Files
mercury/compiler/term_util.m
Simon Taylor 2725b1a331 Aditi update syntax, type and mode checking.
Estimated hours taken: 220

Aditi update syntax, type and mode checking.

Change the hlds_goal for constructions in preparation for
structure reuse to avoid making multiple conflicting changes.

compiler/hlds_goal.m:
	Merge `higher_order_call' and `class_method_call' into a single
	`generic_call' goal type. This also has alternatives for the
	various Aditi builtins for which type declarations can't
	be written.

	Remove the argument types field from higher-order/class method calls.
	It wasn't used often, and wasn't updated by optimizations
	such as inlining. The types can be obtained from the vartypes
	field of the proc_info.

	Add a `lambda_eval_method' field to lambda_goals.

	Add a field to constructions to identify which RL code fragment should
	be used for an top-down Aditi closure.

	Add fields to constructions to hold structure reuse information.
	This is currently ignored -- the changes to implement structure
	reuse will be committed to the alias branch.
	This is included here to avoid lots of CVS conflicts caused by
	changing the definition of `hlds_goal' twice.

	Add a field to `some' goals to specify whether the quantification
	can be removed. This is used to make it easier to ensure that
	indexes are used for updates.

	Add a field to lambda_goals to describe whether the modes were
	guessed by the compiler and may need fixing up after typechecking
	works out the argument types.

	Add predicate `hlds_goal__generic_call_id' to work out a call_id
	for a generic call for use in error messages.

compiler/purity.m:
compiler/post_typecheck.m:
	Fill in the modes of Aditi builtin calls and closure constructions.
	This needs to know which are the `aditi__state' arguments, so
	it must be done after typechecking.

compiler/prog_data.m:
	Added `:- type sym_name_and_arity ---> sym_name/arity'.

	Add a type `lambda_eval_method', which describes how a closure
	is to be executed. The alternatives are normal Mercury execution,
	bottom-up execution by Aditi and top-down execution by Aditi.

compiler/prog_out.m:
	Add predicate `prog_out__write_sym_name_and_arity', which
	replaces duplicated inline code in a few places.

compiler/hlds_data.m:
	Add a `lambda_eval_method' field to `pred_const' cons_ids and
	`pred_closure_tag' cons_tags.

compiler/hlds_pred.m:
	Remove type `pred_call_id', replace it with type `simple_call_id',
	which combines a `pred_or_func' and a `sym_name_and_arity'.

	Add a type `call_id' which describes all the different types of call,
	including normal calls, higher-order and class-method calls
	and Aditi builtins.

	Add `aditi_top_down' to the type `marker'.

	Remove `aditi_interface' from type `marker'. Interfacing to
	Aditi predicates is now handled by `generic_call' hlds_goals.

	Add a type `rl_exprn_id' which identifies a predicate to
	be executed top-down by Aditi.
	Add a `maybe(rl_exprn_id)'  field to type `proc_info'.

	Add predicate `adjust_func_arity' to convert between the arity
	of a function to its arity as a predicate.

	Add predicates `get_state_args' and `get_state_args_det' to
	extract the DCG state arguments from an argument list.

	Add predicate `pred_info_get_call_id' to get a `simple_call_id'
	for a predicate for use in error messages.

compiler/hlds_out.m:
	Write the new representation for call_ids.

	Add a predicate `hlds_out__write_call_arg_id' which
	replaces similar code in mode_errors.m and typecheck.m.

compiler/prog_io_goal.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on pred expressions.

compiler/prog_io_util.m:
compiler/prog_io_pragma.m:
	Add predicates
	- `prog_io_util:parse_name_and_arity' to parse `SymName/Arity'
		(moved from prog_io_pragma.m).
	- `prog_io_util:parse_pred_or_func_name_and_arity to parse
		`pred SymName/Arity' or `func SymName/Arity'.
	- `prog_io_util:parse_pred_or_func_and_args' to parse terms resembling
		a clause head (moved from prog_io_pragma.m).

compiler/type_util.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on higher-order types.

