Files
mercury/compiler/frameopt.m
Zoltan Somogyi 5e25af41f7 This diff changes the LLDS backend to make it easier to read and to maintain,
Estimated hours taken: 6
Branches: main

This diff changes the LLDS backend to make it easier to read and to maintain,
but contains no changes in algorithms whatsoever.

compiler/basic_block.m:
compiler/dupelim.m:
compiler/frameopt.m:
compiler/jumpopt.m:
compiler/layout_out.m:
compiler/livemap.m:
compiler/peephole.m:
compiler/reassign.m:
compiler/rtti_out.m:
compiler/use_local_vars.m:
	Convert these modules to our current coding standards. Use state
	variable notation when appropriate, reordering arguments as necessary.

compiler/llds_out.m:
	Convert these modules to our current coding standards. Use state
	variable notation when appropriate, reordering arguments as necessary.

	Delete predicates which are just specialized forms of foldl, using
	foldl (or foldl2 etc) directly instead.

	Factor out some common code.

compiler/livemap.m:
	Convert these modules to our current coding standards. Use state
	variable notation when appropriate, reordering arguments as necessary.

	Remove some special case handling that used to be required by the value
	numbering pass.

library/bintree_set.m:
	Provide a function version of the initialization predicate.
2003-11-11 03:35:13 +00:00

1216 lines
39 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2001,2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Main author: zs.
%
% This module performs two kinds of transformation to optimize code
% that manipulates detstack frames.
%
% The first and more common transformation transforms code such as
%
% proc_entry:
% incr_sp(N)
% stackvar(N) = succip
% if (cond) goto L1
% ...
% L1: finalization
% succip = stackvar(N)
% incr_sp(N)
% proceed
%
% into
%
% proc_entry:
% if (cond) goto L1
% incr_sp(N)
% stackvar(N) = succip
% ...
% finalization
% succip = stackvar(N)
% incr_sp(N)
% proceed
% L1: finalization
% proceed
%
% The advantage is that we don't set up the stack frame unless we need it.
%
% The actual optimization is more complex than this, because we want to delay
% the construction of the stack frame across more than one jump, if this is
% possible.
%
% The second transformation transforms code such as
%
% proc_entry:
% incr_sp(N)
% stackvar(N) = succip
% ...
% finalization
% succip = stackvar(N)
% incr_sp(N)
% goto proc_entry
%
% into
%
% proc_entry:
% incr_sp(N)
% stackvar(N) = succip
% L1:
% ...
% succip = stackvar(N)
% finalization
% goto L1
%
% The advantage is that we don't destroy the stack frame just to set it up
% again. The restore of succip can be omitted if the procedure makes no calls,
% since in that case succip must still contain the value it had when this
% procedure was called.
%
% Since the second transformation is a bigger win, we prefer to use it
% whenever both transformations are possible.
%
% NOTE: This module cannot handle code sequences of the form
%
% label1:
% label2:
%
% Jump optimization converts any gotos to label1 to gotos to label2, making
% label1 unused, and label optimization removes unused labels. (This works
% for any number of labels in a sequence, not just two.) Therefore the
% handle_options module turns on the jump and label optimizations whenever
% frame optimization is turned on.
%-----------------------------------------------------------------------------%
:- module ll_backend__frameopt.
:- interface.
:- import_module backend_libs__proc_label.
:- import_module ll_backend__llds.
:- import_module bool, list, counter.
% The first bool output says whether we performed any modifications.
% If yes, then we also introduced some extra labels that should be
% deleted. The second says whether we introduced any jumps that
% can be profitably be short-circuited.
:- pred frameopt_main(list(instruction)::in, proc_label::in,
counter::in, counter::out, list(instruction)::out,
bool::out, bool::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ll_backend__code_util.
:- import_module ll_backend__livemap.
:- import_module ll_backend__opt_debug.
:- import_module ll_backend__opt_util.
:- import_module parse_tree__prog_data.
:- import_module int, string, require, std_util, assoc_list, set, map, queue.
frameopt_main(Instrs0, ProcLabel, !C, Instrs, Mod, Jumps) :-
opt_util__get_prologue(Instrs0, LabelInstr, Comments0, Instrs1),
(
frameopt__detstack_setup(Instrs1, FrameSize, Msg, _, _, _)
->
map__init(BlockMap0),
divide_into_basic_blocks([LabelInstr | Instrs1], ProcLabel,
BasicInstrs, !C),
build_block_map(BasicInstrs, FrameSize, LabelSeq0,
BlockMap0, BlockMap1, ProcLabel, !C),
analyze_block_map(LabelSeq0, BlockMap1, BlockMap2, KeepFrame),
(
KeepFrame = yes(FirstLabel - SecondLabel),
CanClobberSuccip =
can_clobber_succip(LabelSeq0, BlockMap2),
keep_frame(LabelSeq0, FirstLabel, SecondLabel,
CanClobberSuccip, BlockMap2, BlockMap),
LabelSeq = LabelSeq0,
NewComment = comment("keeping stack frame") - "",
list__append(Comments0, [NewComment], Comments),
flatten_block_seq(LabelSeq, BlockMap, BodyInstrs),
list__append(Comments, BodyInstrs, Instrs),
Mod = yes,
Jumps = yes
;
KeepFrame = no,
( can_delay_frame(LabelSeq0, BlockMap2, yes) ->
delay_frame(LabelSeq0, LabelSeq, FrameSize,
Msg, ProcLabel, !C,
BlockMap2, BlockMap),
NewComment = comment("delaying stack frame")
- "",
list__append(Comments0, [NewComment], Comments),
flatten_block_seq(LabelSeq, BlockMap,
BodyInstrs),
list__append(Comments, BodyInstrs, Instrs),
Mod = yes,
Jumps = no
;
Instrs = Instrs0,
Mod = no,
Jumps = no
)
)
;
Instrs = Instrs0,
Mod = no,
Jumps = no
).
