Files
mercury/compiler/lambda.m
Tyson Dowd c192d50143 Add preliminary support for a new pragma:
Estimated hours taken: 15

Add preliminary support for a new pragma:

:- pragma foreign_code(LanguageString, .... <same args as c_code>).

This is intended to be the eventual replacement of pragma c_code.
Presently the only valid language is "C".
The existing pragma c_code is simply turned into pragma foreign_code.

pragma foreign_code is not a supported pragma at the moment.  There are
several other changes that are intended (for example, foreign_code will
be impure by default).

This change also changes the HLDS goal pragma_c_code/7 to
pragma_foreign_code/8 where the extra argument is the foreign language.

Any code currently generating output for pragma C code simply checks
that the foreign language is set to "c".  Since this is the only
alternative of the type foreign_language, it will always succeed.
However when new alternatives are added it should be fairly easy to find
where the changes need to be made.

Some type names and predicate names have also been updated, however
there are many more that haven't yet been touched.

compiler/prog_io_pragma.m:
	Accept the new syntax.	Turn the old syntax into the new item.

compiler/hlds_goal.m:
	Change pragma_c_code/7 to pragma_foreign_code/8.
	Define the foreign_language type.

compiler/llds.m:
	Change user_c_code/2 to user_foreign_code/3.

compiler/*.m:
	Update the rest of the compiler to handle these types.
	Make a few small changes to update variable names, predicate
	names and type names.
2000-08-09 07:48:04 +00:00

