mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 15:26:31 +00:00
Estimated hours taken: 30 Add impure functions to Mercury, clean up the purity module somewhat, fix some bugs in purity, update and expand the purity documentation, and re-organize the purity checks. Impure functions can be declared just like impure preds. However, they can only be called in an explicit unification preceeded by a purity level: impure X = some_impure_func(Y, Z) The bug fixed was the fact that closures of impure predicates were only being detected when using lambda syntax. Purity information was discarded and impure closures could be created like this: Pred = some_impure_pred You could then use this predicate anywhere you like without any purity declarations. compiler/hlds_module.m: Add get_pred_id pred which will return the pred_id of a predicate matching a given type. This is like get_pred_and_proc_id, but only gets the information we are interested in, and is semidet. We need a semidet version to handle cases where type inference cannot infer a type before the limit is reached, but we try to purity check this code. (The bug mentioned above was stopping us from purity checking the test case for this before). compiler/make_hlds.m: Check for "impure" unifications with expressions that are not function calls and issue appropriate error messages. When unravelling impure function call unifications, put the input parameter unifications (if any) before the actual call. Only mark the goal_info for the function call as impure. compiler/mercury_to_goedel.m: compiler/mercury_to_mercury.m: compiler/module_qual.m: compiler/prog_data.m: compiler/prog_io.m: compiler/prog_io_dcg.m: compiler/prog_io_goal.m: compiler/prog_util.m: Add purity information to unify goals. Don't assume unify goals are pure. compiler/purity.m: Allow impure functions. Check unification goals for purity (not just lambda unification). Check unifications that are transformed into calls to make sure the call is purity correct. Put purity checking logic into separate predicates. Use an enum to return different errors and warnings. (The last two changes make it much easier to see the similarities between checking goals and checking predicates for purity correctness). Give different error messages for impure functions (highlight that you need to use them in an explicit unification). Handle unknown predicate lookups (can occur when unifying with a higher order term whose type could not be inferred). Add a few comments delineating where changes might need to be made to make foreign code impure by default in future. compiler/notes/authors.html: Add Peter Schachte to the authors list. doc/reference_manual.texi: Document impure functions. Expand more on what impure predicates/functions can do. Explain the concept of worst purity, and use it to explain the "inferred purity"/"declared purity" concepts. Make it more explicit that only impure goals obey strict-sequential like semantics. tests/invalid/type_inf_loop.err_exp2: Fix this test case to reflect the new error message new that we check the purity of this code correctly (or rather, we correctly fail to be able to purity check this code). tests/hard_coded/Mmakefile: tests/hard_coded/purity.exp: tests/hard_coded/purity.m: tests/hard_coded/purity/Mmakefile: tests/hard_coded/purity/impure_func_t1.m: tests/hard_coded/purity/purity.m: tests/hard_coded/purity/runtests: Remove purity tests from the hard_coded directory, give it a sub-directory of its own. tests/invalid/Mmakefile: tests/invalid/purity.err_exp: tests/invalid/purity.m: tests/invalid/purity_nonsense.err_exp: tests/invalid/purity_nonsense.m: tests/invalid/purity/Mmakefile: tests/invalid/purity/impure_func_t2.err_exp: tests/invalid/purity/impure_func_t2.m: tests/invalid/purity/impure_func_t3.err_exp: tests/invalid/purity/impure_func_t3.m: tests/invalid/purity/impure_func_t4.err_exp: tests/invalid/purity/impure_func_t4.m: tests/invalid/purity/impure_func_t5.err_exp: tests/invalid/purity/impure_func_t5.m: tests/invalid/purity/impure_pred_t1.err_exp: tests/invalid/purity/impure_pred_t1.m: tests/invalid/purity/impure_pred_t2.err_exp: tests/invalid/purity/impure_pred_t2.m: tests/invalid/purity/purity.err_exp: tests/invalid/purity/purity.m: tests/invalid/purity/purity_nonsense.err_exp: tests/invalid/purity/purity_nonsense.m: tests/invalid/purity/runtests: Remove purity tests from the invalid directory, give it a sub-directory of its own.