:- pred flatten_block_seq(list(label)::in, block_map::in,
list(instruction)::out) is det.
flatten_block_seq([], _, []).
flatten_block_seq([Label | Labels], BlockMap, Instrs) :-
flatten_block_seq(Labels, BlockMap, RestInstrs),
map__lookup(BlockMap, Label, BlockInfo),
BlockInfo = block_info(_, BlockInstrs, _, _, _),
list__append(BlockInstrs, RestInstrs, Instrs).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- type block_map == map(label, block_info).
:- type block_info
---> block_info(
label,
% The label of the first instr.
list(instruction),
% The code of the block.
list(label),
% The labels we can jump to
% (not falling through).
maybe(label),
% The label we fall through to
% (if there is one).
block_type
).
:- type block_type
---> setup % This is a block containing
% only setup instructions.
; ordinary(bool) % This block does not contain setup or
% teardown. The bool says whether the code
% in the block needs a stack frame.
; teardown(
% This block contains stack
% teardown and goto code.
list(instruction),
% the instr that restores succip (if any),
list(instruction),
% the livevals instr before the goto (if any),
instruction
% the goto instr
).
%-----------------------------------------------------------------------------%
% Add labels to the given instruction sequence so that
% every basic block has labels around it.
:- pred divide_into_basic_blocks(list(instruction)::in, proc_label::in,
list(instruction)::out, counter::in, counter::out) is det.
divide_into_basic_blocks([], _, [], !C).
% Control can fall of the end of a procedure if that procedure
% ends with a call to another procedure that cannot succeed.
% This is the only situation in which the base case can be reached.
divide_into_basic_blocks([Instr0 | Instrs0], ProcLabel, Instrs, !C) :-
Instr0 = Uinstr0 - _Comment,
( opt_util__can_instr_branch_away(Uinstr0, yes) ->
(
Instrs0 = [Instr1 | _],
( Instr1 = label(_) - _ ->
divide_into_basic_blocks(Instrs0, ProcLabel,
Instrs1, !C),
Instrs = [Instr0 | Instrs1]
;
counter__allocate(N, !C),
NewLabel = local(N, ProcLabel),
NewInstr = label(NewLabel) - "",
divide_into_basic_blocks(Instrs0, ProcLabel,
Instrs1, !C),
Instrs = [Instr0, NewInstr | Instrs1]
)
;
Instrs0 = [],
Instrs = [Instr0]
)
;
divide_into_basic_blocks(Instrs0, ProcLabel, Instrs1, !C),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
% Given an instruction list in which labels mark the start of every
% basic block, divide it up into basic blocks of one of three types:
%
% - setup blocks, blocks that contain only stack setup instructions
% (incr_sp and assignment of succip to the bottom stack slot);
%
% - ordinary blocks that contain neither a stack setup nor a
% stack teardown;
%
% - teardown blocks that remove an existing stack frame.
%
% For such each block, create a block_info structure that gives the
% label starting the block, the instructions in the block, and its
% type. Two of the fields of the block_info structure are filled in
% with dummy values; they will be filled in for real later.
%
% Put these block_info structures into a table indexed by the label,
% and return the sequence of labels of the blocks in their original
% order.
:- pred build_block_map(list(instruction)::in, int::in, list(label)::out,
block_map::in, block_map::out, proc_label::in,
counter::in, counter::out) is det.
build_block_map([], _, [], !BlockMap, _, !C).
build_block_map([Instr0 | Instrs0], FrameSize, LabelSeq, !BlockMap,
ProcLabel, !C) :-
( Instr0 = label(Label) - _ ->
(
frameopt__detstack_setup(Instrs0, _, _, Setup,
Others, Remain)
->
% Create a block with just the Setup instructions
% in it.
