list(prog_var)::in, db_call_list::in,
list(hlds_goal)::in, context_rule::out) is det.
context__check_left_linear_rule(PredProcId, InputArgs,
_OutputArgs, Calls, AfterGoals, LeftResult) :-
(
% Check whether the rule is left-linear.
Calls = [[] - Call | OtherCalls],
magic_util__db_call_pred_proc_id(Call, PredProcId),
\+ (
list__member(_ - OtherCall, OtherCalls),
magic_util__db_call_pred_proc_id(OtherCall, PredProcId)
)
->
magic_util__db_call_input_args(Call, CallInputs),
% The inputs to the recursive call must be the
% inputs to the procedure.
( CallInputs = InputArgs ->
Errors0 = []
;
magic_util__db_call_context(Call, Context),
Errors0 = [inputs_to_recursive_call - Context]
),
% None of the inputs may occur in the other goals in the rule.
set__list_to_set(InputArgs, InputSet),
list__foldl(context__check_db_call_nonlocals(InputSet),
OtherCalls, Errors0, Errors),
( Errors = [] ->
LeftResult = left_linear(Call, OtherCalls, AfterGoals)
;
LeftResult = non_linear(Errors)
)
;
LeftResult = non_linear([])
).
%-----------------------------------------------------------------------------%
:- pred context__check_right_or_multi_linear_rule(prog_context::in,
pred_proc_id::in, list(prog_var)::in, list(prog_var)::in,
db_call_list::in, list(hlds_goal)::in, context_rule::out) is det.
context__check_right_or_multi_linear_rule(RuleContext, PredProcId, InputArgs,
OutputArgs, Calls, AfterGoals, Result) :-
(
AfterGoals = [],
list__reverse(Calls, RevCalls),
RevCalls = [NonRecGoals - Call | OtherRevCalls]
->
% The outputs of the last call must be the outputs of
% the procedure.
magic_util__db_call_output_args(Call, Outputs),
( Outputs = OutputArgs ->
Errors0 = []
;
magic_util__db_call_context(Call, Context),
Errors0 = [outputs_of_recursive_call - Context]
),
list__reverse(OtherRevCalls, OtherCalls),
(
\+ (
list__member(_ - OtherCall, OtherCalls),
magic_util__db_call_pred_proc_id(OtherCall,
PredProcId)
)
->
% The rule is right linear.
( Errors0 = [] ->
Result = right_linear(OtherCalls,
NonRecGoals, Call)
;
Result = non_linear(Errors0)
)
;
context__check_multi_calls(PredProcId, InputArgs,
OtherCalls, Errors0, Errors),
( Errors = [] ->
Result = multi_linear(OtherCalls,
NonRecGoals, Call)
;
Result = non_linear(Errors)
)
)
;
Result = non_linear([end_goals_not_recursive - RuleContext])
).
:- pred context__check_multi_calls(pred_proc_id::in, list(prog_var)::in,
db_call_list::in, assoc_list(linearity_error, prog_context)::in,
assoc_list(linearity_error, prog_context)::out) is det.
context__check_multi_calls(_, _, [], Errors, Errors).
context__check_multi_calls(PredProcId, InputArgs, [BeforeGoals - Call | Calls],
Errors0, Errors) :-
set__list_to_set(InputArgs, InputSet),
( magic_util__db_call_pred_proc_id(Call, PredProcId) ->
magic_util__db_call_input_args(Call, Inputs),
( Inputs = InputArgs ->
Errors1 = Errors0
;
magic_util__db_call_context(Call, Context),
Errors1 = [inputs_to_recursive_call - Context
| Errors0]
)
;
magic_util__db_call_nonlocals(Call, NonLocals),
magic_util__db_call_context(Call, Context),
context__check_nonlocals(Context, InputSet, NonLocals,
Errors0, Errors1)
),
list__foldl(context__check_goal_nonlocals(InputSet), BeforeGoals,
Errors1, Errors2),
context__check_multi_calls(PredProcId, InputArgs, Calls,
Errors2, Errors).