464 lines
16 KiB
Mathematica
464 lines
16 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1996-2000 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: prog_io_dcg.m.
|
|
% Main authors: fjh, zs.
|
|
%
|
|
% This module handles the parsing of clauses in Definite Clause Grammar
|
|
% notation.
|
|
|
|
:- module prog_io_dcg.
|
|
|
|
:- interface.
|
|
|
|
:- import_module prog_data, prog_io_util.
|
|
:- import_module varset, term.
|
|
|
|
:- pred parse_dcg_clause(module_name, varset, term, term,
|
|
prog_context, maybe_item_and_context).
|
|
:- mode parse_dcg_clause(in, in, in, in, in, out) is det.
|
|
|
|
% parse_dcg_pred_goal(GoalTerm, VarSet0, Goal,
|
|
% DCGVarInitial, DCGVarFinal, Varset)
|
|
% parses `GoalTerm' and expands it as a DCG goal,
|
|
% `VarSet0' is the initial varset, and `VarSet' is
|
|
% the final varset. `DCGVarInitial' is the first DCG variable,
|
|
% and `DCGVarFinal' is the final DCG variable.
|
|
:- pred parse_dcg_pred_goal(term, prog_varset, goal, prog_var,
|
|
prog_var, prog_varset).
|
|
:- mode parse_dcg_pred_goal(in, in, out, out, out, out) is det.
|
|
|
|
:- implementation.
|
|
|
|
:- import_module prog_io, prog_io_goal, prog_util, purity.
|
|
:- import_module int, map, string, std_util, list.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context,
|
|
Result) :-
|
|
varset__coerce(VarSet0, ProgVarSet0),
|
|
new_dcg_var(ProgVarSet0, 0, ProgVarSet1, N0, DCG_0_Var),
|
|
parse_dcg_goal(DCG_Body, ProgVarSet1, N0, DCG_0_Var,
|
|
Body, ProgVarSet, _N, DCG_Var),
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
DCG_Head, DCG_Body, "DCG clause head", HeadResult),
|
|
process_dcg_clause(HeadResult, ProgVarSet, DCG_0_Var, DCG_Var,
|
|
Body, R),
|
|
add_context(R, DCG_Context, Result).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
parse_dcg_pred_goal(GoalTerm, VarSet0, Goal, DCGVar0, DCGVar, VarSet) :-
|
|
new_dcg_var(VarSet0, 0, VarSet1, N0, DCGVar0),
|
|
parse_dcg_goal(GoalTerm, VarSet1, N0, DCGVar0,
|
|
Goal, VarSet, _N, DCGVar).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Used to allocate fresh variables needed for the DCG expansion.
|
|
|
|
:- pred new_dcg_var(prog_varset, int, prog_varset, int, prog_var).
|
|
:- mode new_dcg_var(in, in, out, out, out) is det.
|
|
|
|
new_dcg_var(VarSet0, N0, VarSet, N, DCG_0_Var) :-
|
|
string__int_to_string(N0, StringN),
|
|
string__append("DCG_", StringN, VarName),
|
|
varset__new_var(VarSet0, DCG_0_Var, VarSet1),
|
|
varset__name_var(VarSet1, DCG_0_Var, VarName, VarSet),
|
|
N is N0 + 1.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Expand a DCG goal.
|
|
|
|
:- pred parse_dcg_goal(term, prog_varset, int, prog_var, goal,
|
|
prog_varset, int, prog_var).
|
|
:- mode parse_dcg_goal(in, in, in, in, out, out, out, out) is det.
|
|
|
|
parse_dcg_goal(Term, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
% first, figure out the context for the goal
|
|
(
|
|
Term = term__functor(_, _, Context)
|
|
;
|
|
Term = term__variable(_),
|
|
term__context_init(Context)
|
|
),
|
|
% next, parse it
|
|
(
|
|
term__coerce(Term, ProgTerm),
|
|
sym_name_and_args(ProgTerm, SymName, Args0)
|
|
->
|
|
% First check for the special cases:
|
|
(
|
|
SymName = unqualified(Functor),
|
|
list__map(term__coerce, Args0, Args1),
|
|
parse_dcg_goal_2(Functor, Args1, Context,
|
|
VarSet0, N0, Var0, Goal1, VarSet1, N1, Var1)
|
|
->
|
|
Goal = Goal1,
|
|
VarSet = VarSet1,
|
|
N = N1,
|
|
Var = Var1
|
|
;
|
|
% It's the ordinary case of non-terminal.
|
|
% Create a fresh var as the DCG output var from this
|
|
% goal, and append the DCG argument pair to the
|
|
% non-terminal's argument list.