BlockInfo = block_info(Label, [Instr0 | Setup],
[], no, setup),
list__append(Others, Remain, Instrs1),
(
Instrs1 = [Instr1 | _],
Instr1 = label(_) - _
->
Instrs2 = Instrs1
;
counter__allocate(N, !C),
NewLabel = local(N, ProcLabel),
NewInstr = label(NewLabel) - "",
Instrs2 = [NewInstr | Instrs1]
),
build_block_map(Instrs2, FrameSize, LabelSeq0,
!BlockMap, ProcLabel, !C),
map__det_insert(!.BlockMap, Label, BlockInfo,
!:BlockMap),
LabelSeq = [Label | LabelSeq0]
;
frameopt__detstack_teardown(Instrs0, FrameSize,
Tail, Succip, Decrsp, Livevals, Goto, Remain)
->
list__append(Livevals, [Goto], Teardown0),
list__append(Decrsp, Teardown0, Teardown1),
list__append(Succip, Teardown1, Teardown),
( Tail = [] ->
MaybeTailInfo = no,
LabelledBlock = [Instr0 | Teardown],
TeardownLabel = Label,
TeardownInfo = block_info(TeardownLabel,
LabelledBlock, [], no,
teardown(Succip, Livevals, Goto))
;
block_needs_frame(Tail, Needs),
TailInfo = block_info(Label, [Instr0 | Tail],
[], no, ordinary(Needs)),
MaybeTailInfo = yes(TailInfo - Label),
counter__allocate(N, !C),
NewLabel = local(N, ProcLabel),
NewInstr = label(NewLabel) - "",
LabelledBlock = [NewInstr | Teardown],
TeardownLabel = NewLabel,
TeardownInfo = block_info(TeardownLabel,
LabelledBlock, [], no,
teardown(Succip, Livevals, Goto))
),
build_block_map(Remain, FrameSize, LabelSeq0,
!BlockMap, ProcLabel, !C),
(
MaybeTailInfo = no,
map__det_insert(!.BlockMap, TeardownLabel,
TeardownInfo, !:BlockMap),
LabelSeq = [TeardownLabel | LabelSeq0]
;
MaybeTailInfo = yes(TailInfo2 - TailLabel2),
map__det_insert(!.BlockMap, TeardownLabel,
TeardownInfo, !:BlockMap),
map__det_insert(!.BlockMap, TailLabel2,
TailInfo2, !:BlockMap),
LabelSeq = [TailLabel2, TeardownLabel
| LabelSeq0]
)
;
opt_util__skip_to_next_label(Instrs0, Block, Instrs1),
block_needs_frame(Block, Needs),
BlockInfo = block_info(Label, [Instr0 | Block],
[], no, ordinary(Needs)),
build_block_map(Instrs1, FrameSize, LabelSeq0,
!BlockMap, ProcLabel, !C),
map__det_insert(!.BlockMap, Label, BlockInfo,
!:BlockMap),
LabelSeq = [Label | LabelSeq0]
)
;
error("block does not start with label")
).
%-----------------------------------------------------------------------------%
% Does the given code start with a setup of a det stack frame? If yes,
% return the size of the frame and three instruction sequences,
% Setup, Others and Remain. Setup is the instruction sequence
% that sets up the det stack frame, Others is a sequence of
% non-interfering instructions that were interspersed with Setup
% but can be moved after Setup, and Remain is all remaining
% instructions.
:- pred frameopt__detstack_setup(list(instruction)::in, int::out, string::out,
list(instruction)::out, list(instruction)::out, list(instruction)::out)
is semidet.
frameopt__detstack_setup(Instrs0, FrameSize, Msg, Setup, Others, Remain) :-
opt_util__gather_comments(Instrs0, Others0, Instrs1),
Instrs1 = [SetupInstr1 | Instrs2],
SetupInstr1 = incr_sp(FrameSize, Msg) - _,
frameopt__detstack_setup_2(Instrs2, FrameSize, SetupInstr2,
Others0, Others, Remain),
Setup = [SetupInstr1, SetupInstr2].
:- pred frameopt__detstack_setup_2(list(instruction)::in, int::in,
instruction::out, list(instruction)::in, list(instruction)::out,
list(instruction)::out) is semidet.
frameopt__detstack_setup_2([Instr0 | Instrs0], FrameSize, Setup,
Others0, Others, Remain) :-
( Instr0 = assign(Lval, Rval) - _ ->
(
Lval = stackvar(FrameSize),
Rval = lval(succip)
->
Others = Others0,
Setup = Instr0,
Remain = Instrs0
;
Lval \= succip,
Lval \= stackvar(FrameSize)
->
list__append(Others0, [Instr0], Others1),
frameopt__detstack_setup_2(Instrs0, FrameSize, Setup,
Others1, Others, Remain)
;
fail
)
; Instr0 = comment(_) - _ ->
list__append(Others0, [Instr0], Others1),
frameopt__detstack_setup_2(Instrs0, FrameSize, Setup,
Others1, Others, Remain)
;
fail
).
%-----------------------------------------------------------------------------%
% Does the following block contain a teardown of a det stack frame,
% and a proceed or tailcall? If yes, we return
%
% - the instruction that restores succip as Succip
% - the decr_sp instruction as Decrsp
% - the livevals instruction as Livevals
% - the goto instruction as Goto
%
% The first three can appear in any order or may be missing, due to
% value numbering. This is also why we allow the teardown instructions
% to be interleaved with instructions that do not access the stack;
% any such instructions are returned as Extra. Remain is all the
% instructions after the teardown.
:- pred frameopt__detstack_teardown(list(instruction)::in, int::in,
list(instruction)::out, list(instruction)::out,
list(instruction)::out, list(instruction)::out,
instruction::out, list(instruction)::out) is semidet.
frameopt__detstack_teardown([Instr0 | Instrs0], FrameSize,
Extra, Succip, Decrsp, Livevals, Goto, Remain) :-
(
Instr0 = label(_) - _
->
fail
;
frameopt__detstack_teardown_2([Instr0 | Instrs0], FrameSize,
[], ExtraPrime, [], SuccipPrime, [], DecrspPrime,
[], LivevalsPrime, GotoPrime, RemainPrime)
->
Extra = ExtraPrime,
Succip = SuccipPrime,
Decrsp = DecrspPrime,
Livevals = LivevalsPrime,
Goto = GotoPrime,
Remain = RemainPrime
;
frameopt__detstack_teardown(Instrs0, FrameSize,
Extra1, Succip, Decrsp, Livevals, Goto, Remain),
Extra = [Instr0 | Extra1]
).
:- pred frameopt__detstack_teardown_2(list(instruction)::in, int::in,
list(instruction)::in, list(instruction)::out,
list(instruction)::in, list(instruction)::out,
list(instruction)::in, list(instruction)::out,
list(instruction)::in, list(instruction)::out,
instruction::out, list(instruction)::out) is semidet.
frameopt__detstack_teardown_2(Instrs0, FrameSize,
!Extra, !Succip, !Decrsp, !Livevals, Goto, Remain) :-
opt_util__skip_comments(Instrs0, Instrs1),
Instrs1 = [Instr1 | Instrs2],
Instr1 = Uinstr1 - _,
(
Uinstr1 = assign(Lval, Rval),
(
Lval = succip,
Rval = lval(stackvar(FrameSize))
->
!.Succip = [],
!.Decrsp = [],
!:Succip = [Instr1],
frameopt__detstack_teardown_2(Instrs2, FrameSize,
!Extra, !Succip, !Decrsp, !Livevals,
Goto, Remain)
;
opt_util__lval_refers_stackvars(Lval, no),
opt_util__rval_refers_stackvars(Rval, no),
list__append(!.Extra, [Instr1], !:Extra),
frameopt__detstack_teardown_2(Instrs2, FrameSize,
!Extra, !Succip, !Decrsp, !Livevals,
Goto, Remain)
)
;
Uinstr1 = decr_sp(FrameSize),
!.Decrsp = [],
!:Decrsp = [Instr1],
frameopt__detstack_teardown_2(Instrs2, FrameSize,
!Extra, !Succip, !Decrsp, !Livevals, Goto, Remain)
;
Uinstr1 = livevals(_),
!.Livevals = [],
!:Livevals = [Instr1],
frameopt__detstack_teardown_2(Instrs2, FrameSize,
!Extra, !Succip, !Decrsp, !Livevals, Goto, Remain)
;
Uinstr1 = goto(_),
!.Decrsp = [_],
Goto = Instr1,
Remain = Instrs2
).
%-----------------------------------------------------------------------------%
% Does an ordinary block with the given content need a stack frame?
:- pred block_needs_frame(list(instruction)::in, bool::out) is det.
block_needs_frame(Instrs, NeedsFrame) :-
opt_util__block_refers_stackvars(Instrs, ReferStackVars),
( ReferStackVars = yes ->
NeedsFrame = yes
;
(
list__member(Instr, Instrs),
Instr = Uinstr - _,
(
Uinstr = call(_, _, _, _, _, _)
;
Uinstr = mkframe(_, _)
;
Uinstr = c_code(_, _)
;
Uinstr = pragma_c(_, _, MayCallMercury,
_, MaybeLayout, MaybeOnlyLayout, _,
NeedStack),
(
MayCallMercury = may_call_mercury
;
MaybeLayout = yes(_)
;
MaybeOnlyLayout = yes(_)
;
NeedStack = yes
)
)
->
NeedsFrame = yes
;
NeedsFrame = no
)
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% For each block in the given sequence, whose block_info structures
% in the given block map have been partially filled in, fill in the
% remaining two fields. These two fields give the labels the block
% can branch to on the side (this includes return addresses for
% calls), and the label if any to which it falls through.
%
% Also decide whether the optimization we want to apply is keeping
% the stack frame for recursive tail calls once it has been set up
% by the initial entry to the procedure, or delaying the creation of
% the stack frame as long as possible. We want to do the former
% whenever we find at least one teardown block that branches back
% to the beginning of the procedure; in such cases we return the
% the label starting the procedure and the label that should replace
% it in tailcalls that avoid the stack teardown, which is the label
% immediately after the initial stack setup block.
:- pred analyze_block_map(list(label)::in, block_map::in, block_map::out,
maybe(pair(label))::out) is det.
analyze_block_map(LabelSeq, !BlockMap, KeepFrameData) :-
(
LabelSeq = [FirstLabel, SecondLabel | _],
map__search(!.BlockMap, FirstLabel, FirstBlockInfo),
FirstBlockInfo = block_info(FirstLabel, _, _, _, setup)
->
analyze_block_map_2(LabelSeq, FirstLabel,
!BlockMap, no, KeepFrame),
( KeepFrame = yes ->
KeepFrameData = yes(FirstLabel - SecondLabel)
;
KeepFrameData = no
)
;
error("bad data in analyze_block_map")
).
:- pred analyze_block_map_2(list(label)::in, label::in,
block_map::in, block_map::out, bool::in, bool::out) is det.
analyze_block_map_2([], _, !BlockMap, !KeepFrame).
analyze_block_map_2([Label | Labels], FirstLabel, !BlockMap, !KeepFrame) :-
map__lookup(!.BlockMap, Label, BlockInfo0),
BlockInfo0 = block_info(BlockLabel, BlockInstrs, _, _, Type),
(
Label = BlockLabel, % sanity check
list__last(BlockInstrs, LastInstr)
->
LastInstr = LastUinstr - _,
possible_targets(LastUinstr, SideLabels),
(
opt_util__can_instr_fall_through(LastUinstr, yes),
Labels = [NextLabel | _]
->
MaybeFallThrough = yes(NextLabel)
;
MaybeFallThrough = no
),
(
LastUinstr = goto(label(GotoLabel)),
same_label_ref(FirstLabel, GotoLabel)
->
!:KeepFrame = yes
;
true
)
;
error("bad data in analyze_block_map_2")
),
BlockInfo = block_info(BlockLabel, BlockInstrs, SideLabels,
MaybeFallThrough, Type),
map__det_update(!.BlockMap, Label, BlockInfo, !:BlockMap),
analyze_block_map_2(Labels, FirstLabel, !BlockMap, !KeepFrame).
