Files
mercury/library/integer.m
Julien Fischer db4217666a Fix a typo in a comment in integer.m.
library/integer.m:
	s/mode/mod/.
2004-01-20 01:01:56 +00:00

1174 lines
30 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-2000, 2003-2004 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% file: integer.m
% main authors: aet Mar 1998.
% Dan Hazel <odin@svrc.uq.edu.au> Oct 1999.
%
% Implements an arbitrary precision integer type and basic
% operations on it. (An arbitrary precision integer may have
% any number of digits, unlike an int, which is limited to the
% precision of the machine's int type, which is typically 32 bits.)
%
% NOTE: All operators behave as the equivalent operators on ints do.
% This includes the division operators: / // rem div mod.
%
%-----------------------------------------------------------------------------%
:- module integer.
:- interface.
:- import_module string, float.
:- type integer.
:- pred '<'(integer, integer).
:- mode '<'(in, in) is semidet.
:- pred '>'(integer, integer).
:- mode '>'(in, in) is semidet.
:- pred '=<'(integer, integer).
:- mode '=<'(in, in) is semidet.
:- pred '>='(integer, integer).
:- mode '>='(in, in) is semidet.
:- func integer__integer(int) = integer.
:- func integer__to_string(integer) = string.
:- func integer__from_string(string) = integer.
:- mode integer__from_string(in) = out is semidet.
:- func '+'(integer) = integer.
:- func '-'(integer) = integer.
:- func integer + integer = integer.
:- func integer - integer = integer.
:- func integer * integer = integer.
:- func integer // integer = integer.
:- func integer div integer = integer.
:- func integer rem integer = integer.
:- func integer mod integer = integer.
:- func integer << int = integer.
:- func integer >> int = integer.
:- func integer /\ integer = integer.
:- func integer \/ integer = integer.
:- func integer `xor` integer = integer.
:- func \ integer = integer.
:- func integer__abs(integer) = integer.
:- pred integer__pow(integer, integer, integer).
:- mode integer__pow(in, in, out) is det.
:- func integer__pow(integer, integer) = integer.
:- func integer__float(integer) = float.
:- func integer__int(integer) = int.
:- func integer__zero = integer.
:- func integer__one = integer.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module require, list, char, std_util, int.
% