mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-13 21:04:00 +00:00
Estimated hours taken: 0.25 Branches: main Bug fix for math library. library/math.m: Changed the order of the parameters for the mercury implementation of math__log_2/2 The old version is incorrect with respect to the library documentation. 'math__log(B, X) = Log' is supposed to return Log as the logarithm to base B of X. After doing domain checks, this predicate calls math__log_2(B, X), which is defined correctly for the C and C# implementations, but had the parameters the wrong way around for the (default) mercury implementation, so it in fact returned Log as the logarithm to base X of B (in other words the reciprocal of what was intended).
848 lines
24 KiB
Mathematica
848 lines
24 KiB
Mathematica
%---------------------------------------------------------------------------%
|
|
% Copyright (C) 1995-2003 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU Library General
|
|
% Public License - see the file COPYING.LIB in the Mercury distribution.
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% File: math.m
|
|
% Main author: bromage
|
|
% Stability: high
|
|
%
|
|
% Higher mathematical operations. (The basics are in float.m.)
|
|
%
|
|
% By default, domain errors are currently handled by throwing an exception.
|
|
%
|
|
% For better performance, it is possible to disable the Mercury domain
|
|
% checking by compiling with `--intermodule-optimization' and the C macro
|
|
% symbol `ML_OMIT_MATH_DOMAIN_CHECKS' defined, e.g. by using
|
|
% `MCFLAGS=--intermodule-optimization' and
|
|
% `MGNUCFLAGS=-DML_OMIT_MATH_DOMAIN_CHECKS' in your Mmakefile,
|
|
% or by compiling with the command
|
|
% `mmc --intermodule-optimization --cflags -DML_OMIT_MATH_DOMAIN_CHECKS'.
|
|
%
|
|
% For maximum performance, all Mercury domain checking can be disabled by
|
|
% recompiling this module using `MGNUCFLAGS=-DML_OMIT_MATH_DOMAIN_CHECKS'
|
|
% or `mmc --cflags -DML_OMIT_MATH_DOMAIN_CHECKS' as above. You can
|
|
% either recompile the entire library, or just copy `math.m' to your
|
|
% application's source directory and link with it directly instead of as
|
|
% part of the library.
|
|
%
|
|
% Note that the above performance improvements are semantically safe,
|
|
% since the C math library and/or floating point hardware perform these
|
|
% checks for you. The benefit of having the Mercury library perform the
|
|
% checks instead is that Mercury will tell you in which function or
|
|
% predicate the error occurred, as well as giving you a stack trace if
|
|
% that is enabled; with the checks disabled you only have the information
|
|
% that the floating-point exception signal handler gives you.
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- module math.
|
|
:- interface.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
% Mathematical constants
|
|
|
|
% Pythagoras' number
|
|
:- func math__pi = float.
|
|
:- mode math__pi = out is det.
|
|
|
|
% Base of natural logarithms
|
|
:- func math__e = float.
|
|
:- mode math__e = out is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
% "Next integer" operations
|
|
|
|
% math__ceiling(X) = Ceil is true if Ceil is the smallest integer
|
|
% not less than X.
|
|
:- func math__ceiling(float) = float.
|
|
:- mode math__ceiling(in) = out is det.
|
|
|
|
% math__floor(X) = Floor is true if Floor is the largest integer
|
|
% not greater than X.
|
|
:- func math__floor(float) = float.
|
|
:- mode math__floor(in) = out is det.
|
|
|
|
% math__round(X) = Round is true if Round is the integer
|
|
% closest to X. If X has a fractional value of 0.5, it
|
|
% is rounded up.
|
|
:- func math__round(float) = float.
|
|
:- mode math__round(in) = out is det.
|
|
|
|
% math__truncate(X) = Trunc is true if Trunc is the integer
|
|
% closest to X such that |Trunc| =< |X|.
|
|
:- func math__truncate(float) = float.
|
|
:- mode math__truncate(in) = out is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
% Polynomial roots
|
|
|
|
% math__sqrt(X) = Sqrt is true if Sqrt is the positive square
|
|
% root of X.
|
|
%
|
|
% Domain restriction: X >= 0
|
|
:- func math__sqrt(float) = float.
|
|
:- mode math__sqrt(in) = out is det.
|
|
|
|
:- type math__quadratic_roots
|
|
---> no_roots
|
|
; one_root(float)
|
|
; two_roots(float, float).