% The form of a label used in a tailcall may be different from
% the form used in the initial label. The initial label may be
% exported from the Mercury module or possibly from the C module,
% while the label used in the tailcall may use a more local form
% for better performance.
%
% This predicate tests whether the second label (from the tailcall)
% is a proper reference to the first label (from the initial label
% instruction).
:- pred same_label_ref(label::in, label::in) is semidet.
same_label_ref(exported(ProcLabel), exported(ProcLabel)).
same_label_ref(exported(ProcLabel), c_local(ProcLabel)).
same_label_ref(exported(ProcLabel), local(ProcLabel)).
same_label_ref(local(ProcLabel), c_local(ProcLabel)).
same_label_ref(local(ProcLabel), local(ProcLabel)).
same_label_ref(c_local(ProcLabel), c_local(ProcLabel)).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- func can_clobber_succip(list(label), block_map) = bool.
can_clobber_succip([], _BlockMap) = no.
can_clobber_succip([Label | Labels], BlockMap) = CanClobberSuccip :-
map__lookup(BlockMap, Label, BlockInfo),
BlockInfo = block_info(_, Instrs, _, _, _),
(
list__member(Instr, Instrs),
Instr = Uinstr - _,
(
Uinstr = call(_, _, _, _, _, _)
;
% Only may_call_mercury pragma_c's can clobber succip.
Uinstr = pragma_c(_, _, may_call_mercury,
_, _, _, _, _)
)
->
CanClobberSuccip = yes
;
CanClobberSuccip = can_clobber_succip(Labels, BlockMap)
).
%-----------------------------------------------------------------------------%
% Transform the given block sequence to effect the optimization
% of keeping the stack frame for recursive tail calls once it has
% been set up by the initial entry to the procedure.
% The two label arguments are the label starting the procedure
% (a form of which appears in existing tailcalls) and the label that
% should replace it in tailcalls that avoid the stack teardown.
:- pred keep_frame(list(label)::in, label::in, label::in, bool::in,
block_map::in, block_map::out) is det.
keep_frame([], _, _, _, !BlockMap).
keep_frame([Label | Labels], FirstLabel, SecondLabel, CanClobberSuccip,
!BlockMap) :-
map__lookup(!.BlockMap, Label, BlockInfo0),
(
BlockInfo0 = block_info(Label, OrigInstrs, [_], no,
teardown(Succip, Livevals, Goto)),
Goto = goto(label(GotoLabel)) - Comment,
same_label_ref(FirstLabel, GotoLabel)
->
(
OrigInstrs = [OrigInstr0 | _],
OrigInstr0 = label(_) - _
->
OrigLabelInstr = OrigInstr0
;
error("block does not begin with label")
),
string__append(Comment, " (keeping frame)", NewComment),
NewGoto = goto(label(SecondLabel)) - NewComment,
list__append(Livevals, [NewGoto], LivevalsGoto),
( CanClobberSuccip = yes ->
list__append(Succip, LivevalsGoto, BackInstrs)
;
BackInstrs = LivevalsGoto
),
Instrs = [OrigLabelInstr | BackInstrs],
BlockInfo = block_info(Label, Instrs, [SecondLabel], no,
ordinary(yes)),
map__det_update(!.BlockMap, Label, BlockInfo, !:BlockMap)
;
true
),
keep_frame(Labels, FirstLabel, SecondLabel, CanClobberSuccip,
!BlockMap).
:- pred pick_last(list(T)::in, list(T)::out, T::out) is det.
pick_last([], _, _) :-
error("empty list in pick_last").
pick_last([First | Rest], NonLast, Last) :-
( Rest = [] ->
NonLast = [],
Last = First
;
pick_last(Rest, NonLast0, Last),
NonLast = [First | NonLast0]
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Check that we can use the delay_frame transformation. This requires
% that only the first block is of the setup type, and that the
% second block is of the ordinary type. Since the transformation
% is a null operation if the second block needs a stack frame,
% we lie a bit and say that the transformation is not applicable
% in such cases.
:- pred can_delay_frame(list(label)::in, block_map::in, bool::in) is semidet.
can_delay_frame([], _, _).
can_delay_frame([Label | Labels], BlockMap, First) :-
map__lookup(BlockMap, Label, BlockInfo),
BlockInfo = block_info(_, _, _, MaybeFallThrough, BlockType),
( BlockType = setup ->
First = yes,
MaybeFallThrough = yes(FallThrough),
map__lookup(BlockMap, FallThrough, FallThroughBlockInfo),
FallThroughBlockInfo = block_info(_, _, _, _, FallThroughType),
FallThroughType = ordinary(no)
;
can_delay_frame(Labels, BlockMap, no)
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% The data structures used in the delaying optimizations:
% map__search(RevMap, Label, SideLabels) should be true
% if the block started by Label can be reached via jump
% (i.e. not fallthrough) from the labels in SideLabels.
:- type rev_map == map(label, list(label)).
% map__search(ParMap, Label, ParallelLabel) should be true if
% Label starts a teardown block and ParallelLabel starts its parallel
% (i.e. a copy without the stack teardown code and therefore an
% ordinary block).
:- type par_map == map(label, label).
% set__member(Label, FallIntoParallel) should be true if
% Label starts a teardown block and the immediately previous block
% does not have a stack frame and falls through into the teardown
% block.