	Add predicates `construct_higher_order_type',
	`construct_higher_order_pred_type' and
	`construct_higher_order_func_type' to avoid some code duplication.

compiler/mode_util.m:
	Add predicate `unused_mode/1', which returns `builtin:unused'.
	Add functions `aditi_di_mode/0', `aditi_ui_mode/0' and
	`aditi_uo_mode/0' which return `in', `in', and `out', but will
	be changed to return `di', `ui' and `uo' when alias tracking
	is implemented.

compiler/goal_util.m:
	Add predicate `goal_util__generic_call_vars' which returns
	any arguments to a generic_call which are not in the argument list,
	for example the closure passed to a higher-order call or
	the typeclass_info for a class method call.

compiler/llds.m:
compiler/exprn_aux.m:
compiler/dupelim.m:
compiler/llds_out.m:
compiler/opt_debug.m:
	Add builtin labels for the Aditi update operations.

compiler/hlds_module.m:
	Add predicate predicate_table_search_pf_sym, used for finding
	possible matches for a call with the wrong number of arguments.

compiler/intermod.m:
	Don't write predicates which build `aditi_top_down' goals,
	because there is currently no way to tell importing modules
	which RL code fragment to use.

compiler/simplify.m:
	Obey the `cannot_remove' field of explicit quantification goals.

compiler/make_hlds.m:
	Parse Aditi updates.

	Don't typecheck clauses for which syntax errors in Aditi updates
	are found - this avoids spurious "undefined predicate `aditi_insert/3'"
	errors.

	Factor out some common code to handle terms of the form `Head :- Body'.
	Factor out common code in the handling of pred and func expressions.

compiler/typecheck.m:
	Typecheck Aditi builtins.

	Allow the argument types of matching predicates to be adjusted
	when typechecking the higher-order arguments of Aditi builtins.

	Change `typecheck__resolve_pred_overloading' to take a list of
	argument types rather than a `map(var, type)' and a list of
	arguments to allow a transformation to be performed on the
	argument types before passing them.

compiler/error_util.m:
	Move the part of `report_error_num_args' which writes
	"wrong number of arguments (<x>; expected <y>)" from
	typecheck.m for use by make_hlds.m when reporting errors
	for Aditi builtins.

compiler/modes.m:
compiler/unique_modes.m:
compiler/modecheck_call.m:
	Modecheck Aditi builtins.

compiler/lambda.m:
	Handle the markers for predicates introduced for
	`aditi_top_down' and `aditi_bottom_up' lambda expressions.

compiler/polymorphism.m:
	Add extra type_infos to `aditi_insert' calls
	describing the tuple to insert.

compiler/call_gen.m:
	Generate code for Aditi builtins.

compiler/unify_gen.m:
compiler/bytecode_gen.m:
	Abort on `aditi_top_down' and `aditi_bottom_up' lambda
	expressions - code generation for them is not yet implemented.

compiler/magic.m:
	Use the `aditi_call' generic_call rather than create
	a new procedure for each Aditi predicate called from C.

compiler/rl_out.pp:
compiler/rl_gen.m:
compiler/rl.m:
	Move some utility code used by magic.m and call_gen.m into rl.m.

	Remove an XXX comment about reference counting being not yet
	implemented - Evan has fixed that.

library/ops.m:
compiler/mercury_to_mercury.m:
doc/transition_guide.texi:
	Add unary prefix operators `aditi_bottom_up' and `aditi_top_down',
	used as qualifiers on lambda expressions.
	Add infix operator `==>' to separate the tuples in an
	`aditi_modify' call.

compiler/follow_vars.m:
	Thread a `map(prog_var, type)' through, needed because
	type information is no longer held in higher-order call goals.

compiler/table_gen.m:
	Use the `make_*_construction' predicates in hlds_goal.m
	to construct constants.

compiler/*.m:
	Trivial changes to add extra fields to hlds_goal structures.

doc/reference_manual.texi:
	Document Aditi updates.