|
|
|
|
% math__solve_quadratic(A, B, C) = Roots is true if Roots are
|
|
% the solutions to the equation Ax^2 + Bx + C.
|
|
%
|
|
% Domain restriction: A \= 0
|
|
:- func math__solve_quadratic(float, float, float) = quadratic_roots.
|
|
:- mode math__solve_quadratic(in, in, in) = out is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
% Power/logarithm operations
|
|
|
|
% math__pow(X, Y) = Res is true if Res is X raised to the
|
|
% power of Y.
|
|
%
|
|
% Domain restriction: X >= 0 and (X = 0 implies Y > 0)
|
|
:- func math__pow(float, float) = float.
|
|
:- mode math__pow(in, in) = out is det.
|
|
|
|
% math__exp(X) = Exp is true if Exp is e raised to the
|
|
% power of X.
|
|
:- func math__exp(float) = float.
|
|
:- mode math__exp(in) = out is det.
|
|
|
|
% math__ln(X) = Log is true if Log is the natural logarithm
|
|
% of X.
|
|
%
|
|
% Domain restriction: X > 0
|
|
:- func math__ln(float) = float.
|
|
:- mode math__ln(in) = out is det.
|
|
|
|
% math__log10(X) = Log is true if Log is the logarithm to
|
|
% base 10 of X.
|
|
%
|
|
% Domain restriction: X > 0
|
|
:- func math__log10(float) = float.
|
|
:- mode math__log10(in) = out is det.
|
|
|
|
% math__log2(X) = Log is true if Log is the logarithm to
|
|
% base 2 of X.
|
|
%
|
|
% Domain restriction: X > 0
|
|
:- func math__log2(float) = float.
|
|
:- mode math__log2(in) = out is det.
|
|
|
|
% math__log(B, X) = Log is true if Log is the logarithm to
|
|
% base B of X.
|
|
%
|
|
% Domain restriction: X > 0 and B > 0 and B \= 1
|
|
:- func math__log(float, float) = float.
|
|
:- mode math__log(in, in) = out is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
% Trigonometric operations
|
|
|
|
% math__sin(X) = Sin is true if Sin is the sine of X.
|
|
:- func math__sin(float) = float.
|
|
:- mode math__sin(in) = out is det.
|
|
|
|
% math__cos(X) = Cos is true if Cos is the cosine of X.
|
|
:- func math__cos(float) = float.
|
|
:- mode math__cos(in) = out is det.
|
|
|
|
% math__tan(X) = Tan is true if Tan is the tangent of X.
|
|
:- func math__tan(float) = float.
|
|
:- mode math__tan(in) = out is det.
|
|
|
|
% math__asin(X) = ASin is true if ASin is the inverse
|
|
% sine of X, where ASin is in the range [-pi/2,pi/2].
|
|
%
|
|
% Domain restriction: X must be in the range [-1,1]
|
|
:- func math__asin(float) = float.
|
|
:- mode math__asin(in) = out is det.
|
|
|
|
% math__acos(X) = ACos is true if ACos is the inverse
|
|
% cosine of X, where ACos is in the range [0, pi].
|
|
%
|
|
% Domain restriction: X must be in the range [-1,1]
|
|
:- func math__acos(float) = float.
|
|
:- mode math__acos(in) = out is det.
|
|
|
|
% math__atan(X) = ATan is true if ATan is the inverse
|
|
% tangent of X, where ATan is in the range [-pi/2,pi/2].
|
|
:- func math__atan(float) = float.
|
|
:- mode math__atan(in) = out is det.
|
|
|
|
% math__atan2(Y, X) = ATan is true if ATan is the inverse
|
|
% tangent of Y/X, where ATan is in the range [-pi,pi].
|
|
:- func math__atan2(float, float) = float.
|
|
:- mode math__atan2(in, in) = out is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
% Hyperbolic functions
|
|
|
|
% math__sinh(X) = Sinh is true if Sinh is the hyperbolic
|
|
% sine of X.
|
|
:- func math__sinh(float) = float.
|
|
:- mode math__sinh(in) = out is det.
|
|
|
|
% math__cosh(X) = Cosh is true if Cosh is the hyperbolic
|
|
% cosine of X.
|
|
:- func math__cosh(float) = float.
|
|
:- mode math__cosh(in) = out is det.