%
% If it is true, then we will put the new ParallelLabel block
% immediately before the Label block; if it is false, we will put it
% immediately after. (Both teardown blocks and their parallels
% end with a goto, so the first block cannot fall through to the
% second, nor can the presence of the second block prevent any
% fallthrough from the first block to some other block.)
%-----------------------------------------------------------------------------%
% The optimization of delaying the creation of stack frames as long
% as possible is in three main phases:
%
% - The first phase finds out which ordinary blocks need a
% a stack frame. This naturally includes blocks that access
% stackvars, and blocks that perform calls. It also includes
% blocks that jump to ordinary blocks that need a frame,
% or which are jumped to or fallen through to from ordinary
% blocks that need a stack frame. It does not include blocks
% that fall through to ordinary blocks that need a frame,
% since the frame setup code can be interposed between the
% two blocks.
%
% - The second phase gets rid of the frame setup code in the
% initial setup block, but its main task is to transform
% ordinary blocks that do not need a frame. Such blocks cannot
% directly jump to ordinary blocks that need a frame (if they
% could, they would have been marked as needing a frame too),
% but they can jump to teardown blocks that also assume the
% presence of a frame. Therefore the last instruction in such
% blocks, the only one that can jump out of the block, must be
% modified to jump to non-teardown parallels to these teardown
% blocks. These parallel blocks will be created in the third
% phase, but to make the substitution possible we allocate labels
% for them in this phase.
%
% We must also correctly process fallthrough from such blocks.
% If the block can fall through to a teardown block, we mark
% the teardown block so that its parallel will be put before it.
% If the block can fall through to an ordinary block that needs
% a frame, then we put stack frame setup code between the two
% blocks.
%
% - The third phase creates non-teardown parallels to the teardown
% blocks that need them, and puts them in their correct place,
% either just before or just after the original block.
:- pred delay_frame(list(label)::in, list(label)::out, int::in, string::in,
proc_label::in, counter::in, counter::out,
block_map::in, block_map::out) is det.
delay_frame(LabelSeq0, LabelSeq, FrameSize, Msg, ProcLabel, !C, !BlockMap) :-
delay_frame_init(LabelSeq0, !.BlockMap, map__init, RevMap,
queue__init, Queue1),
propagate_framed_labels(Queue1, !.BlockMap, RevMap,
set__init, FramedLabels),
process_frame_delay(LabelSeq0, FramedLabels, FrameSize, Msg, ProcLabel,
!C, LabelSeq1, !BlockMap, map__init, ParMap,
set__init, FallIntoParallel),
create_parallels(LabelSeq1, LabelSeq, ParMap, FallIntoParallel,
!BlockMap).
%-----------------------------------------------------------------------------%
% Initialize two data structures for the delaying operation.
% The first is a map showing the predecessors of each block,
% i.e. the set of blocks that can jump to each other block.
% The second is a queue of ordinary blocks that need a stack frame.
:- pred delay_frame_init(list(label)::in, block_map::in,
rev_map::in, rev_map::out, queue(label)::in, queue(label)::out) is det.
delay_frame_init([], _, RevMap, RevMap, Queue, Queue).
delay_frame_init([Label | Labels], BlockMap, RevMap0, RevMap, Queue0, Queue) :-
map__lookup(BlockMap, Label, BlockInfo),
BlockInfo = block_info(_, _, SideLabels, _, BlockType),
(
BlockType = setup,
Queue1 = Queue0
;
BlockType = ordinary(NeedsFrame),
(
NeedsFrame = no,
Queue1 = Queue0
;
NeedsFrame = yes,
queue__put(Queue0, Label, Queue1)
)
;
BlockType = teardown(_, _, _),
Queue1 = Queue0
),
rev_map_side_labels(SideLabels, Label, RevMap0, RevMap1),
delay_frame_init(Labels, BlockMap, RevMap1, RevMap, Queue1, Queue).
:- pred rev_map_side_labels(list(label)::in, label::in,
rev_map::in, rev_map::out) is det.
rev_map_side_labels([], _Label, RevMap, RevMap).
rev_map_side_labels([Label | Labels], SourceLabel, RevMap0, RevMap) :-
( map__search(RevMap0, Label, OtherSources0) ->
OtherSources = [SourceLabel | OtherSources0],
map__det_update(RevMap0, Label, OtherSources, RevMap1)
;
OtherSources = [SourceLabel],
map__det_insert(RevMap0, Label, OtherSources, RevMap1)
),
rev_map_side_labels(Labels, SourceLabel, RevMap1, RevMap).
%-----------------------------------------------------------------------------%
% Given FramedLabels0, a set of labels representing ordinary blocks
% that must have a stack frame, propagate the requirement for a stack
% frame to labels representing other ordinary blocks that
%
% - are reachable from a block in FramedLabels0, either by jump or
% by falling through, or
%
% - can perform a jump to a block in FramedLabels0.
%
% The requirement is not propagated to blocks that can fall through
% to a block in FramedLabels0, since on such paths stack frame setup
% code can be inserted between the two blocks.