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
list__append(Args0,
|
|
[term__variable(Var0),
|
|
term__variable(Var)], Args),
|
|
Goal = call(SymName, Args, pure) - Context
|
|
)
|
|
;
|
|
% A call to a free variable, or to a number or string.
|
|
% Just translate it into a call to call/3 - the typechecker
|
|
% will catch calls to numbers and strings.
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
term__coerce(Term, ProgTerm),
|
|
Goal = call(unqualified("call"), [ProgTerm,
|
|
term__variable(Var0), term__variable(Var)],
|
|
pure) - Context
|
|
).
|
|
|
|
% parse_dcg_goal_2(Functor, Args, Context, VarSet0, N0, Var0,
|
|
% Goal, VarSet, N, Var):
|
|
% VarSet0/VarSet are an accumulator pair which we use to
|
|
% allocate fresh DCG variables; N0 and N are an accumulator pair
|
|
% we use to keep track of the number to give to the next DCG
|
|
% variable (so that we can give it a semi-meaningful name "DCG_<N>"
|
|
% for use in error messages, debugging, etc.).
|
|
% Var0 and Var are an accumulator pair we use to keep track of
|
|
% the current DCG variable.
|
|
|
|
:- pred parse_dcg_goal_2(string, list(term), prog_context, prog_varset,
|
|
int, prog_var, goal, prog_varset, int, prog_var).
|
|
:- mode parse_dcg_goal_2(in, in, in, in, in, in, out, out, out, out)
|
|
is semidet.
|
|
|
|
% Ordinary goal inside { curly braces }.
|
|
parse_dcg_goal_2("{}", [G], _, VarSet0, N, Var, Goal, VarSet, N, Var) :-
|
|
parse_goal(G, VarSet0, Goal, VarSet).
|
|
parse_dcg_goal_2("impure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (impure),
|
|
Goal, VarSet, N, Var).
|
|
parse_dcg_goal_2("semipure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N,
|
|
Var) :-
|
|
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (semipure),
|
|
Goal, VarSet, N, Var).
|
|
|
|
% Empty list - just unify the input and output DCG args.
|
|
parse_dcg_goal_2("[]", [], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
Goal = unify(term__variable(Var0), term__variable(Var), pure) - Context.
|
|
|
|
% Non-empty list of terminals. Append the DCG output arg
|
|
% as the new tail of the list, and unify the result with
|
|
% the DCG input arg.
|
|
parse_dcg_goal_2(".", [X, Xs], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
ConsTerm0 = term__functor(term__atom("."), [X, Xs], Context),
|
|
term__coerce(ConsTerm0, ConsTerm),
|
|
term_list_append_term(ConsTerm, term__variable(Var), Term),
|
|
Goal = unify(term__variable(Var0), Term, pure) - Context.
|
|
|
|
% Call to '='/1 - unify argument with DCG input arg.
|
|
parse_dcg_goal_2("=", [A0], Context, VarSet, N, Var, Goal, VarSet, N, Var) :-
|
|
term__coerce(A0, A),
|
|
Goal = unify(A, term__variable(Var), pure) - Context.
|
|
|
|
% Call to ':='/1 - unify argument with DCG output arg.
|
|
parse_dcg_goal_2(":=", [A0], Context, VarSet0, N0, _Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
term__coerce(A0, A),
|
|
Goal = unify(A, term__variable(Var), pure) - Context.
|
|
|
|
% If-then (Prolog syntax).
|
|
% We need to add an else part to unify the DCG args.
|
|
|
|
/******
|
|
Since (A -> B) has different semantics in standard Prolog
|
|
(A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
|
|
for the moment we'll just disallow it.