|
|
|
|
% math__tanh(X) = Tanh is true if Tanh is the hyperbolic
|
|
% tangent of X.
|
|
:- func math__tanh(float) = float.
|
|
:- mode math__tanh(in) = out is det.
|
|
|
|
% A domain error exception, indicates that the inputs to a function
|
|
% were outside the domain of the function. The string indicates
|
|
% where the error occurred.
|
|
%
|
|
% It is possible to switch domain checking off, in which case,
|
|
% depending on the backend, a domain error may cause a program
|
|
% abort.
|
|
|
|
:- type domain_error ---> domain_error(string).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
:- import_module float, exception.
|
|
|
|
% These operations are mostly implemented using the C interface.
|
|
|
|
:- pragma foreign_decl("C", "
|
|
|
|
#include <math.h>
|
|
|
|
/*
|
|
** Mathematical constants.
|
|
**
|
|
** The maximum number of significant decimal digits which
|
|
** can be packed into an IEEE-754 extended precision
|
|
** floating point number is 18. Therefore 20 significant
|
|
** decimal digits for these constants should be plenty.
|
|
*/
|
|
|
|
#define ML_FLOAT_E 2.7182818284590452354
|
|
#define ML_FLOAT_PI 3.1415926535897932384
|
|
#define ML_FLOAT_LN2 0.69314718055994530941
|
|
|
|
"). % end pragma foreign_decl
|
|
|
|
:- pragma foreign_code("C#", "
|
|
|
|
// This is not defined in the .NET Frameworks.
|
|
// For pi and e we use the constants defined in System.Math.
|
|
|
|
public static double ML_FLOAT_LN2 = 0.69314718055994530941;
|
|
|
|
|
|
").
|
|
|
|
:- pragma foreign_code("Java", "
|
|
|
|
// As for .NET, java does not have a built-in ln2
|
|
|
|
private static final double ML_FLOAT_LN2 = 0.69314718055994530941;
|
|
|
|
").
|
|
|
|
:- pred domain_checks is semidet.
|
|
|
|
:- pragma foreign_proc("C", domain_checks,
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
#ifdef ML_OMIT_MATH_DOMAIN_CHECKS
|
|
SUCCESS_INDICATOR = MR_FALSE;
|
|
#else
|
|
SUCCESS_INDICATOR = MR_TRUE;
|
|
#endif
|
|
").
|
|
|
|
:- pragma foreign_proc("C#", domain_checks,
|
|
[thread_safe, promise_pure], "
|
|
#if ML_OMIT_MATH_DOMAIN_CHECKS
|
|
SUCCESS_INDICATOR = false;
|
|
#else
|
|
SUCCESS_INDICATOR = true;
|
|
#endif
|
|
").
|
|
|
|
:- pragma foreign_proc("Java", domain_checks,
|
|
[thread_safe, promise_pure], "
|
|
succeeded = true;
|
|
").
|
|
|
|
%
|
|
% Mathematical constants from math.m
|
|
%
|
|
% Pythagoras' number
|
|
:- pragma foreign_proc("C", math__pi = (Pi::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Pi = ML_FLOAT_PI;
|
|
").
|
|
:- pragma foreign_proc("C#", math__pi = (Pi::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Pi = System.Math.PI;
|
|
").
|
|
:- pragma foreign_proc("Java", math__pi = (Pi::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Pi = java.lang.Math.PI;
|
|
").
|
|
% This version is only used for back-ends for which there is no
|
|
% matching foreign_proc version. We define this with sufficient
|
|
% digits that if the underlying implementation's
|
|
% floating point parsing routines are good, it should
|
|
% to be accurate enough for 128-bit IEEE float.
|
|
math__pi = 3.1415926535897932384626433832795029.
|
|
|
|
% Base of natural logarithms
|
|
:- pragma foreign_proc("C", math__e = (E::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
E = ML_FLOAT_E;
|
|
").
|
|
:- pragma foreign_proc("C#", math__e = (E::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
E = System.Math.E;
|
|
").
|
|
:- pragma foreign_proc("Java", math__e = (E::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
E = java.lang.Math.E;
|
|
").
|
|
% This version is only used for back-ends for which there is no
|
|
% matching foreign_proc version. We define this with sufficient
|
|
% digits that if the underlying implementation's
|
|
% floating point parsing routines are good, it should
|
|
% to be accurate enough for 128-bit IEEE float.