590 lines
22 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% file: lambda.m
% main author: fjh
% This module is a pass over the HLDS to deal with lambda expressions.
%
% Lambda expressions are converted into separate predicates, so for
% example we translate
%
% :- pred p(int::in) is det.
% p(X) :-
% V__1 = lambda([Y::out] is nondet, q(Y, X))),
% solutions(V__1, List),
% ...
% :- pred q(int::out, int::in) is nondet.
%
% into
%
% p(X) :-
% V__1 = '__LambdaGoal__1'(X)
% solutions(V__1, List),
% ...
%
% :- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
% '__LambdaGoal__1'(X, Y) :- q(Y, X).
%
%
% Note that the mode checker requires that a lambda expression
% not bind any of the non-local variables such as `X' in the above
% example.
%
% Similarly, a lambda expression may not bind any of the type_infos for
% those variables; that is, none of the non-local variables
% should be existentially typed (from the perspective of the lambda goal).
% Now that we run the polymorphism.m pass before mode checking, this is
% also checked by mode analysis.
%
% It might be OK to allow the parameters of the lambda goal to be
% existentially typed, but currently that is not supported.
% One difficulty is that it's hard to determine here which type variables
% should be existentially quantified. The information is readily
% available during type inference, and really type inference should save
% that information in a field in the lambda_goal struct, but currently it
% doesn't; it saves the head_type_params field in the pred_info, which
% tells us which type variables where produced by the body, but for
% any given lambda goal we don't know whether the type variable was
% produced by something outside the lambda goal or by something inside
% the lambda goal (only in the latter case should it be existentially
% quantified).
% The other difficulty is that taking the address of a predicate with an
% existential type would require second-order polymorphism: for a predicate
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
% type `some [T] pred(int, T)', which is quite a different thing to saying
% that there is some type `T' for which `p' has type `pred(int, T)' --
% we don't know what `T' is until the predicate is called, and it might
% be different for each call.
% Currently we don't support second-order polymorphism, so we
% don't support existentially typed lambda expressions either.
%
%-----------------------------------------------------------------------------%
:- module (lambda).
:- interface.
:- import_module hlds_module, hlds_pred.
:- pred lambda__process_module(module_info, module_info).
:- mode lambda__process_module(in, out) is det.
:- pred lambda__process_pred(pred_id, module_info, module_info).
:- mode lambda__process_pred(in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds_goal, prog_data, quantification.
:- import_module hlds_data, globals, options, type_util.
:- import_module goal_util, prog_util, mode_util, inst_match, llds, arg_info.
:- import_module list, map, set.
:- import_module term, varset, bool, string, std_util, require.
:- type lambda_info --->
lambda_info(
prog_varset, % from the proc_info
map(prog_var, type), % from the proc_info
class_constraints, % from the pred_info
tvarset, % from the proc_info
map(tvar, type_info_locn),
% from the proc_info
% (typeinfos)
map(class_constraint, prog_var),
% from the proc_info
% (typeclass_infos)
pred_markers, % from the pred_info
pred_or_func,
string, % pred/func name
aditi_owner,
module_info,
bool % true iff we need to recompute the nonlocals
).
%-----------------------------------------------------------------------------%
% This whole section just traverses the module structure.
lambda__process_module(ModuleInfo0, ModuleInfo) :-
module_info_predids(ModuleInfo0, PredIds),
lambda__process_preds(PredIds, ModuleInfo0, ModuleInfo1),
% Need update the dependency graph to include the lambda predicates.
module_info_clobber_dependency_info(ModuleInfo1, ModuleInfo).
:- pred lambda__process_preds(list(pred_id), module_info, module_info).
:- mode lambda__process_preds(in, in, out) is det.
lambda__process_preds([], ModuleInfo, ModuleInfo).
lambda__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo1),
lambda__process_preds(PredIds, ModuleInfo1, ModuleInfo).
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
pred_info_procids(PredInfo, ProcIds),
lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
:- pred lambda__process_procs(pred_id, list(proc_id), module_info, module_info).
:- mode lambda__process_procs(in, in, in, out) is det.
lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).
:- pred lambda__process_proc(pred_id, proc_id, module_info, module_info).
:- mode lambda__process_proc(in, in, in, out) is det.
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo1, ModuleInfo1),
pred_info_procedures(PredInfo1, ProcTable1),
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
module_info_preds(ModuleInfo1, PredTable1),