	Use @samp{pragma base_relation} instead of
	@samp{:- pragma base_relation} throughout the Aditi documentation
	to be consistent with other parts of the reference manual.

tests/valid/Mmakefile:
tests/valid/aditi_update.m:
tests/valid/aditi.m:
	Test case.

tests/valid/Mmakefile:
	Remove some hard-coded --intermodule-optimization rules which are
	no longer needed because `mmake depend' is now run in this directory.

tests/invalid/*.err_exp:
	Fix expected output for changes in reporting of call_ids
	in typecheck.m.

tests/invalid/Mmakefile
tests/invalid/aditi_update_errors.{m,err_exp}:
tests/invalid/aditi_update_mode_errors.{m,err_exp}:
	Test error messages for Aditi updates.

tests/valid/aditi.m:
tests/invalid/aditi.m:
	Cut down version of extras/aditi/aditi.m to provide basic declarations
	for Aditi compilation such as `aditi__state' and the modes
	`aditi_di', `aditi_uo' and `aditi_ui'. Installing extras/aditi/aditi.m
	somewhere would remove the need for these.
1999-07-13 08:55:28 +00:00

599 lines
21 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_util.m
% Main author: crs.
%
% This module:
%
% - defines the types used by termination analysis
% - defines predicates for computing functor norms
% - defines some utility predicates
%
%-----------------------------------------------------------------------------%
:- module term_util.
:- interface.
:- import_module term_errors, prog_data.
:- import_module hlds_module, hlds_pred, hlds_data, hlds_goal.
:- import_module std_util, bool, int, list, map, bag.
%-----------------------------------------------------------------------------%
%
% The types `arg_size_info' and `termination_info' hold information
% about procedures which is used for termination analysis.
% These types are stored as fields in the HLDS proc_info.
% For cross-module analysis, the information is written out as
% `pragma termination_info(...)' declarations in the
% `.opt' and `.trans_opt' files. The module prog_data.m defines
% types similar to these two (but without the `list(term_errors__error)')
% which are used when parsing `termination_info' pragmas.
%
% The arg size info defines an upper bound on the difference
% between the sizes of the output arguments of a procedure and the sizes
% of the input arguments:
%
% | input arguments | + constant >= | output arguments |
%
% where | | represents a semilinear norm.
:- type arg_size_info
---> finite(int, list(bool))
% The termination constant is a finite integer.
% The list of bool has a 1:1 correspondence
% with the input arguments of the procedure.
% It stores whether the argument contributes
% to the size of the output arguments.
; infinite(list(term_errors__error)).
% There is no finite integer for which the
% above equation is true. The argument says
% why the analysis failed to find a finite
% constant.
:- type termination_info
---> cannot_loop % This procedure terminates for all
% possible inputs.
; can_loop(list(term_errors__error)).
% The analysis could not prove that the
% procedure terminates.
% The type `used_args' holds a mapping which specifies for each procedure
% which of its arguments are used.
:- type used_args == map(pred_proc_id, list(bool)).
%-----------------------------------------------------------------------------%
% We use semilinear norms (denoted by ||) to compute the sizes of terms.
% These have the form
%
% | f(t1, ... tn) | = weight(f) + sum of | ti |
% where i is an element of a set I, and I is a subset of {1, ... n}
%
% We currently support four kinds of semilinear norms.
:- type functor_info
---> simple % All non-constant functors have weight 1,
% while constants have weight 0.
% Use the size of all subterms (I = {1, ..., n}.
; total % All functors have weight = arity of the functor.
% Use the size of all subterms (I = {1, ..., n}.
; use_map(weight_table)
% The weight of each functor is given by the table.
% Use the size of all subterms (I = {1, ..., n}.
; use_map_and_args(weight_table).
% The weight of each functor is given by the table,
% and so is the set of arguments of the functor whose
% size should be counted (I is given by the table
% entry of the functor).
:- type unify_info == pair(map(prog_var, type), functor_info).