%-----------------------------------------------------------------------------%
:- pred context__check_db_call_nonlocals(set(prog_var)::in,
pair(list(hlds_goal), db_call)::in,
assoc_list(linearity_error, prog_context)::in,
assoc_list(linearity_error, prog_context)::out) is det.
context__check_db_call_nonlocals(Inputs, BeforeGoals - Call,
Errors0, Errors) :-
magic_util__db_call_nonlocals(Call, NonLocals),
magic_util__db_call_context(Call, Context),
context__check_nonlocals(Context, Inputs, NonLocals, Errors0, Errors1),
list__foldl(context__check_goal_nonlocals(Inputs), BeforeGoals,
Errors1, Errors).
:- pred context__check_goal_nonlocals(set(prog_var)::in, hlds_goal::in,
assoc_list(linearity_error, prog_context)::in,
assoc_list(linearity_error, prog_context)::out) is det.
context__check_goal_nonlocals(Inputs, _ - GoalInfo, Errors0, Errors) :-
goal_info_get_nonlocals(GoalInfo, NonLocals),
goal_info_get_context(GoalInfo, Context),
context__check_nonlocals(Context, Inputs, NonLocals, Errors0, Errors).
:- pred context__check_nonlocals(term__context::in, set(prog_var)::in,
set(prog_var)::in, assoc_list(linearity_error, prog_context)::in,
assoc_list(linearity_error, prog_context)::out) is det.
context__check_nonlocals(Context, Inputs, NonLocals, Errors0, Errors) :-
set__intersect(Inputs, NonLocals, Intersection),
( set__empty(Intersection) ->
Errors = [inputs_occur_in_other_goals - Context | Errors0]
;
Errors = Errors0
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- pred context__transform_rules(pred_proc_id::in,
assoc_list(context_rule, hlds_goal_info)::in,
list(prog_var)::in, list(prog_var)::in, list(hlds_goal)::in,
list(hlds_goal)::out, magic_info::in, magic_info::out) is det.
context__transform_rules(_, [], _, _, RevGoals, Goals) -->
{ list__reverse(RevGoals, Goals) }.
context__transform_rules(OldPredProcId, [Rule | Rules], Inputs, Outputs,
Disjuncts0, Disjuncts) -->
context__transform_rule(OldPredProcId, Rule,
Inputs, Outputs, Disjuncts0, Disjuncts1),
context__transform_rules(OldPredProcId, Rules, Inputs, Outputs,
Disjuncts1, Disjuncts).
:- pred context__transform_rule(pred_proc_id::in,
pair(context_rule, hlds_goal_info)::in,
list(prog_var)::in, list(prog_var)::in, list(hlds_goal)::in,
list(hlds_goal)::out, magic_info::in, magic_info::out) is det.
context__transform_rule(PredProcId, exit(CallList0, AfterGoals0) - GoalInfo,
Inputs, Outputs, Disjuncts0, [Disjunct | Disjuncts0]) -->
context__create_magic_call(MagicCall, yes, Subn, _),
{ context__rename_vars_in_call_list(CallList0,
Subn, CallList) },
{ goal_util__rename_vars_in_goals(AfterGoals0, no, Subn, AfterGoals) },
magic_info_get_magic_vars(Vars),
{ list__condense([Vars, Inputs, Outputs], NonLocals0) },
{ set__list_to_set(NonLocals0, NonLocals) },
{ list__reverse(CallList, RevCallList) },
context__factor_goal_list(PredProcId, MagicCall, RevCallList,
NonLocals, FactoredGoal),
{ list__append(FactoredGoal, AfterGoals, GoalList) },
{ conj_list_to_goal(GoalList, GoalInfo, Disjunct) }.
context__transform_rule(_, non_linear(Errors) - _, _, _,
Disjuncts, Disjuncts) -->
list__foldl(context__add_linearity_error, Errors).
context__transform_rule(PredProcId,
left_linear(Call, CallList, AfterGoals) - GoalInfo,
Inputs, Outputs, Disjuncts0, [Disjunct | Disjuncts0]) -->
% For a left-linear rule, just factor the rule into
% a form that rl_gen.m can handle.