map__det_update(PredTable1, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo1, PredTable, ModuleInfo).
:- pred lambda__process_proc_2(proc_info, pred_info, module_info,
proc_info, pred_info, module_info).
:- mode lambda__process_proc_2(in, in, in, out, out, out) is det.
lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo, ModuleInfo) :-
% grab the appropriate fields from the pred_info and proc_info
pred_info_name(PredInfo0, PredName),
pred_info_get_is_pred_or_func(PredInfo0, PredOrFunc),
pred_info_typevarset(PredInfo0, TypeVarSet0),
pred_info_get_markers(PredInfo0, Markers),
pred_info_get_class_context(PredInfo0, Constraints0),
pred_info_get_aditi_owner(PredInfo0, Owner),
proc_info_headvars(ProcInfo0, HeadVars),
proc_info_varset(ProcInfo0, VarSet0),
proc_info_vartypes(ProcInfo0, VarTypes0),
proc_info_goal(ProcInfo0, Goal0),
proc_info_typeinfo_varmap(ProcInfo0, TVarMap0),
proc_info_typeclass_info_varmap(ProcInfo0, TCVarMap0),
MustRecomputeNonLocals0 = no,
% process the goal
Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
TVarMap0, TCVarMap0, Markers, PredOrFunc,
PredName, Owner, ModuleInfo0, MustRecomputeNonLocals0),
lambda__process_goal(Goal0, Goal1, Info0, Info1),
Info1 = lambda_info(VarSet1, VarTypes1, Constraints, TypeVarSet,
TVarMap, TCVarMap, _, _, _, _, ModuleInfo,
MustRecomputeNonLocals),
% check if we need to requantify
( MustRecomputeNonLocals = yes ->
module_info_globals(ModuleInfo, Globals),
body_should_use_typeinfo_liveness(PredInfo0, Globals,
TypeInfoLiveness),
implicitly_quantify_clause_body(HeadVars,
Goal1, VarSet1, VarTypes1, TVarMap, TypeInfoLiveness,
Goal, VarSet, VarTypes, _Warnings)
;
Goal = Goal1,
VarSet = VarSet1,
VarTypes = VarTypes1
),
% set the new values of the fields in proc_info and pred_info
proc_info_set_goal(ProcInfo0, Goal, ProcInfo1),
proc_info_set_varset(ProcInfo1, VarSet, ProcInfo2),
proc_info_set_vartypes(ProcInfo2, VarTypes, ProcInfo3),
proc_info_set_typeinfo_varmap(ProcInfo3, TVarMap, ProcInfo4),
proc_info_set_typeclass_info_varmap(ProcInfo4, TCVarMap, ProcInfo),
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1),
pred_info_set_class_context(PredInfo1, Constraints, PredInfo).
:- pred lambda__process_goal(hlds_goal, hlds_goal,
lambda_info, lambda_info).
:- mode lambda__process_goal(in, out, in, out) is det.
lambda__process_goal(Goal0 - GoalInfo0, Goal) -->
lambda__process_goal_2(Goal0, GoalInfo0, Goal).
:- pred lambda__process_goal_2(hlds_goal_expr, hlds_goal_info,
hlds_goal, lambda_info, lambda_info).
:- mode lambda__process_goal_2(in, in, out, in, out) is det.
lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
Unify - GoalInfo) -->
( { Y = lambda_goal(PredOrFunc, EvalMethod, _, NonLocalVars, Vars,
Modes, Det, LambdaGoal0) } ->
% first, process the lambda goal recursively, in case it
% contains some nested lambda expressions.
lambda__process_goal(LambdaGoal0, LambdaGoal1),
% then, convert the lambda expression into a new predicate
lambda__process_lambda(PredOrFunc, EvalMethod, Vars,
Modes, Det, NonLocalVars, LambdaGoal1,
Unification, Y1, Unification1),
{ Unify = unify(XVar, Y1, Mode, Unification1, Context) }
;
% ordinary unifications are left unchanged
{ Unify = unify(XVar, Y, Mode, Unification, Context) }
).
% the rest of the clauses just process goals recursively
lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo) -->
lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(par_conj(Goals0, SM), GoalInfo,
par_conj(Goals, SM) - GoalInfo) -->
lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(disj(Goals0, SM), GoalInfo, disj(Goals, SM) - GoalInfo)
-->
lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo) -->
lambda__process_goal(Goal0, Goal).
lambda__process_goal_2(switch(Var, CanFail, Cases0, SM), GoalInfo,
switch(Var, CanFail, Cases, SM) - GoalInfo) -->
lambda__process_cases(Cases0, Cases).
lambda__process_goal_2(some(Vars, CanRemove, Goal0), GoalInfo,
some(Vars, CanRemove, Goal) - GoalInfo) -->
lambda__process_goal(Goal0, Goal).
lambda__process_goal_2(if_then_else(Vars, A0, B0, C0, SM), GoalInfo,
if_then_else(Vars, A, B, C, SM) - GoalInfo) -->
lambda__process_goal(A0, A),
lambda__process_goal(B0, B),
lambda__process_goal(C0, C).
lambda__process_goal_2(generic_call(A,B,C,D), GoalInfo,
generic_call(A,B,C,D) - GoalInfo) -->
[].
lambda__process_goal_2(call(A,B,C,D,E,F), GoalInfo,
call(A,B,C,D,E,F) - GoalInfo) -->
[].
lambda__process_goal_2(pragma_foreign_code(A,B,C,D,E,F,G,H), GoalInfo,
pragma_foreign_code(A,B,C,D,E,F,G,H) - GoalInfo) -->
[].
lambda__process_goal_2(bi_implication(_, _), _, _) -->
% these should have been expanded out by now
{ error("lambda__process_goal_2: unexpected bi_implication") }.
:- pred lambda__process_goal_list(list(hlds_goal), list(hlds_goal),
lambda_info, lambda_info).
:- mode lambda__process_goal_list(in, out, in, out) is det.
lambda__process_goal_list([], []) --> [].
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals]) -->
lambda__process_goal(Goal0, Goal),
lambda__process_goal_list(Goals0, Goals).
:- pred lambda__process_cases(list(case), list(case),