:- type weight_info ---> weight(int, list(bool)).
:- type weight_table == map(pair(type_id, cons_id), weight_info).
:- pred find_weights(module_info::in, weight_table::out) is det.
% This predicate is computes the weight of a functor and the set of arguments
% of that functor whose sizes should be counted towards the size of the whole
% term.
:- pred functor_norm(functor_info::in, type_id::in, cons_id::in,
module_info::in, int::out, list(prog_var)::in, list(prog_var)::out,
list(uni_mode)::in, list(uni_mode)::out) is det.
:- type pass_info
---> pass_info(
functor_info,
int, % Max number of errors to gather.
int % Max number of paths to analyze.
).
%-----------------------------------------------------------------------------%
% This predicate partitions the arguments of a call into a list of input
% variables and a list of output variables,
:- pred partition_call_args(module_info::in, list(mode)::in, list(prog_var)::in,
bag(prog_var)::out, bag(prog_var)::out) is det.
% Given a list of variables from a unification, this predicate divides the
% list into a bag of input variables, and a bag of output variables.
:- pred split_unification_vars(list(prog_var)::in, list(uni_mode)::in,
module_info::in, bag(prog_var)::out, bag(prog_var)::out) is det.
% Used to create lists of boolean values, which are used for used_args.
% make_bool_list(HeadVars, BoolIn, BoolOut) creates a bool list which is
% (length(HeadVars) - length(BoolIn)) `no' followed by BoolIn. This is
% used to set the used args for compiler generated predicates. The no's
% at the start are because the Type infos are not used. length(BoolIn)
% should equal the arity of the predicate, and the difference in length
% between the arity of the procedure and the arity of the predicate is
% the number of type infos.
:- pred term_util__make_bool_list(list(_T)::in, list(bool)::in,
list(bool)::out) is det.
% Removes variables from the InVarBag that are not used in the call.
% remove_unused_args(InVarBag0, VarList, BoolList, InVarBag)
% VarList and BoolList are corresponding lists. Any variable in VarList
% that has a `no' in the corresponding place in the BoolList is removed
% from InVarBag.
:- pred remove_unused_args(bag(prog_var), list(prog_var), list(bool),
bag(prog_var)).
:- mode remove_unused_args(in, in, in, out) is det.
% This predicate sets the argument size info of a given a list of procedures.
:- pred set_pred_proc_ids_arg_size_info(list(pred_proc_id)::in,
arg_size_info::in, module_info::in, module_info::out) is det.
% This predicate sets the termination info of a given a list of procedures.
:- pred set_pred_proc_ids_termination_info(list(pred_proc_id)::in,
termination_info::in, module_info::in, module_info::out) is det.
:- pred lookup_proc_termination_info(module_info::in, pred_proc_id::in,
maybe(termination_info)::out) is det.
:- pred lookup_proc_arg_size_info(module_info::in, pred_proc_id::in,
maybe(arg_size_info)::out) is det.
% Succeeds if one or more variables in the list are higher order.
:- pred horder_vars(list(prog_var), map(prog_var, type)).
:- mode horder_vars(in, in) is semidet.
% Succeeds if all values of the given type are zero size (for all norms).
:- pred zero_size_type(type, module_info).
:- mode zero_size_type(in, in) is semidet.
:- pred get_context_from_scc(list(pred_proc_id)::in, module_info::in,
prog_context::out) is det.
%-----------------------------------------------------------------------------%
% Convert a prog_data__pragma_termination_info into a
% term_util__termination_info, by adding the appropriate context.
:- pred add_context_to_termination_info(maybe(pragma_termination_info),
prog_context, maybe(termination_info)).
:- mode add_context_to_termination_info(in, in, out) is det.
% Convert a prog_data__pragma_arg_size_info into a
% term_util__arg_size_info, by adding the appropriate context.
:- pred add_context_to_arg_size_info(maybe(pragma_arg_size_info),
prog_context, maybe(arg_size_info)).
:- mode add_context_to_arg_size_info(in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module inst_match, prog_out, mode_util, type_util.
:- import_module globals, options.
