mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-13 12:53:53 +00:00
Estimated hours taken: 0.5 Branches: main Rename rational.inverse/1 to rational.reciprocal/1. Export rational.reciprocal from the rational module. This is a little cleaner than having to take the reciprocal of a number by dividing one by it. NEWS: Mention this change. library/rational.m: Rename rational.inverse/1 to rational.reciprocal/1. Export this predicate from the rational module. tests/hard_coded/rational_test.m: Perform this test using the reciprocal function from the library. Delete the definition of inverse that was here.
235 lines
5.7 KiB
Mathematica
235 lines
5.7 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1997-1998, 2003-2004 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU Library General
|
|
% Public License - see the file COPYING.LIB in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% file: rational.m
|
|
% authors: aet Apr 1998. (with plagiarism from rat.m)
|
|
%
|
|
% Implements a rational number type and a set of basic operations on
|
|
% rational numbers.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module rational.
|
|
|
|
:- interface.
|
|
|
|
:- import_module integer.
|
|
|
|
:- type rational.
|
|
|
|
:- pred '<'(rational, rational).
|
|
:- mode '<'(in, in) is semidet.
|
|
|
|
:- pred '>'(rational, rational).
|
|
:- mode '>'(in, in) is semidet.
|
|
|
|
:- pred '=<'(rational, rational).
|
|
:- mode '=<'(in, in) is semidet.
|
|
|
|
:- pred '>='(rational, rational).
|
|
:- mode '>='(in, in) is semidet.
|
|
|
|
:- func rational__rational(int) = rational.
|
|
|
|
:- func rational__rational(int, int) = rational.
|
|
|
|
:- func rational__from_integer(integer) = rational.
|
|
|
|
:- func rational__from_integers(integer, integer) = rational.
|
|
|
|
% New programs should use rational.from_integers/2.
|
|
:- pragma obsolete(rational_from_integers/2).
|
|
:- func rational__rational_from_integers(integer, integer) = rational.
|
|
|
|
% :- func float(rational) = float.
|
|
|
|
:- func '+'(rational) = rational.
|
|
|
|
:- func '-'(rational) = rational.
|
|
|
|
:- func rational + rational = rational.
|
|
|
|
:- func rational - rational = rational.
|
|
|
|
:- func rational * rational = rational.
|
|
|
|
:- func rational / rational = rational.
|
|
|
|
:- func rational__numer(rational) = integer.
|
|
|
|
:- func rational__denom(rational) = integer.
|
|
|
|
:- func rational__abs(rational) = rational.
|
|
|
|
:- func rational__reciprocal(rational) = rational.
|
|
|
|
:- func rational__one = rational.
|
|
|
|
:- func rational__zero = rational.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module require.
|
|
|
|
% The normal form of a rational number has the following
|
|
% properties:
|
|
% - numerator and denominator have no common factors.
|
|
% - denominator is positive.
|
|
% - denominator is not zero.
|
|
% - if numerator is zero, then denominator is one.
|
|
%
|
|
% These invariants must be preserved by any rational number
|
|
% constructed using this module since the equality predicate
|
|
% on rationals is simply Mercury's default unification
|
|
% predicate =/2. If the invariants were not maintained,
|
|
% we would have pathologies like r(-1,2) \= r(1,-2).
|
|
%
|
|
% The rational_norm/2 function generates rationals in this
|
|
% normal form.
|
|
%
|
|
:- type rational
|
|
---> r(integer, integer).
|
|
|
|
'<'(R1, R2) :-
|
|
Cmp = cmp(R1, R2),
|
|
Cmp = lessthan.
|
|
|
|
'>'(R1, R2) :-
|
|
Cmp = cmp(R1, R2),
|
|
Cmp = greaterthan.
|
|
|
|
'=<'(R1, R2) :-
|
|
Cmp = cmp(R1, R2),
|
|
(Cmp = lessthan ; Cmp = equal).
|
|
|
|
'>='(R1, R2) :-
|
|
Cmp = cmp(R1, R2),
|
|
(Cmp = greaterthan ; Cmp = equal).
|
|
|
|
rational__rational(Int) = rational_norm(integer(Int), integer__one).
|
|
|
|
rational__rational(Num, Den) = rational_norm(integer(Num), integer(Den)).
|
|
|
|
rational__from_integer(Integer) = rational_norm(Integer, integer__one).