{ Call = db_call(_, CallGoal, _, _, _, _, _) },
magic_info_get_magic_vars(Vars),
{ list__condense([Vars, Inputs, Outputs], NonLocals0) },
{ set__list_to_set(NonLocals0, NonLocals) },
{ list__reverse(CallList, RevCallList) },
context__factor_goal_list(PredProcId, CallGoal, RevCallList,
NonLocals, FactoredGoal),
{ list__append(FactoredGoal, AfterGoals, GoalList) },
{ conj_list_to_goal(GoalList, GoalInfo, Disjunct) }.
context__transform_rule(PredProcId, right_linear(CallList, Goals, Call) - _,
Inputs, Outputs, Disjuncts, Disjuncts) -->
context__create_magic_call(MagicCall, no, _, MagicInputArgs),
{ magic_util__db_call_nonlocals(Call, CallNonLocals) },
{ goal_list_nonlocals(Goals, GoalNonLocals) },
magic_info_get_magic_vars(Vars),
{ list__condense([Vars, Inputs, Outputs], NonLocals) },
{ set__insert_list(CallNonLocals, NonLocals, NonLocals1) },
{ set__insert_list(NonLocals1, MagicInputArgs, NonLocals2) },
{ set__union(NonLocals2, GoalNonLocals, NonLocals3) },
magic_util__restrict_nonlocals(NonLocals3, NonLocals4),
% Put the goal into a form that rl_gen.m can handle.
context__factor_goal_list(PredProcId, MagicCall, CallList,
NonLocals4, FactoredGoal),
% Add the rule to the context magic predicate.
{ magic_util__db_call_input_args(Call, CallInputs) },
{ list__append(MagicInputArgs, CallInputs, MagicArgs) },
magic_info_get_curr_pred_proc_id(PredProcId1),
{ list__append(FactoredGoal, Goals, AllGoals) },
{ goal_list_instmap_delta(AllGoals, Delta) },
{ goal_list_determinism(AllGoals, Det) },
{ goal_info_init(NonLocals3, Delta, Det, MagicRuleInfo) },
{ conj_list_to_goal(AllGoals, MagicRuleInfo, MagicGoal) },
magic_util__add_to_magic_predicate(PredProcId1, MagicGoal, MagicArgs).
context__transform_rule(PredProcId,
multi_linear(CallList0, Goals0, LastCall) - _GoalInfo,
Inputs, Outputs, Disjuncts, Disjuncts) -->
magic_info_get_magic_vars(Vars),
{ magic_util__db_call_nonlocals(LastCall, CallNonLocals) },
{ list__condense([Vars, Inputs, Outputs], NonLocals0) },
{ set__insert_list(CallNonLocals, NonLocals0, NonLocals1) },
magic_util__restrict_nonlocals(NonLocals1, NonLocals2),
% No call to the magic predicate is necessary, because the
% internal recursive calls produce the input.
% Pull the first recursive call to the front of the list.
% XXX this could introduce inefficiency because the
% constraints on the call are not taken as well.
{ context__get_first_recursive_call(PredProcId,
CallList0, [], CallList, FirstRecCall0, AfterGoals) },
{ list__append(Goals0, AfterGoals, Goals1) },
% Update the called pred_proc_id.