:- pred propagate_framed_labels(queue(label)::in, block_map::in, rev_map::in,
set(label)::in, set(label)::out) is det.
propagate_framed_labels(Queue0, BlockMap, RevMap,
FramedLabels0, FramedLabels) :-
( queue__get(Queue0, Label, Queue1) ->
(
map__lookup(BlockMap, Label, BlockInfo),
BlockInfo = block_info(_, _, SideLabels,
MaybeFallThrough, BlockType),
BlockType = ordinary(_),
\+ set__member(Label, FramedLabels0)
->
set__insert(FramedLabels0, Label, FramedLabels1),
(
MaybeFallThrough = no,
ReachableLabels = SideLabels
;
MaybeFallThrough = yes(FallThrough),
ReachableLabels = [FallThrough | SideLabels]
),
queue__put_list(Queue1, ReachableLabels, Queue2),
( map__search(RevMap, Label, Sources) ->
queue__put_list(Queue2, Sources, Queue3)
;
Queue3 = Queue2
),
propagate_framed_labels(Queue3, BlockMap, RevMap,
FramedLabels1, FramedLabels)
;
propagate_framed_labels(Queue1, BlockMap, RevMap,
FramedLabels0, FramedLabels)
)
;
FramedLabels = FramedLabels0
).
%-----------------------------------------------------------------------------%
% The predicates process_frame_delay and transform_ordinary_block
% implement the second phase of delay_frame. For documentation,
% see the comment at the top of delay_frame.
:- pred process_frame_delay(list(label)::in, set(label)::in, int::in,
string::in, proc_label::in, counter::in, counter::out,
list(label)::out, block_map::in, block_map::out,
par_map::in, par_map::out, set(label)::in, set(label)::out) is det.
process_frame_delay([], _, _, _, _, !C, [],
!BlockMap, !ParMap, !FallIntoParallel).
process_frame_delay([Label0 | Labels0], FramedLabels, FrameSize, Msg,
ProcLabel, !C, Labels, !BlockMap, !ParMap,
!FallIntoParallel) :-
map__lookup(!.BlockMap, Label0, BlockInfo0),
BlockInfo0 = block_info(Label0Copy, Instrs0, SideLabels0,
MaybeFallThrough0, Type),
( Label0 = Label0Copy ->
true
;
error("label in block_info is not copy")
),
(
Type = setup,
(
MaybeFallThrough0 = yes(FallThrough)
;
MaybeFallThrough0 = no,
error("no fallthrough for setup block")
),
( SideLabels0 = [] ->
true
;
error("nonempty side labels for setup block")
),
(
Instrs0 = [LabelInstrPrime | _],
LabelInstrPrime = label(_) - _
->
LabelInstr = LabelInstrPrime
;
error("setup block does not begin with label")
),
( set__member(FallThrough, FramedLabels) ->
% we can't delay the frame setup,
% so return everything unchanged
Labels = [Label0 | Labels0]
;
BlockInfo = block_info(Label0, [LabelInstr],
SideLabels0, MaybeFallThrough0, ordinary(no)),
map__det_update(!.BlockMap, Label0, BlockInfo,
!:BlockMap),
process_frame_delay(Labels0, FramedLabels, FrameSize,
Msg, ProcLabel, !C, Labels1,
!BlockMap, !ParMap, !FallIntoParallel),
Labels = [Label0 | Labels1]
)
;
Type = ordinary(_),
( set__member(Label0, FramedLabels) ->
% Every block reachable from this block, whether via
% jump or fallthrough, will be an ordinary block also
% in FramedLabels, or will be a teardown block.
% We already have a stack frame, and all our
% successors expect one, so we need not do anything.
process_frame_delay(Labels0, FramedLabels, FrameSize,
Msg, ProcLabel, !C, Labels1,
!BlockMap, !ParMap, !FallIntoParallel),
Labels = [Label0 | Labels1]
;
% Every block reachable from this block, whether via
% jump or fallthrough, will be an ordinary block also
% not in FramedLabels, or will be a teardown block.
% The ordinary blocks are OK, since we don't have a
% stack frame and they don't expect one exither, but
% the teardown blocks are a different matter; we must
% make sure that we reach their non-teardown parallels
% instead.
transform_ordinary_block(Label0, Labels0, BlockInfo0,
FramedLabels, FrameSize, Msg, ProcLabel, !C,
Labels, !BlockMap, !ParMap, !FallIntoParallel)
)
;
Type = teardown(_, _, _),
process_frame_delay(Labels0, FramedLabels, FrameSize,
Msg, ProcLabel, !C, Labels1,
!BlockMap, !ParMap, !FallIntoParallel),
Labels = [Label0 | Labels1]
).
:- pred transform_ordinary_block(label::in, list(label)::in, block_info::in,
set(label)::in, int::in, string::in, proc_label::in,
counter::in, counter::out, list(label)::out,
block_map::in, block_map::out, par_map::in, par_map::out,
set(label)::in, set(label)::out) is det.
transform_ordinary_block(Label0, Labels0, BlockInfo0, FramedLabels, FrameSize,
Msg, ProcLabel, !C, Labels,
!BlockMap, !ParMap, !FallIntoParallel) :-
BlockInfo0 = block_info(_, Instrs0, SideLabels0,
MaybeFallThrough0, Type),
mark_parallels_for_teardown(SideLabels0, SideLabels,
AssocLabelMap, !.BlockMap, ProcLabel, !C, !ParMap),
pick_last(Instrs0, PrevInstrs, LastInstr0),
map__from_assoc_list(AssocLabelMap, LabelMap),
opt_util__replace_labels_instruction(LastInstr0, LabelMap, no,
LastInstr),
list__append(PrevInstrs, [LastInstr], Instrs),
(
MaybeFallThrough0 = yes(FallThrough),
map__lookup(!.BlockMap, FallThrough, FallThroughInfo),
FallThroughInfo = block_info(_, _, _, _, FallThroughType),
(
FallThroughType = setup,
error("ordinary block falls through to setup")
;
FallThroughType = ordinary(_),
( set__member(FallThrough, FramedLabels) ->
% We fall through from a block without a
% stack frame to a block which needs a
% stack frame, so we must create one.