|
|
|
|
rational__from_integers(Num, Den) = rational_norm(Num, Den).
|
|
|
|
rational_from_integers(Num, Den) = rational_norm(Num, Den).
|
|
|
|
%% XXX: There are ways to do this in some cases even if the
|
|
%% float conversions would overflow.
|
|
% rational__float(r(Num, Den)) =
|
|
% float:'/'(integer__float(Num), integer__float(Den)).
|
|
|
|
rational__one = r(integer__one, integer__one).
|
|
|
|
rational__zero = r(integer__zero, integer__one).
|
|
|
|
'+'(Rat) = Rat.
|
|
|
|
'-'(r(Num, Den)) = r(-Num, Den).
|
|
|
|
r(An, Ad) + r(Bn, Bd) = rational_norm(Numer, M) :-
|
|
M = lcm(Ad, Bd),
|
|
CA = M // Ad,
|
|
CB = M // Bd,
|
|
Numer = An * CA + Bn * CB.
|
|
|
|
R1 - R2 = R1 + (-R2).
|
|
|
|
% XXX: need we call rational_norm here?
|
|
r(An, Ad) * r(Bn, Bd) = rational_norm(Numer, Denom) :-
|
|
G1 = gcd(An, Bd),
|
|
G2 = gcd(Ad, Bn),
|
|
Numer = (An // G1) * (Bn // G2),
|
|
Denom = (Ad // G2) * (Bd // G1).
|
|
|
|
R1 / R2 = R1 * reciprocal(R2).
|
|
|
|
rational__reciprocal(r(Num, Den)) =
|
|
( Num = integer__zero ->
|
|
func_error("rational.reciprocal: division by zero")
|
|
;
|
|
r(signum(Num) * Den, integer__abs(Num))
|
|
).
|
|
|
|
rational__numer(r(Num, _)) = Num.
|
|
|
|
rational__denom(r(_, Den)) = Den.
|
|
|
|
rational__abs(r(Num, Den)) = r(integer__abs(Num), Den).
|
|
|
|
:- func rational_norm(integer, integer) = rational.
|
|
|
|
rational_norm(Num, Den) = Rat :-
|
|
( Den = integer__zero ->
|
|
error("rational__rational_norm: division by zero")
|
|
; Num = integer__zero ->
|
|
Rat = r(integer__zero, integer__one)
|
|
;
|
|
G = gcd(Num, Den),
|
|
Num2 = Num * signum(Den),
|
|
Den2 = integer__abs(Den),
|
|
Rat = r(Num2 // G, Den2 // G)
|
|
).
|
|
|
|
:- func gcd(integer, integer) = integer.
|
|
|
|
gcd(A, B) = gcd_2(integer__abs(A), integer__abs(B)).
|
|
|
|
:- func gcd_2(integer, integer) = integer.
|
|
|
|
gcd_2(A, B) = ( B = integer__zero -> A ; gcd_2(B, A rem B) ).
|
|
|
|
:- func lcm(integer, integer) = integer.
|
|
|
|
lcm(A, B) =
|
|
( A = integer__zero -> integer__zero
|
|
; B = integer__zero -> integer__zero
|
|
; integer__abs((A // gcd(A, B)) * B)
|
|
).
|
|
|
|
:- func signum(integer) = integer.
|
|
|
|
signum(N) =
|
|
( N = integer__zero -> integer__zero
|
|
; N < integer__zero -> -integer__one
|
|
; integer__one
|
|
).
|
|
|
|
:- type comparison
|
|
---> equal
|
|
; lessthan
|
|
; greaterthan.
|
|
|
|
:- func cmp(rational, rational) = comparison.
|
|
|
|
cmp(R1, R2) = Cmp :-
|
|
Diff = R1 - R2,
|
|
( is_zero(Diff) ->
|
|
Cmp = equal
|
|
; is_negative(Diff) ->
|
|
Cmp = lessthan
|
|
;
|
|
Cmp = greaterthan
|
|
).
|
|
|
|
:- pred is_zero(rational::in) is semidet.
|
|
|
|
is_zero(r(integer__zero, _)).
|
|
|
|
:- pred is_negative(rational::in) is semidet.
|
|
|
|
is_negative(r(Num, _)) :-
|
|
Num < integer__zero.
|
|
|
|
%------------------------------------------------------------------------------%
|
|
:- end_module rational.
|
|
%------------------------------------------------------------------------------%
|