|
|
math__e = 2.7182818284590452353602874713526625.
|
|
|
|
%
|
|
% math__ceiling(X) = Ceil is true if Ceil is the smallest integer
|
|
% not less than X.
|
|
%
|
|
:- pragma foreign_proc("C", math__ceiling(Num::in) = (Ceil::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Ceil = ceil(Num);
|
|
").
|
|
:- pragma foreign_proc("C#", math__ceiling(Num::in) = (Ceil::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Ceil = System.Math.Ceiling(Num);
|
|
").
|
|
:- pragma foreign_proc("Java", math__ceiling(Num::in) = (Ceil::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Ceil = java.lang.Math.ceil(Num);
|
|
").
|
|
|
|
%
|
|
% math__floor(X) = Floor is true if Floor is the largest integer
|
|
% not greater than X.
|
|
%
|
|
:- pragma foreign_proc("C", math__floor(Num::in) = (Floor::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Floor = floor(Num);
|
|
").
|
|
:- pragma foreign_proc("C#", math__floor(Num::in) = (Floor::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Floor = System.Math.Floor(Num);
|
|
").
|
|
:- pragma foreign_proc("Java", math__floor(Num::in) = (Floor::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Floor = java.lang.Math.floor(Num);
|
|
").
|
|
|
|
%
|
|
% math__round(X) = Round is true if Round is the integer
|
|
% closest to X. If X has a fractional component of 0.5,
|
|
% it is rounded up.
|
|
%
|
|
% XXX Why do we even both implementing this in C/C#?
|
|
:- pragma foreign_proc("C", math__round(Num::in) = (Rounded::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Rounded = floor(Num+0.5);
|
|
").
|
|
:- pragma foreign_proc("C#", math__round(Num::in) = (Rounded::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
// XXX the semantics of System.Math.Round() are not the same as ours.
|
|
// Unfortunately they are better (round to nearest even number).
|
|
Rounded = System.Math.Floor(Num+0.5);
|
|
").
|
|
:- pragma foreign_proc("Java", math__round(Num::in) = (Rounded::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],
|
|
"
|
|
Rounded = java.lang.Math.round(Num);
|
|
").
|
|
math__round(Num) = math__floor(Num + 0.5).
|
|
|
|
%
|
|
% math__truncate(X) = Trunc is true if Trunc is the integer
|
|
% closest to X such that |Trunc| =< |X|.
|
|
%
|
|
math__truncate(X) = (X < 0.0 -> math__ceiling(X) ; math__floor(X)).
|
|
|
|
%
|
|
% math__sqrt(X) = Sqrt is true if Sqrt is the positive square
|
|
% root of X.
|
|
%
|
|
% Domain restrictions:
|
|
% X >= 0
|
|
%
|
|
math__sqrt(X) = SquareRoot :-
|
|
( domain_checks, X < 0.0 ->
|
|
throw(domain_error("math__sqrt"))
|
|
;
|
|
SquareRoot = math__sqrt_2(X)
|
|
).
|
|
|
|
:- func math__sqrt_2(float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__sqrt_2(X::in) = (SquareRoot::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
SquareRoot = sqrt(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__sqrt_2(X::in) = (SquareRoot::out),
|
|
[thread_safe, promise_pure], "
|
|
SquareRoot = System.Math.Sqrt(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__sqrt_2(X::in) = (SquareRoot::out),
|
|
[thread_safe, promise_pure], "
|
|
SquareRoot = java.lang.Math.sqrt(X);
|
|
").
|
|
% This version is only used for back-ends for which there is no
|
|
% matching foreign_proc version.
|
|
math__sqrt_2(X) = math__exp(math__ln(X) / 2.0).
|
|
|
|
%
|
|
% math__solve_quadratic(A, B, C) = Roots is true if Roots are
|
|
% the solutions to the equation Ax^2 + Bx + C.
|
|
%
|
|
% Domain restrictions:
|
|
% A \= 0
|
|
%
|
|
math__solve_quadratic(A, B, C) = Roots :-
|
|
%
|
|
% This implementation is designed to minimise numerical errors;
|
|
% it is adapted from "Numerical recipes in C".