|
|
parse_dcg_goal_2("->", [Cond0, Then0], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then, VarSet, N, Var),
|
|
( Var = Var0 ->
|
|
Goal = if_then(SomeVars, Cond, Then) - Context
|
|
;
|
|
Unify = unify(term__variable(Var), term__variable(Var0)),
|
|
Goal = if_then_else(SomeVars, Cond, Then, Unify - Context)
|
|
- Context
|
|
).
|
|
******/
|
|
|
|
% If-then (NU-Prolog syntax).
|
|
parse_dcg_goal_2("if", [
|
|
term__functor(term__atom("then"), [Cond0, Then0], _)
|
|
], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then, VarSet, N, Var),
|
|
( Var = Var0 ->
|
|
Goal = if_then(SomeVars, Cond, Then) - Context
|
|
;
|
|
Unify = unify(term__variable(Var), term__variable(Var0), pure),
|
|
Goal = if_then_else(SomeVars, Cond, Then, Unify - Context)
|
|
- Context
|
|
).
|
|
|
|
% Conjunction.
|
|
parse_dcg_goal_2(",", [A0, B0], Context, VarSet0, N0, Var0,
|
|
(A, B) - Context, VarSet, N, Var) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
|
|
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
|
|
|
|
parse_dcg_goal_2("&", [A0, B0], Context, VarSet0, N0, Var0,
|
|
(A & B) - Context, VarSet, N, Var) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
|
|
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
|
|
|
|
% Disjunction or if-then-else (Prolog syntax).
|
|
parse_dcg_goal_2(";", [A0, B0], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
(
|
|
A0 = term__functor(term__atom("->"), [Cond0, Then0], _Context)
|
|
->
|
|
parse_dcg_if_then_else(Cond0, Then0, B0, Context,
|
|
VarSet0, N0, Var0, Goal, VarSet, N, Var)
|
|
;
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0,
|
|
A1, VarSet1, N1, VarA),
|
|
parse_dcg_goal(B0, VarSet1, N1, Var0,
|
|
B1, VarSet, N, VarB),
|
|
( VarA = Var0, VarB = Var0 ->
|
|
Var = Var0,
|
|
Goal = (A1 ; B1) - Context
|
|
; VarA = Var0 ->
|
|
Var = VarB,
|
|
Unify = unify(term__variable(Var),
|
|
term__variable(VarA), pure),
|
|
append_to_disjunct(A1, Unify, Context, A2),
|
|
Goal = (A2 ; B1) - Context
|
|
; VarB = Var0 ->
|
|
Var = VarA,
|
|
Unify = unify(term__variable(Var),
|
|
term__variable(VarB), pure),
|
|
append_to_disjunct(B1, Unify, Context, B2),
|
|
Goal = (A1 ; B2) - Context
|
|
;
|
|
Var = VarB,
|
|
prog_util__rename_in_goal(A1, VarA, VarB, A2),
|
|
Goal = (A2 ; B1) - Context
|
|
)
|
|
).
|
|
|
|
% If-then-else (NU-Prolog syntax).
|
|
parse_dcg_goal_2( "else", [
|
|
term__functor(term__atom("if"), [
|
|
term__functor(term__atom("then"), [Cond0, Then0], _)
|
|
], Context),
|
|
Else0
|
|
], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then_else(Cond0, Then0, Else0, Context,
|
|
VarSet0, N0, Var0, Goal, VarSet, N, Var).
|
|
|
|
% Negation (NU-Prolog syntax).
|
|
parse_dcg_goal_2( "not", [A0], Context, VarSet0, N0, Var0,
|
|
not(A) - Context, VarSet, N, Var ) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
|
|
Var = Var0.
|
|
|
|
% Negation (Prolog syntax).
|
|
parse_dcg_goal_2( "\\+", [A0], Context, VarSet0, N0, Var0,
|
|
not(A) - Context, VarSet, N, Var ) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
|
|
Var = Var0.
|
|
|
|
% Universal quantification.
|
|
parse_dcg_goal_2("all", [Vars0, A0], Context,
|
|
VarSet0, N0, Var0, all(Vars, A) - Context,
|
|
VarSet, N, Var) :-
|
|
term__coerce(Vars0, Vars1),
|
|
term__vars(Vars1, Vars),
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var).
