Files
mercury/library/rational.m
Julien Fischer fbc662cb70 Rename rational.inverse/1 to rational.reciprocal/1. Export rational.reciprocal
Estimated hours taken: 0.5
Branches: main

Rename rational.inverse/1 to rational.reciprocal/1.  Export rational.reciprocal
from the rational module.  This is a little cleaner than having to take the
reciprocal of a number by dividing one by it.

NEWS:
	Mention this change.

library/rational.m:
	Rename rational.inverse/1 to rational.reciprocal/1.
	Export this predicate from the rational module.

tests/hard_coded/rational_test.m:
	Perform this test using the reciprocal function from the library.
	Delete the definition of inverse that was here.
2004-01-12 12:46:40 +00:00

235 lines
5.7 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-1998, 2003-2004 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% file: rational.m
% authors: aet Apr 1998. (with plagiarism from rat.m)
%
% Implements a rational number type and a set of basic operations on
% rational numbers.
%
%-----------------------------------------------------------------------------%
:- module rational.
:- interface.
:- import_module integer.
:- type rational.
:- pred '<'(rational, rational).
:- mode '<'(in, in) is semidet.
:- pred '>'(rational, rational).
:- mode '>'(in, in) is semidet.
:- pred '=<'(rational, rational).
:- mode '=<'(in, in) is semidet.
:- pred '>='(rational, rational).
:- mode '>='(in, in) is semidet.
:- func rational__rational(int) = rational.
:- func rational__rational(int, int) = rational.
:- func rational__from_integer(integer) = rational.
:- func rational__from_integers(integer, integer) = rational.
% New programs should use rational.from_integers/2.
:- pragma obsolete(rational_from_integers/2).
:- func rational__rational_from_integers(integer, integer) = rational.
% :- func float(rational) = float.
:- func '+'(rational) = rational.
:- func '-'(rational) = rational.
:- func rational + rational = rational.
:- func rational - rational = rational.
:- func rational * rational = rational.
:- func rational / rational = rational.
:- func rational__numer(rational) = integer.
:- func rational__denom(rational) = integer.
:- func rational__abs(rational) = rational.
:- func rational__reciprocal(rational) = rational.
:- func rational__one = rational.
:- func rational__zero = rational.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module require.
% The normal form of a rational number has the following
% properties:
% - numerator and denominator have no common factors.
% - denominator is positive.
% - denominator is not zero.
% - if numerator is zero, then denominator is one.
%
% These invariants must be preserved by any rational number
% constructed using this module since the equality predicate
% on rationals is simply Mercury's default unification
% predicate =/2. If the invariants were not maintained,
% we would have pathologies like r(-1,2) \= r(1,-2).
%
% The rational_norm/2 function generates rationals in this
% normal form.
%
:- type rational
---> r(integer, integer).
'<'(R1, R2) :-
Cmp = cmp(R1, R2),
Cmp = lessthan.
'>'(R1, R2) :-
Cmp = cmp(R1, R2),
Cmp = greaterthan.
'=<'(R1, R2) :-
Cmp = cmp(R1, R2),
(Cmp = lessthan ; Cmp = equal).
'>='(R1, R2) :-
Cmp = cmp(R1, R2),
(Cmp = greaterthan ; Cmp = equal).
rational__rational(Int) = rational_norm(integer(Int), integer__one).
rational__rational(Num, Den) = rational_norm(integer(Num), integer(Den)).
rational__from_integer(Integer) = rational_norm(Integer, integer__one).
rational__from_integers(Num, Den) = rational_norm(Num, Den).
rational_from_integers(Num, Den) = rational_norm(Num, Den).
%% XXX: There are ways to do this in some cases even if the
%% float conversions would overflow.
% rational__float(r(Num, Den)) =
% float:'/'(integer__float(Num), integer__float(Den)).
rational__one = r(integer__one, integer__one).
rational__zero = r(integer__zero, integer__one).
'+'(Rat) = Rat.
'-'(r(Num, Den)) = r(-Num, Den).
r(An, Ad) + r(Bn, Bd) = rational_norm(Numer, M) :-
M = lcm(Ad, Bd),
CA = M // Ad,
CB = M // Bd,
Numer = An * CA + Bn * CB.
R1 - R2 = R1 + (-R2).
% XXX: need we call rational_norm here?
r(An, Ad) * r(Bn, Bd) = rational_norm(Numer, Denom) :-
G1 = gcd(An, Bd),
G2 = gcd(Ad, Bn),
Numer = (An // G1) * (Bn // G2),
Denom = (Ad // G2) * (Bd // G1).
R1 / R2 = R1 * reciprocal(R2).
rational__reciprocal(r(Num, Den)) =
( Num = integer__zero ->
func_error("rational.reciprocal: division by zero")
;
r(signum(Num) * Den, integer__abs(Num))
).
rational__numer(r(Num, _)) = Num.
rational__denom(r(_, Den)) = Den.
rational__abs(r(Num, Den)) = r(integer__abs(Num), Den).
:- func rational_norm(integer, integer) = rational.
rational_norm(Num, Den) = Rat :-
( Den = integer__zero ->
error("rational__rational_norm: division by zero")
; Num = integer__zero ->
Rat = r(integer__zero, integer__one)
;
G = gcd(Num, Den),
Num2 = Num * signum(Den),
Den2 = integer__abs(Den),
Rat = r(Num2 // G, Den2 // G)
).
:- func gcd(integer, integer) = integer.
gcd(A, B) = gcd_2(integer__abs(A), integer__abs(B)).
:- func gcd_2(integer, integer) = integer.
gcd_2(A, B) = ( B = integer__zero -> A ; gcd_2(B, A rem B) ).
:- func lcm(integer, integer) = integer.
lcm(A, B) =
( A = integer__zero -> integer__zero
; B = integer__zero -> integer__zero
; integer__abs((A // gcd(A, B)) * B)
).
:- func signum(integer) = integer.
signum(N) =
( N = integer__zero -> integer__zero
; N < integer__zero -> -integer__one
; integer__one
).
:- type comparison
---> equal
; lessthan
; greaterthan.
:- func cmp(rational, rational) = comparison.
cmp(R1, R2) = Cmp :-
Diff = R1 - R2,
( is_zero(Diff) ->
Cmp = equal
; is_negative(Diff) ->
Cmp = lessthan
;
Cmp = greaterthan
).
:- pred is_zero(rational::in) is semidet.
is_zero(r(integer__zero, _)).
:- pred is_negative(rational::in) is semidet.
is_negative(r(Num, _)) :-
Num < integer__zero.
%------------------------------------------------------------------------------%
:- end_module rational.
%------------------------------------------------------------------------------%