|
|
%
|
|
DSquared = B * B - 4.0 * A * C,
|
|
compare(CmpD, DSquared, 0.0),
|
|
(
|
|
CmpD = (<),
|
|
Roots = no_roots
|
|
;
|
|
CmpD = (=),
|
|
Root = -0.5 * B / A,
|
|
Roots = one_root(Root)
|
|
;
|
|
CmpD = (>),
|
|
D = sqrt(DSquared),
|
|
compare(CmpB, B, 0.0),
|
|
(
|
|
CmpB = (<),
|
|
Q = -0.5 * (B - D),
|
|
Root1 = Q / A,
|
|
Root2 = C / Q
|
|
;
|
|
CmpB = (=),
|
|
Root1 = -0.5 * D / A,
|
|
Root2 = -Root1
|
|
;
|
|
CmpB = (>),
|
|
Q = -0.5 * (B + D),
|
|
Root1 = Q / A,
|
|
Root2 = C / Q
|
|
),
|
|
Roots = two_roots(Root1, Root2)
|
|
).
|
|
|
|
%
|
|
% math__pow(X, Y) = Res is true if Res is X raised to the
|
|
% power of Y.
|
|
%
|
|
% Domain restrictions:
|
|
% X >= 0
|
|
% X = 0 implies Y > 0
|
|
%
|
|
math__pow(X, Y) = Res :-
|
|
( domain_checks, X < 0.0 ->
|
|
throw(domain_error("math__pow"))
|
|
; X = 0.0 ->
|
|
( Y =< 0.0 ->
|
|
throw(domain_error("math__pow"))
|
|
;
|
|
Res = 0.0
|
|
)
|
|
;
|
|
Res = math__pow_2(X, Y)
|
|
).
|
|
|
|
:- func math__pow_2(float, float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__pow_2(X::in, Y::in) = (Res::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
Res = pow(X, Y);
|
|
").
|
|
|
|
:- pragma foreign_proc("C#", math__pow_2(X::in, Y::in) = (Res::out),
|
|
[thread_safe, promise_pure], "
|
|
Res = System.Math.Pow(X, Y);
|
|
").
|
|
|
|
:- pragma foreign_proc("Java", math__pow_2(X::in, Y::in) = (Res::out),
|
|
[thread_safe, promise_pure], "
|
|
Res = java.lang.Math.pow(X, Y);
|
|
").
|
|
|
|
%
|
|
% math__exp(X) = Exp is true if Exp is e raised to the
|
|
% power of X.
|
|
%
|
|
:- pragma foreign_proc("C", math__exp(X::in) = (Exp::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Exp = exp(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__exp(X::in) = (Exp::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Exp = System.Math.Exp(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__exp(X::in) = (Exp::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Exp = java.lang.Math.exp(X);
|
|
").
|
|
|
|
%
|
|
% math__ln(X) = Log is true if Log is the natural logarithm
|
|
% of X.
|
|
%
|
|
% Domain restrictions:
|
|
% X > 0
|
|
%
|
|
math__ln(X) = Log :-
|
|
( domain_checks, X =< 0.0 ->
|
|
throw(domain_error("math__ln"))
|
|
;
|
|
Log = math__ln_2(X)
|
|
).
|
|
|
|
:- func math__ln_2(float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__ln_2(X::in) = (Log::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
Log = log(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__ln_2(X::in) = (Log::out),
|
|
[thread_safe, promise_pure], "
|
|
Log = System.Math.Log(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__ln_2(X::in) = (Log::out),
|
|
[thread_safe, promise_pure], "
|
|
Log = java.lang.Math.log(X);
|
|
").
|
|
|
|
%
|
|
% math__log10(X) = Log is true if Log is the logarithm to
|
|
% base 10 of X.
|
|
%
|
|
% Domain restrictions:
|
|
% X > 0
|
|
%
|
|
math__log10(X) = Log :-
|
|
( domain_checks, X =< 0.0 ->
|
|
throw(domain_error("math__log10"))
|
|
;
|
|
Log = math__log10_2(X)
|
|
).
|
|
|
|
:- func math__log10_2(float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__log10_2(X::in) = (Log10::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
Log10 = log10(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__log10_2(X::in) = (Log10::out),
|
|
[thread_safe, promise_pure], "
|
|
Log10 = System.Math.Log10(X);
|
|
").
|
|
% Java doesn't have a built-in log10, so default to mercury here.