|
|
|
|
% Existential quantification.
|
|
parse_dcg_goal_2("some", [Vars0, A0], Context,
|
|
VarSet0, N0, Var0, some(Vars, A) - Context,
|
|
VarSet, N, Var) :-
|
|
term__coerce(Vars0, Vars1),
|
|
term__vars(Vars1, Vars),
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var).
|
|
|
|
:- pred parse_dcg_goal_with_purity(term, prog_varset, int, prog_var,
|
|
purity, goal, prog_varset, int, prog_var).
|
|
:- mode parse_dcg_goal_with_purity(in, in, in, in, in, out, out, out, out)
|
|
is det.
|
|
|
|
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, Purity, Goal, VarSet,
|
|
N, Var) :-
|
|
parse_dcg_goal(G, VarSet0, N0, Var0, Goal1, VarSet, N, Var),
|
|
( Goal1 = call(Pred, Args, pure) - Context ->
|
|
Goal = call(Pred, Args, Purity) - Context
|
|
; Goal1 = unify(ProgTerm1, ProgTerm2, pure) - Context ->
|
|
Goal = unify(ProgTerm1, ProgTerm2, Purity) - Context
|
|
;
|
|
% Inappropriate placement of an impurity marker, so we treat
|
|
% it like a predicate call. typecheck.m prints out something
|
|
% descriptive for these errors.
|
|
Goal1 = _ - Context,
|
|
purity_name(Purity, PurityString),
|
|
term__coerce(G, G1),
|
|
Goal = call(unqualified(PurityString), [G1], pure) - Context
|
|
).
|
|
|
|
:- pred append_to_disjunct(goal, goal_expr, prog_context, goal).
|
|
:- mode append_to_disjunct(in, in, in, out) is det.
|
|
|
|
append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :-
|
|
( Disjunct0 = (A0 ; B0) - Context2 ->
|
|
append_to_disjunct(A0, Goal, Context, A),
|
|
append_to_disjunct(B0, Goal, Context, B),
|
|
Disjunct = (A ; B) - Context2
|
|
;
|
|
Disjunct = (Disjunct0, Goal - Context) - Context
|
|
).
|
|
|
|
:- pred parse_some_vars_dcg_goal(term, list(prog_var), prog_varset,
|
|
int, prog_var, goal, prog_varset, int, prog_var).
|
|
:- mode parse_some_vars_dcg_goal(in, out, in, in, in, out, out, out, out)
|
|
is det.
|
|
parse_some_vars_dcg_goal(A0, SomeVars, VarSet0, N0, Var0,
|
|
A, VarSet, N, Var) :-
|
|
( A0 = term__functor(term__atom("some"), [SomeVars0, A1], _Context) ->
|
|
term__coerce(SomeVars0, SomeVars1),
|
|
term__vars(SomeVars1, SomeVars),
|
|
A2 = A1
|
|
;
|
|
SomeVars = [],
|
|
A2 = A0
|
|
),
|
|
parse_dcg_goal(A2, VarSet0, N0, Var0, A, VarSet, N, Var).
|
|
|
|
% Parse the "if" and the "then" part of an if-then or an
|
|
% if-then-else.
|
|
% If the condition is a DCG goal, but then "then" part
|
|
% is not, then we need to translate
|
|
% ( a -> { b } ; c )
|
|
% as
|
|
% ( a(DCG_1, DCG_2) ->
|
|
% b,
|
|
% DCG_3 = DCG_2
|
|
% ;
|
|
% c(DCG_1, DCG_3)
|
|
% )
|
|
% rather than
|
|
% ( a(DCG_1, DCG_2) ->
|
|
% b
|
|
% ;
|
|
% c(DCG_1, DCG_2)
|
|
% )
|
|
% so that the implicit quantification of DCG_2 is correct.
|
|
|
|
:- pred parse_dcg_if_then(term, term, prog_context, prog_varset, int,
|
|
prog_var, list(prog_var), goal, goal, prog_varset, int,
|
|
prog_var).
|
|
:- mode parse_dcg_if_then(in, in, in, in, in, in, out, out, out, out, out,
|
|
out) is det.