:- import_module assoc_list, require.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Calculate the weight to be assigned to each function symbol for the
% use_map and use_map_and_args semilinear norms.
%
% Given a type definition such as
%
% :- type t(Tk) ---> f1(a11, ... a1n1) where n1 is the arity of f1
% ; ...
% ; fm(am1, ... amnm) where nm is the arity of fm
%
% we check, for each aij, whether its type is recursive (i.e. it is t with
% type variable arguments that are a permutation of Tk). The weight info
% we compute for each functor will have a boolean list that has a `yes'
% for each recursive argument and a `no' for each nonrecursive argument.
% The weight to be assigned to the functor is the number of nonrecursive
% arguments, except that we assign a weight of at least 1 to all functors
% which are not constants.
find_weights(ModuleInfo, Weights) :-
module_info_types(ModuleInfo, TypeTable),
map__to_assoc_list(TypeTable, TypeList),
map__init(Weights0),
find_weights_for_type_list(TypeList, Weights0, Weights).
:- pred find_weights_for_type_list(assoc_list(type_id, hlds_type_defn)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_type_list([], Weights, Weights).
find_weights_for_type_list([TypeId - TypeDefn | TypeList], Weights0, Weights) :-
find_weights_for_type(TypeId, TypeDefn, Weights0, Weights1),
find_weights_for_type_list(TypeList, Weights1, Weights).
:- pred find_weights_for_type(type_id::in, hlds_type_defn::in,
weight_table::in, weight_table::out) is det.
find_weights_for_type(TypeId, TypeDefn, Weights0, Weights) :-
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(Constructors, _, _, _),
hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
find_weights_for_cons_list(Constructors, TypeId, TypeParams,
Weights0, Weights)
;
TypeBody = uu_type(_),
error("undiscriminated union types not yet implemented")
;
% This type does not introduce any functors
TypeBody = eqv_type(_),
Weights = Weights0
;
% This type may introduce some functors,
% but we will never see them in this analysis
TypeBody = abstract_type,
Weights = Weights0
).
:- pred find_weights_for_cons_list(list(constructor)::in,
type_id::in, list(type_param)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_cons_list([], _, _, Weights, Weights).
find_weights_for_cons_list([Constructor | Constructors], TypeId, Params,
Weights0, Weights) :-
find_weights_for_cons(Constructor, TypeId, Params, Weights0, Weights1),
find_weights_for_cons_list(Constructors, TypeId, Params,
Weights1, Weights).
:- pred find_weights_for_cons(constructor::in,
type_id::in, list(type_param)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_cons(Ctor, TypeId, Params, Weights0, Weights) :-
% XXX should we do something about ExistQVars here?
Ctor = ctor(_ExistQVars, _Constraints, SymName, Args),
list__length(Args, Arity),
( Arity > 0 ->
find_and_count_nonrec_args(Args, TypeId, Params,
NumNonRec, ArgInfos0),
( NumNonRec = 0 ->
Weight = 1,
list__duplicate(Arity, yes, ArgInfos)
;
Weight = NumNonRec,
ArgInfos = ArgInfos0
),
WeightInfo = weight(Weight, ArgInfos)
;
WeightInfo = weight(0, [])
),
ConsId = cons(SymName, Arity),
map__det_insert(Weights0, TypeId - ConsId, WeightInfo, Weights).
:- pred find_and_count_nonrec_args(list(constructor_arg)::in,
type_id::in, list(type_param)::in,
int::out, list(bool)::out) is det.
find_and_count_nonrec_args([], _, _, 0, []).
find_and_count_nonrec_args([Arg | Args], Id, Params, NonRecArgs, ArgInfo) :-
find_and_count_nonrec_args(Args, Id, Params, NonRecArgs0, ArgInfo0),
( is_arg_recursive(Arg, Id, Params) ->
NonRecArgs = NonRecArgs0,
ArgInfo = [yes | ArgInfo0]
;
NonRecArgs is NonRecArgs0 + 1,
ArgInfo = [no | ArgInfo0]
).
:- pred is_arg_recursive(constructor_arg::in,
type_id::in, list(type_param)::in) is semidet.
is_arg_recursive(Arg, Id, Params) :-
Arg = _Name - ArgType,
type_to_type_id(ArgType, ArgTypeId, ArgTypeParams),
Id = ArgTypeId,
list__perm(Params, ArgTypeParams).
%-----------------------------------------------------------------------------%
% Although the module info is not used in either of these norms, it could
% be needed for other norms, so it should not be removed.
functor_norm(simple, _, ConsId, _, Int, Args, Args, Modes, Modes) :-
(
ConsId = cons(_, Arity),
Arity \= 0