|
|
math__log10_2(X) = math__ln_2(X) / math__ln_2(10.0).
|
|
|
|
%
|
|
% math__log2(X) = Log is true if Log is the logarithm to
|
|
% base 2 of X.
|
|
%
|
|
% Domain restrictions:
|
|
% X > 0
|
|
%
|
|
math__log2(X) = Log :-
|
|
( domain_checks, X =< 0.0 ->
|
|
throw(domain_error("math__log2"))
|
|
;
|
|
Log = math__log2_2(X)
|
|
).
|
|
|
|
:- func math__log2_2(float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__log2_2(X::in) = (Log2::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
Log2 = log(X) / ML_FLOAT_LN2;
|
|
").
|
|
:- pragma foreign_proc("C#", math__log2_2(X::in) = (Log2::out),
|
|
[thread_safe, promise_pure], "
|
|
Log2 = System.Math.Log(X) / ML_FLOAT_LN2;
|
|
").
|
|
:- pragma foreign_proc("Java", math__log2_2(X::in) = (Log2::out),
|
|
[thread_safe, promise_pure], "
|
|
Log2 = java.lang.Math.log(X) / ML_FLOAT_LN2;
|
|
").
|
|
math__log2_2(X) = math__ln_2(X) / math__ln_2(2.0).
|
|
|
|
%
|
|
% math__log(B, X) = Log is true if Log is the logarithm to
|
|
% base B of X.
|
|
%
|
|
% Domain restrictions:
|
|
% X > 0
|
|
% B > 0
|
|
% B \= 1
|
|
%
|
|
math__log(B, X) = Log :-
|
|
(
|
|
domain_checks,
|
|
( X =< 0.0
|
|
; B =< 0.0
|
|
; B = 1.0
|
|
)
|
|
->
|
|
throw(domain_error("math__log"))
|
|
;
|
|
Log = math__log_2(B, X)
|
|
).
|
|
|
|
:- func math__log_2(float, float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__log_2(B::in, X::in) = (Log::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
Log = log(X) / log(B);
|
|
").
|
|
:- pragma foreign_proc("C#", math__log_2(B::in, X::in) = (Log::out),
|
|
[thread_safe, promise_pure], "
|
|
Log = System.Math.Log(X, B);
|
|
").
|
|
% Java implementation will default to mercury here.
|
|
math__log_2(B, X) = math__ln_2(X) / math__ln_2(B).
|
|
|
|
%
|
|
% math__sin(X) = Sin is true if Sin is the sine of X.
|
|
%
|
|
:- pragma foreign_proc("C", math__sin(X::in) = (Sin::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Sin = sin(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__sin(X::in) = (Sin::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Sin = System.Math.Sin(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__sin(X::in) = (Sin::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Sin = java.lang.Math.sin(X);
|
|
").
|
|
|
|
|
|
%
|
|
% math__cos(X) = Sin is true if Cos is the cosine of X.
|
|
%
|
|
:- pragma foreign_proc("C", math__cos(X::in) = (Cos::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Cos = cos(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__cos(X::in) = (Cos::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Cos = System.Math.Cos(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__cos(X::in) = (Cos::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Cos = java.lang.Math.cos(X);
|
|
").
|
|
|
|
%
|
|
% math__tan(X) = Tan is true if Tan is the tangent of X.
|
|
%
|
|
:- pragma foreign_proc("C", math__tan(X::in) = (Tan::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Tan = tan(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__tan(X::in) = (Tan::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Tan = System.Math.Tan(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__tan(X::in) = (Tan::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Tan = java.lang.Math.tan(X);
|
|
").
|
|
|
|
%
|
|
% math__asin(X) = ASin is true if ASin is the inverse
|
|
% sine of X, where ASin is in the range [-pi/2,pi/2].
|
|
%
|
|
% Domain restrictions:
|
|
% X must be in the range [-1,1]
|
|
%
|
|
math__asin(X) = ASin :-
|
|
(
|
|
domain_checks,
|
|
( X < -1.0
|
|
; X > 1.0
|
|
)
|
|
->
|
|
throw(domain_error("math__asin"))
|
|
;
|
|
ASin = math__asin_2(X)
|
|
).