|
|
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then, VarSet, N, Var) :-
|
|
parse_some_vars_dcg_goal(Cond0, SomeVars, VarSet0, N0, Var0,
|
|
Cond, VarSet1, N1, Var1),
|
|
parse_dcg_goal(Then0, VarSet1, N1, Var1, Then1, VarSet2, N2,
|
|
Var2),
|
|
( Var0 \= Var1, Var1 = Var2 ->
|
|
new_dcg_var(VarSet2, N2, VarSet, N, Var),
|
|
Unify = unify(term__variable(Var), term__variable(Var2), pure),
|
|
Then = (Then1, Unify - Context) - Context
|
|
;
|
|
Then = Then1,
|
|
N = N2,
|
|
Var = Var2,
|
|
VarSet = VarSet2
|
|
).
|
|
|
|
:- pred parse_dcg_if_then_else(term, term, term, prog_context,
|
|
prog_varset, int, prog_var, goal, prog_varset, int, prog_var).
|
|
:- mode parse_dcg_if_then_else(in, in, in, in, in, in, in,
|
|
out, out, out, out) is det.
|
|
|
|
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then1, VarSet1, N1, VarThen),
|
|
parse_dcg_goal(Else0, VarSet1, N1, Var0, Else1, VarSet, N,
|
|
VarElse),
|
|
( VarThen = Var0, VarElse = Var0 ->
|
|
Var = Var0,
|
|
Then = Then1,
|
|
Else = Else1
|
|
; VarThen = Var0 ->
|
|
Var = VarElse,
|
|
Unify = unify(term__variable(Var), term__variable(VarThen),
|
|
pure),
|
|
Then = (Then1, Unify - Context) - Context,
|
|
Else = Else1
|
|
; VarElse = Var0 ->
|
|
Var = VarThen,
|
|
Then = Then1,
|
|
Unify = unify(term__variable(Var), term__variable(VarElse),
|
|
pure),
|
|
Else = (Else1, Unify - Context) - Context
|
|
;
|
|
% We prefer to substitute the then part since it is likely
|
|
% to be smaller than the else part, since the else part may
|
|
% have a deeply nested chain of if-then-elses.
|
|
|
|
% parse_dcg_if_then guarantees that if VarThen \= Var0,
|
|
% then the then part introduces a new DCG variable (i.e.
|
|
% VarThen does not appear in the condition). We therefore
|
|
% don't need to do the substitution in the condition.
|
|
|
|
Var = VarElse,
|
|
prog_util__rename_in_goal(Then1, VarThen, VarElse, Then),
|
|
Else = Else1
|
|
),
|
|
Goal = if_then_else(SomeVars, Cond, Then, Else) - Context.
|
|
|
|
% term_list_append_term(ListTerm, Term, Result):
|
|
% if ListTerm is a term representing a proper list,
|
|
% this predicate will append the term Term
|
|
% onto the end of the list
|
|
|
|
:- pred term_list_append_term(term(T), term(T), term(T)).
|
|
:- mode term_list_append_term(in, in, out) is semidet.
|
|
|
|
term_list_append_term(List0, Term, List) :-
|
|
( List0 = term__functor(term__atom("[]"), [], _Context) ->
|
|
List = Term
|
|
;
|
|
List0 = term__functor(term__atom("."), [Head, Tail0], Context2),
|
|
List = term__functor(term__atom("."), [Head, Tail], Context2),
|
|
term_list_append_term(Tail0, Term, Tail)
|
|
).
|
|
|
|
:- pred process_dcg_clause(maybe_functor, prog_varset, prog_var,
|
|
prog_var, goal, maybe1(item)).
|
|
:- mode process_dcg_clause(in, in, in, in, in, out) is det.
|
|
|
|
process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body,
|
|
ok(pred_clause(VarSet, Name, Args, Body))) :-
|
|
list__map(term__coerce, Args0, Args1),
|
|
list__append(Args1, [term__variable(Var0),
|
|
term__variable(Var)], Args).
|
|
process_dcg_clause(error(Message, Term), _, _, _, _, error(Message, Term)).
|