lambda_info, lambda_info).
:- mode lambda__process_cases(in, out, in, out) is det.
lambda__process_cases([], []) --> [].
lambda__process_cases([case(ConsId, Goal0) | Cases0],
[case(ConsId, Goal) | Cases]) -->
lambda__process_goal(Goal0, Goal),
lambda__process_cases(Cases0, Cases).
:- pred lambda__process_lambda(pred_or_func, lambda_eval_method,
list(prog_var), list(mode), determinism, list(prog_var),
hlds_goal, unification, unify_rhs, unification,
lambda_info, lambda_info).
:- mode lambda__process_lambda(in, in, in, in, in, in, in, in, out, out,
in, out) is det.
lambda__process_lambda(PredOrFunc, EvalMethod, Vars, Modes, Detism,
OrigNonLocals0, LambdaGoal, Unification0, Functor,
Unification, LambdaInfo0, LambdaInfo) :-
LambdaInfo0 = lambda_info(VarSet, VarTypes, _PredConstraints, TVarSet,
TVarMap, TCVarMap, Markers, POF, OrigPredName, Owner,
ModuleInfo0, MustRecomputeNonLocals0),
% Calculate the constraints which apply to this lambda
% expression.
% Note currently we only allow lambda expressions
% to have universally quantified constraints.
map__keys(TCVarMap, AllConstraints),
map__apply_to_list(Vars, VarTypes, LambdaVarTypes),
list__map(type_util__vars, LambdaVarTypes, LambdaTypeVarsList),
list__condense(LambdaTypeVarsList, LambdaTypeVars),
list__filter(lambda__constraint_contains_vars(LambdaTypeVars),
AllConstraints, UnivConstraints),
Constraints = constraints(UnivConstraints, []),
% existentially typed lambda expressions are not yet supported
% (see the documentation at top of this file)
ExistQVars = [],
LambdaGoal = _ - LambdaGoalInfo,
goal_info_get_nonlocals(LambdaGoalInfo, LambdaGoalNonLocals),
set__insert_list(LambdaGoalNonLocals, Vars, LambdaNonLocals),
goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes,
ExistQVars, LambdaNonLocals, ExtraTypeInfos),
OrigVars = OrigNonLocals0,
(
Unification0 = construct(Var0, _, _, UniModes0, _, _, _)
->
Var = Var0,
UniModes1 = UniModes0
;
error("lambda__transform_lambda: weird unification")
),
set__delete_list(LambdaGoalNonLocals, Vars, NonLocals1),
% We need all the typeinfos, including the ones that are not used,
% for the layout structure describing the closure.
NewTypeInfos = ExtraTypeInfos `set__difference` NonLocals1,
NonLocals = NonLocals1 `set__union` NewTypeInfos,
% If we added variables to the nonlocals of the lambda goal,
% then we need to recompute the nonlocals for the procedure
% that contains it.
( \+ set__empty(NewTypeInfos) ->
MustRecomputeNonLocals = yes
;
MustRecomputeNonLocals = MustRecomputeNonLocals0
),
set__to_sorted_list(NonLocals, ArgVars1),
(
% Optimize a special case: replace
% `lambda([Y1, Y2, ...] is Detism,
% p(X1, X2, ..., Y1, Y2, ...))'
% where `p' has determinism `Detism' with
% `p(X1, X2, ...)'
%
% This optimization is only valid if the modes of the Xi are
% input, since only input arguments can be curried.
% It's also only valid if all the inputs in the Yi precede the
% outputs. It's also not valid if any of the Xi are in the Yi.
LambdaGoal = call(PredId0, ProcId0, CallVars,
_, _, PredName0) - _,
module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0,
Call_PredInfo, Call_ProcInfo),
(
EvalMethod = (aditi_top_down),
pred_info_get_markers(Call_PredInfo, Call_Markers),
check_marker(Call_Markers, (aditi_top_down))
;
EvalMethod = (aditi_bottom_up),
pred_info_get_markers(Call_PredInfo, Call_Markers),
check_marker(Call_Markers, aditi)
;
EvalMethod = normal
),
list__remove_suffix(CallVars, Vars, InitialVars),
% check that none of the variables that we're trying to
% use as curried arguments are lambda-bound variables
\+ (
list__member(InitialVar, InitialVars),
list__member(InitialVar, Vars)
),
proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
determinism_to_code_model(Detism, CodeModel),
% Check that the code models are compatible.
% Note that det is not compatible with semidet,
% and semidet is not compatible with nondet,
% since the calling conventions are different.
% But if we're using the LLDS back-end
% (i.e. not --high-level-code),
% det is compatible with nondet.
( CodeModel = Call_CodeModel
; CodeModel = model_non, Call_CodeModel = model_det,
module_info_globals(ModuleInfo0, Globals),
globals__lookup_bool_option(Globals,
highlevel_code, no)
),
% check that the curried arguments are all input
proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
list__length(InitialVars, NumInitialVars),
list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
\+ ( list__member(Mode, CurriedArgModes),
\+ mode_is_input(ModuleInfo0, Mode)
)
->
ArgVars = InitialVars,
PredId = PredId0,
ProcId = ProcId0,
PredName = PredName0,
NumArgVars = NumInitialVars,
mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes,
ModuleInfo0, UniModes),
%
% we need to mark the procedure as having had its
% address taken
%
proc_info_set_address_taken(Call_ProcInfo, address_is_taken,
Call_NewProcInfo),
module_info_set_pred_proc_info(ModuleInfo0, PredId, ProcId,
Call_PredInfo, Call_NewProcInfo, ModuleInfo)
;