|
|
|
|
:- func math__asin_2(float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__asin_2(X::in) = (ASin::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
ASin = asin(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__asin_2(X::in) = (ASin::out),
|
|
[thread_safe, promise_pure], "
|
|
ASin = System.Math.Asin(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__asin_2(X::in) = (ASin::out),
|
|
[thread_safe, promise_pure], "
|
|
ASin = java.lang.Math.asin(X);
|
|
").
|
|
|
|
%
|
|
% math__acos(X) = ACos is true if ACos is the inverse
|
|
% cosine of X, where ACos is in the range [0, pi].
|
|
%
|
|
% Domain restrictions:
|
|
% X must be in the range [-1,1]
|
|
%
|
|
math__acos(X) = ACos :-
|
|
(
|
|
domain_checks,
|
|
( X < -1.0
|
|
; X > 1.0
|
|
)
|
|
->
|
|
throw(domain_error("math__acos"))
|
|
;
|
|
ACos = math__acos_2(X)
|
|
).
|
|
|
|
:- func math__acos_2(float) = float.
|
|
|
|
:- pragma foreign_proc("C", math__acos_2(X::in) = (ACos::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
ACos = acos(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__acos_2(X::in) = (ACos::out),
|
|
[thread_safe, promise_pure], "
|
|
ACos = System.Math.Acos(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__acos_2(X::in) = (ACos::out),
|
|
[thread_safe, promise_pure], "
|
|
ACos = java.lang.Math.acos(X);
|
|
").
|
|
|
|
|
|
%
|
|
% math__atan(X) = ATan is true if ATan is the inverse
|
|
% tangent of X, where ATan is in the range [-pi/2,pi/2].
|
|
%
|
|
:- pragma foreign_proc("C", math__atan(X::in) = (ATan::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
ATan = atan(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__atan(X::in) = (ATan::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
ATan = System.Math.Atan(X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__atan(X::in) = (ATan::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
ATan = java.lang.Math.atan(X);
|
|
").
|
|
|
|
%
|
|
% math__atan2(Y, X) = ATan is true if ATan is the inverse
|
|
% tangent of Y/X, where ATan is in the range [-pi,pi].
|
|
%
|
|
:- pragma foreign_proc("C", math__atan2(Y::in, X::in) = (ATan2::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
ATan2 = atan2(Y, X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__atan2(Y::in, X::in) = (ATan2::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
ATan2 = System.Math.Atan2(Y, X);
|
|
").
|
|
:- pragma foreign_proc("Java", math__atan2(Y::in, X::in) = (ATan2::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe], "
|
|
ATan2 = java.lang.Math.atan2(Y, X);
|
|
").
|
|
|
|
%
|
|
% math__sinh(X) = Sinh is true if Sinh is the hyperbolic
|
|
% sine of X.
|
|
%
|
|
:- pragma foreign_proc("C", math__sinh(X::in) = (Sinh::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Sinh = sinh(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__sinh(X::in) = (Sinh::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Sinh = System.Math.Sinh(X);
|
|
").
|
|
% Java doesn't have any hyperbolic functions built in.
|
|
math__sinh(X) = Sinh :-
|
|
Sinh = (exp(X)-exp(-X)) / 2.0.
|
|
|
|
%
|
|
% math__cosh(X) = Cosh is true if Cosh is the hyperbolic
|
|
% cosine of X.
|
|
%
|
|
:- pragma foreign_proc("C", math__cosh(X::in) = (Cosh::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Cosh = cosh(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__cosh(X::in) = (Cosh::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Cosh = System.Math.Cosh(X);
|
|
").
|
|
% Java doesn't have any hyperbolic functions built in.
|
|
math__cosh(X) = Cosh :-
|
|
Cosh = (exp(X)+exp(-X)) / 2.0.
|
|
|
|
%
|
|
% math__tanh(X) = Tanh is true if Tanh is the hyperbolic
|
|
% tangent of X.
|
|
%
|
|
:- pragma foreign_proc("C", math__tanh(X::in) = (Tanh::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Tanh = tanh(X);
|
|
").
|
|
:- pragma foreign_proc("C#", math__tanh(X::in) = (Tanh::out),
|
|
[will_not_call_mercury, promise_pure, thread_safe],"
|
|
Tanh = System.Math.Tanh(X);
|
|
").
|
|
% Java doesn't have any hyperbolic functions built in.
|
|
math__tanh(X) = Tanh :-
|
|
Tanh = (exp(X)-exp(-X)) / (exp(X)+exp(-X)).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|