counter__allocate(N, !C),
NewLabel = local(N, ProcLabel),
MaybeFallThrough = yes(NewLabel),
MaybeNewLabel = yes(NewLabel),
SetupCode = [
label(NewLabel)
- "late setup label",
incr_sp(FrameSize, Msg)
- "late setup",
assign(stackvar(FrameSize),
lval(succip))
- "late save"
],
SetupBlock = block_info(NewLabel, SetupCode,
[], MaybeFallThrough0, setup),
map__det_insert(!.BlockMap, NewLabel,
SetupBlock, !:BlockMap)
;
MaybeFallThrough = yes(FallThrough),
MaybeNewLabel = no
)
;
FallThroughType = teardown(_, _, _),
MaybeFallThrough = yes(FallThrough),
set__insert(!.FallIntoParallel, FallThrough,
!:FallIntoParallel),
MaybeNewLabel = no,
mark_parallel(FallThrough, _, ProcLabel, !C, !ParMap)
)
;
MaybeFallThrough0 = no,
MaybeFallThrough = no,
MaybeNewLabel = no
),
BlockInfo = block_info(Label0, Instrs, SideLabels, MaybeFallThrough,
Type),
map__set(!.BlockMap, Label0, BlockInfo, !:BlockMap),
process_frame_delay(Labels0, FramedLabels, FrameSize, Msg, ProcLabel,
!C, Labels1, !BlockMap, !ParMap, !FallIntoParallel),
( MaybeNewLabel = yes(NewLabel2) ->
Labels = [Label0, NewLabel2 | Labels1]
;
Labels = [Label0 | Labels1]
).
%-----------------------------------------------------------------------------%
% The input is a list of labels that are jumped to from a frame
% which has no stack frame. Therefore if some of those labels start
% teardown blocks, we ensure that those blocks have non-teardown
% parallels, allocating labels for them if they haven't been allocated
% already. We return both the updated list of labels and the
% substitution (represented as an association list) that will have
% to applied to the jumping instruction.
:- pred mark_parallels_for_teardown(list(label)::in, list(label)::out,
assoc_list(label)::out, block_map::in,
proc_label::in, counter::in, counter::out,
par_map::in, par_map::out) is det.
mark_parallels_for_teardown([], [], [], _, _, !C, !ParMap).
mark_parallels_for_teardown([Label0 | Labels0], [Label | Labels],
[Label0 - Label | LabelMap], BlockMap,
ProcLabel, !C, !ParMap) :-
map__lookup(BlockMap, Label0, BlockInfo),
BlockInfo = block_info(_, _, _, _, Type),
(
Type = setup,
error("reached setup via jump from ordinary block")
;
Type = ordinary(_),
Label = Label0
;
Type = teardown(_, _, _),
mark_parallel(Label0, Label, ProcLabel, !C, !ParMap)
),
mark_parallels_for_teardown(Labels0, Labels, LabelMap,
BlockMap, ProcLabel, !C, !ParMap).
% Given the label of a teardown block, allocate a label for its
% non-teardown parallel if it doesn't already have one.
:- pred mark_parallel(label::in, label::out, proc_label::in,
counter::in, counter::out, par_map::in, par_map::out) is det.
mark_parallel(Label0, Label, ProcLabel, !C, !ParMap) :-
( map__search(!.ParMap, Label0, OldParallel) ->
Label = OldParallel
;
counter__allocate(N, !C),
NewParallel = local(N, ProcLabel),
Label = NewParallel,
map__det_insert(!.ParMap, Label0, NewParallel, !:ParMap)
).
%-----------------------------------------------------------------------------%
% The third phase of the delay_frame optimization, creating
% the non-teardown parallel blocks.
:- pred create_parallels(list(label)::in, list(label)::out,
par_map::in, set(label)::in, block_map::in, block_map::out) is det.
create_parallels([], [], _, _, !BlockMap).
create_parallels([Label0 | Labels0], Labels, ParMap, FallIntoParallel,
!BlockMap) :-
create_parallels(Labels0, Labels1, ParMap, FallIntoParallel,
!BlockMap),
( map__search(ParMap, Label0, ParallelLabel) ->
map__lookup(!.BlockMap, Label0, BlockInfo0),
BlockInfo0 = block_info(Label0Copy, _,
SideLabels, MaybeFallThrough, Type),
( Label0 = Label0Copy ->
true
;
error("label in block_info is not copy")
),
( MaybeFallThrough = no ->
true
;
error("block with parallel has fall through")
),
( Type = teardown(_, Livevals, Goto) ->
LabelInstr = label(ParallelLabel)
- "non-teardown parallel",
list__append(Livevals, [Goto], Replacement0),
Replacement = [LabelInstr | Replacement0],
NewBlockInfo = block_info(ParallelLabel, Replacement,
SideLabels, no, ordinary(no)),
map__det_insert(!.BlockMap, ParallelLabel,
NewBlockInfo, !:BlockMap),
( set__member(Label0, FallIntoParallel) ->
Labels = [ParallelLabel, Label0 | Labels1]
;
Labels = [Label0, ParallelLabel | Labels1]
)
;
error("block with parallel is not teardown")
)
;
Labels = [Label0 | Labels1]
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%