{ FirstRecCall0 = db_call(_, _ - RecGoalInfo, _, Args0, _, _, _) },
magic_info_get_pred_info(PredInfo),
{ pred_info_module(PredInfo, PredModule) },
{ pred_info_name(PredInfo, PredName) },
magic_info_get_curr_pred_proc_id(proc(PredId, ProcId)),
magic_info_get_magic_vars(MagicVars),
{ list__append(MagicVars, Args0, Args) },
{ RecGoal = call(PredId, ProcId, Args, not_builtin, no,
qualified(PredModule, PredName)) - RecGoalInfo },
{ list__reverse(CallList, RevCallList) },
context__factor_goal_list(PredProcId, RecGoal,
RevCallList, NonLocals2, FactoredGoal),
{ magic_util__db_call_input_args(FirstRecCall0, CallInputs) },
{ magic_util__db_call_input_args(LastCall, NewInputs) },
magic_info_get_magic_vars(InputRels),
{ list__condense([InputRels, CallInputs, NewInputs], MagicArgs) },
{ list__append(FactoredGoal, Goals1, AllGoals) },
{ goal_list_instmap_delta(AllGoals, Delta) },
{ goal_list_determinism(AllGoals, Det) },
{ goal_info_init(NonLocals2, Delta, Det, MagicRuleInfo) },
{ conj_list_to_goal(AllGoals, MagicRuleInfo, MagicGoal) },
magic_info_get_curr_pred_proc_id(PredProcId1),
magic_util__add_to_magic_predicate(PredProcId1, MagicGoal, MagicArgs).
:- pred context__get_first_recursive_call(pred_proc_id::in, db_call_list::in,
db_call_list::in, db_call_list::out, db_call::out,
list(hlds_goal)::out) is det.
context__get_first_recursive_call(_, [], _, _, _, _) :-
error("context__get_first_recursive_call: no recursive call").
context__get_first_recursive_call(PredProcId,
[BeforeGoals1 - Call1 | CallList0],
RevCallList0, CallList, RecCall, Goals) :-
( magic_util__db_call_pred_proc_id(Call1, PredProcId) ->
RecCall = Call1,
( CallList0 = [BeforeGoals2 - Call2 | CallList1] ->
list__append(BeforeGoals1, BeforeGoals2, BeforeGoals),
CallList2 = [BeforeGoals - Call2 | CallList1],
list__reverse(RevCallList0, CallList3),
list__append(CallList3, CallList2, CallList),
Goals = []
;
list__reverse(RevCallList0, CallList),
Goals = BeforeGoals1
)
;
context__get_first_recursive_call(PredProcId, CallList0,
[BeforeGoals1 - Call1 | RevCallList0],
CallList, RecCall, Goals)
).
%
:- pred context__factor_goal_list(pred_proc_id::in, hlds_goal::in,
db_call_list::in, set(prog_var)::in, list(hlds_goal)::out,
magic_info::in, magic_info::out) is det.
context__factor_goal_list(_, FirstCall, [], _, [FirstCall]) --> [].
context__factor_goal_list(PredProcId, FirstCall,
[BeforeGoals - Call | CallList], NonLocals, SetupCall) -->
{ magic_util__db_call_nonlocals(Call, CallNonLocals) },
{ goal_list_nonlocals(BeforeGoals, GoalsNonLocals) },
{ set__union(NonLocals, CallNonLocals, NonLocals1) },
{ set__union(NonLocals1, GoalsNonLocals, NonLocals2) },
magic_util__restrict_nonlocals(NonLocals2, NonLocals3),
context__factor_goal_list(PredProcId, FirstCall, CallList,
NonLocals3, Goal1),
{ list__append(Goal1, BeforeGoals, InputGoals) },
( { magic_util__db_call_pred_proc_id(Call, PredProcId) } ->
%
% If the call is recursive, we must be processing
% a multi-linear rule. In that case, convert the
% inputs to outputs and create some test unifications.
% Due to the restrictions on interior calls in multi-linear
% rules, there can be no extra input to add to the magic
% predicate.