->
Int = 1
;
Int = 0
).
functor_norm(total, _, ConsId, _Module, Int, Args, Args, Modes, Modes) :-
( ConsId = cons(_, Arity) ->
Int = Arity
;
Int = 0
).
functor_norm(use_map(WeightMap), TypeId, ConsId, _Module, Int,
Args, Args, Modes, Modes) :-
( map__search(WeightMap, TypeId - ConsId, WeightInfo) ->
WeightInfo = weight(Int, _)
;
Int = 0
).
functor_norm(use_map_and_args(WeightMap), TypeId, ConsId, _Module, Int,
Args0, Args, Modes0, Modes) :-
( map__search(WeightMap, TypeId - ConsId, WeightInfo) ->
WeightInfo = weight(Int, UseArgList),
(
functor_norm_filter_args(UseArgList, Args0, Args1,
Modes0, Modes1)
->
Modes = Modes1,
Args = Args1
;
error("Unmatched lists in functor_norm_filter_args.")
)
;
Int = 0,
Modes = Modes0,
Args = Args0
).
% This predicate will fail if the length of the input lists are not matched.
:- pred functor_norm_filter_args(list(bool), list(prog_var), list(prog_var),
list(uni_mode), list(uni_mode)).
:- mode functor_norm_filter_args(in, in, out, in, out) is semidet.
functor_norm_filter_args([], [], [], [], []).
functor_norm_filter_args([yes | Bools], [Arg0 | Args0], [Arg0 | Args],
[Mode0 | Modes0], [Mode0 | Modes]) :-
functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).
functor_norm_filter_args([no | Bools], [_Arg0 | Args0], Args,
[_Mode0 | Modes0], Modes) :-
functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).
%-----------------------------------------------------------------------------%
partition_call_args(Module, ArgModes, Args, InVarsBag, OutVarsBag) :-
partition_call_args_2(Module, ArgModes, Args, InVars, OutVars),
bag__from_list(InVars, InVarsBag),
bag__from_list(OutVars, OutVarsBag).
:- pred partition_call_args_2(module_info::in, list(mode)::in,
list(prog_var)::in, list(prog_var)::out, list(prog_var)::out) is det.
partition_call_args_2(_, [], [], [], []).
partition_call_args_2(_, [], [_ | _], _, _) :-
error("Unmatched variables in term_util:partition_call_args").
partition_call_args_2(_, [_ | _], [], _, _) :-
error("Unmatched variables in term_util__partition_call_args").
partition_call_args_2(ModuleInfo, [ArgMode | ArgModes], [Arg | Args],
InputArgs, OutputArgs) :-
partition_call_args_2(ModuleInfo, ArgModes, Args,
InputArgs1, OutputArgs1),
( mode_is_input(ModuleInfo, ArgMode) ->
InputArgs = [Arg | InputArgs1],
OutputArgs = OutputArgs1
; mode_is_output(ModuleInfo, ArgMode) ->
InputArgs = InputArgs1,
OutputArgs = [Arg | OutputArgs1]
;
InputArgs = InputArgs1,
OutputArgs = OutputArgs1
).
% For these next two predicates (split_unification_vars and
% partition_call_args) there is a problem of what needs to be done for
% partially instantiated data structures. The correct answer is that the
% system shoud use a norm such that the size of the uninstantiated parts of
% a partially instantiated structure have no effect on the size of the data
% structure according to the norm. For example when finding the size of a
% list-skeleton, list-length norm should be used. Therefore, the size of
% any term must be given by
% sizeof(term) = constant + sum of the size of each
% (possibly partly) instantiated subterm.
% It is probably easiest to implement this by modifying term_weights.
% The current implementation does not correctly handle partially
% instantiated data structures.
split_unification_vars([], Modes, _ModuleInfo, Vars, Vars) :-
bag__init(Vars),
( Modes = [] ->
true
;
error("term_util:split_unification_vars: Unmatched Variables")
).
split_unification_vars([Arg | Args], Modes, ModuleInfo,
InVars, OutVars):-
( Modes = [UniMode | UniModes] ->
split_unification_vars(Args, UniModes, ModuleInfo,
InVars0, OutVars0),
UniMode = ((_VarInit - ArgInit) -> (_VarFinal - ArgFinal)),
( % if
inst_is_bound(ModuleInfo, ArgInit)
->
% Variable is an input variable
bag__insert(InVars0, Arg, InVars),
OutVars = OutVars0
; % else if
inst_is_free(ModuleInfo, ArgInit),
inst_is_bound(ModuleInfo, ArgFinal)
->
% Variable is an output variable
InVars = InVars0,
bag__insert(OutVars0, Arg, OutVars)
; % else
InVars = InVars0,
OutVars = OutVars0
)
;
error("term_util__split_unification_vars: Unmatched Variables")
).
%-----------------------------------------------------------------------------%