% Prepare to create a new predicate for the lambda
% expression: work out the arguments, module name, predicate
% name, arity, arg types, determinism,
% context, status, etc. for the new predicate.
ArgVars = ArgVars1,
list__append(ArgVars, Vars, AllArgVars),
module_info_name(ModuleInfo0, ModuleName),
module_info_next_lambda_count(ModuleInfo0, LambdaCount,
ModuleInfo1),
goal_info_get_context(LambdaGoalInfo, OrigContext),
term__context_line(OrigContext, OrigLine),
make_pred_name_with_context(ModuleName, "IntroducedFrom",
PredOrFunc, OrigPredName, OrigLine,
LambdaCount, PredName),
goal_info_get_context(LambdaGoalInfo, LambdaContext),
% The TVarSet is a superset of what it really ought be,
% but that shouldn't matter.
% Existentially typed lambda expressions are not
% yet supported (see the documentation at top of this file)
ExistQVars = [],
lambda__uni_modes_to_modes(UniModes1, OrigArgModes),
% We have to jump through hoops to work out the mode
% of the lambda predicate. For introduced
% type_info arguments, we use the mode "in". For the original
% non-local vars, we use the modes from `UniModes1'.
% For the lambda var arguments at the end,
% we use the mode in the lambda expression.
list__length(ArgVars, NumArgVars),
in_mode(In),
list__duplicate(NumArgVars, In, InModes),
map__from_corresponding_lists(ArgVars, InModes,
ArgModesMap),
map__from_corresponding_lists(OrigVars, OrigArgModes,
OrigArgModesMap),
map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),
% Recompute the uni_modes.
mode_util__modes_to_uni_modes(ArgModes1, ArgModes1,
ModuleInfo1, UniModes),
list__append(ArgModes1, Modes, AllArgModes),
map__apply_to_list(AllArgVars, VarTypes, ArgTypes),
(
% Pass through the aditi markers for
% aggregate query closures.
% XXX we should differentiate between normal
% top-down closures and aggregate query closures,
% possibly by using a different type for aggregate
% queries. Currently all nondet lambda expressions
% within Aditi predicates are treated as aggregate
% inputs.
% EvalMethod = (aditi_bottom_up),
determinism_components(Detism, _, at_most_many),
check_marker(Markers, aditi)
->
markers_to_marker_list(Markers, MarkerList0),
list__filter(
lambda([Marker::in] is semidet,
% Pass through only Aditi markers.
% Don't pass through `context' markers, since
% they are useless for non-recursive predicates
% such as the created predicate.
( Marker = aditi
; Marker = dnf
; Marker = psn
; Marker = naive
; Marker = supp_magic
; Marker = aditi_memo
; Marker = aditi_no_memo
)),
MarkerList0, MarkerList),
marker_list_to_markers(MarkerList, LambdaMarkers)
;
EvalMethod = (aditi_bottom_up)
->
marker_list_to_markers([aditi], LambdaMarkers)
;
EvalMethod = (aditi_top_down)
->
marker_list_to_markers([(aditi_top_down)],
LambdaMarkers)
;
init_markers(LambdaMarkers)
),
% Now construct the proc_info and pred_info for the new
% single-mode predicate, using the information computed above
proc_info_create(VarSet, VarTypes, AllArgVars,
AllArgModes, Detism, LambdaGoal, LambdaContext,
TVarMap, TCVarMap, address_is_taken, ProcInfo),
set__init(Assertions),
pred_info_create(ModuleName, PredName, TVarSet, ExistQVars,
ArgTypes, true, LambdaContext, local, LambdaMarkers,
PredOrFunc, Constraints, Owner, Assertions, ProcInfo,
ProcId, PredInfo),
% save the new predicate in the predicate table
module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
predicate_table_insert(PredicateTable0, PredInfo,
PredId, PredicateTable),
module_info_set_predicate_table(ModuleInfo1, PredicateTable,
ModuleInfo)
),
Functor = functor(cons(PredName, NumArgVars), ArgVars),
ConsId = pred_const(PredId, ProcId, EvalMethod),
RLExprnId = no,
Unification = construct(Var, ConsId, ArgVars, UniModes,
construct_dynamically, cell_is_unique, RLExprnId),
LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
TVarMap, TCVarMap, Markers, POF, OrigPredName, Owner,
ModuleInfo, MustRecomputeNonLocals).
:- pred lambda__constraint_contains_vars(list(tvar), class_constraint).
:- mode lambda__constraint_contains_vars(in, in) is semidet.
lambda__constraint_contains_vars(LambdaVars, ClassConstraint) :-
ClassConstraint = constraint(_, ConstraintTypes),
list__map(type_util__vars, ConstraintTypes, ConstraintVarsList),
list__condense(ConstraintVarsList, ConstraintVars),
% Probably not the most efficient way of doing it, but I
% wouldn't think that it matters.
set__list_to_set(LambdaVars, LambdaVarsSet),
set__list_to_set(ConstraintVars, ConstraintVarsSet),
set__subset(ConstraintVarsSet, LambdaVarsSet).
:- pred lambda__uni_modes_to_modes(list(uni_mode), list(mode)).
:- mode lambda__uni_modes_to_modes(in, out) is det.
% This predicate works out the modes of the original non-local
% variables of a lambda expression based on the list of uni_mode
% in the unify_info for the lambda unification.
lambda__uni_modes_to_modes([], []).
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
Mode = (Initial1 -> Initial1),
lambda__uni_modes_to_modes(UniModes, Modes).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%