%
{ Call = db_call(_, _ - GoalInfo0, _, Args, InputArgs, _, _) },
magic_info_get_curr_pred_proc_id(proc(PredId, ProcId)),
magic_info_get_magic_proc_info(MagicProcInfo),
{ map__lookup(MagicProcInfo, proc(PredId, ProcId),
ThisProcInfo) },
{ ThisProcInfo = magic_proc_info(OldArgModes, _, _, _, _) },
magic_util__create_input_test_unifications(Args, InputArgs,
OldArgModes, NewArgs, [], Tests,
GoalInfo0, GoalInfo),
magic_info_get_pred_info(PredInfo),
{ pred_info_module(PredInfo, PredModule) },
{ pred_info_name(PredInfo, PredName) },
magic_info_get_magic_vars(MagicVars),
{ list__append(MagicVars, NewArgs, AllArgs) },
{ RecGoal = call(PredId, ProcId, AllArgs, not_builtin, no,
qualified(PredModule, PredName)) - GoalInfo },
{ SetupCall = [RecGoal | Tests] }
;
% The call is non-recursive, do the usual thing to set it up.
magic_util__setup_call(InputGoals, Call, NonLocals, SetupCall)
).
:- pred context__create_magic_call(hlds_goal::out, bool::in,
map(prog_var, prog_var)::out, list(prog_var)::out,
magic_info::in, magic_info::out) is det.
context__create_magic_call(MagicCall, RenameInputs, Subn, MagicInputArgs) -->
magic_util__magic_call_info(MagicPredId, MagicProcId, PredName,
InputRels, InputArgs, MagicOutputModes),
magic_info_get_proc_info(ProcInfo0),
{ proc_info_vartypes(ProcInfo0, VarTypes0) },
{ map__apply_to_list(InputArgs, VarTypes0, InputTypes) },
{ proc_info_create_vars_from_types(ProcInfo0,
InputTypes, NewInputArgs, ProcInfo) },
magic_info_set_proc_info(ProcInfo),
( { RenameInputs = yes } ->
{ map__from_corresponding_lists(InputArgs,
NewInputArgs, Subn) },
{ list__append(InputRels, InputArgs, MagicInputArgs) },
{ list__append(MagicInputArgs, NewInputArgs, MagicArgs) },
{ list__append(InputArgs, NewInputArgs, AllInputArgs) }
;
{ map__init(Subn) },
{ list__append(InputRels, NewInputArgs, MagicInputArgs) },
{ list__append(MagicInputArgs, InputArgs, MagicArgs) },
{ list__append(NewInputArgs, InputArgs, AllInputArgs) }
),
{ set__list_to_set(MagicArgs, NonLocals) },
{ list__append(MagicOutputModes, MagicOutputModes, AllOutputModes) },
magic_info_get_module_info(ModuleInfo),
{ instmap_delta_from_mode_list(AllInputArgs, AllOutputModes,
ModuleInfo, InstMapDelta) },
{ goal_info_init(NonLocals, InstMapDelta, nondet, GoalInfo) },
{ MagicCall = call(MagicPredId, MagicProcId, MagicArgs,
not_builtin, no, PredName) - GoalInfo }.
%-----------------------------------------------------------------------------%
:- pred context__rename_vars_in_call_list(db_call_list::in,
map(prog_var, prog_var)::in, db_call_list::out) is det.
context__rename_vars_in_call_list([], _, []).
context__rename_vars_in_call_list([Goals0 - Call0 | Calls0],
Subn, [Goals - Call | Calls]) :-
goal_util__rename_vars_in_goals(Goals0, no, Subn, Goals),
magic_util__rename_vars_in_db_call(Call0, Subn, Call),
context__rename_vars_in_call_list(Calls0, Subn, Calls).
%-----------------------------------------------------------------------------%
:- pred context__add_linearity_error(pair(linearity_error, prog_context)::in,
magic_info::in, magic_info::out) is det.
context__add_linearity_error(Error - Context) -->
magic_info_get_curr_pred_proc_id(PredProcId),
magic_info_get_errors(Errors0),
{ set__insert(Errors0, context_error(Error, PredProcId) - Context,
Errors) },
magic_info_set_errors(Errors).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%