term_util__make_bool_list(HeadVars0, Bools, Out) :-
list__length(Bools, Arity),
( list__drop(Arity, HeadVars0, HeadVars1) ->
HeadVars = HeadVars1
;
error("Unmatched variables in term_util:make_bool_list")
),
term_util__make_bool_list_2(HeadVars, Bools, Out).
:- pred term_util__make_bool_list_2(list(_T), list(bool), list(bool)).
:- mode term_util__make_bool_list_2(in, in, out) is det.
term_util__make_bool_list_2([], Bools, Bools).
term_util__make_bool_list_2([ _ | Vars ], Bools, [no | Out]) :-
term_util__make_bool_list_2(Vars, Bools, Out).
remove_unused_args(Vars, [], [], Vars).
remove_unused_args(Vars, [], [_X | _Xs], Vars) :-
error("Unmatched variables in term_util:remove_unused_args").
remove_unused_args(Vars, [_X | _Xs], [], Vars) :-
error("Unmatched variables in term_util__remove_unused_args").
remove_unused_args(Vars0, [ Arg | Args ], [ UsedVar | UsedVars ], Vars) :-
( UsedVar = yes ->
% The variable is used, so leave it
remove_unused_args(Vars0, Args, UsedVars, Vars)
;
% The variable is not used in producing output vars, so
% dont include it as an input variable.
bag__delete(Vars0, Arg, Vars1),
remove_unused_args(Vars1, Args, UsedVars, Vars)
).
%-----------------------------------------------------------------------------%
set_pred_proc_ids_arg_size_info([], _ArgSize, Module, Module).
set_pred_proc_ids_arg_size_info([PPId | PPIds], ArgSize, Module0, Module) :-
PPId = proc(PredId, ProcId),
module_info_preds(Module0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
proc_info_set_maybe_arg_size_info(ProcInfo0, yes(ArgSize), ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(Module0, PredTable, Module1),
set_pred_proc_ids_arg_size_info(PPIds, ArgSize, Module1, Module).
set_pred_proc_ids_termination_info([], _Termination, Module, Module).
set_pred_proc_ids_termination_info([PPId | PPIds], Termination,
Module0, Module) :-
PPId = proc(PredId, ProcId),
module_info_preds(Module0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
proc_info_set_maybe_termination_info(ProcInfo0, yes(Termination),
ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(Module0, PredTable, Module1),
set_pred_proc_ids_termination_info(PPIds, Termination,
Module1, Module).
lookup_proc_termination_info(Module, PredProcId, MaybeTermination) :-
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_get_maybe_termination_info(ProcInfo, MaybeTermination).
lookup_proc_arg_size_info(Module, PredProcId, MaybeArgSize) :-
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_get_maybe_arg_size_info(ProcInfo, MaybeArgSize).
horder_vars([Arg | Args], VarType) :-
(
map__lookup(VarType, Arg, Type),
type_is_higher_order(Type, _, _, _)
;
horder_vars(Args, VarType)
).
zero_size_type(Type, Module) :-
classify_type(Type, Module, TypeCategory),
zero_size_type_category(TypeCategory, Type, Module, yes).
:- pred zero_size_type_category(builtin_type, type, module_info, bool).
:- mode zero_size_type_category(in, in, in, out) is det.
zero_size_type_category(int_type, _, _, yes).
zero_size_type_category(char_type, _, _, yes).
zero_size_type_category(str_type, _, _, yes).
zero_size_type_category(float_type, _, _, yes).
zero_size_type_category(pred_type, _, _, no).
zero_size_type_category(enum_type, _, _, yes).
zero_size_type_category(polymorphic_type, _, _, no).
zero_size_type_category(user_type, _, _, no).
%-----------------------------------------------------------------------------%
get_context_from_scc(SCC, Module, Context) :-
( SCC = [proc(PredId, _) | _] ->
module_info_pred_info(Module, PredId, PredInfo),
pred_info_context(PredInfo, Context)
;
error("Empty SCC in pass 2 of termination analysis")
).
%-----------------------------------------------------------------------------%
add_context_to_termination_info(no, _, no).
add_context_to_termination_info(yes(cannot_loop), _, yes(cannot_loop)).
add_context_to_termination_info(yes(can_loop), Context,
yes(can_loop([Context - imported_pred]))).
add_context_to_arg_size_info(no, _, no).
add_context_to_arg_size_info(yes(finite(A, B)), _, yes(finite(A, B))).
add_context_to_arg_size_info(yes(infinite), Context,
yes(infinite([Context - imported_pred]))).
%-----------------------------------------------------------------------------%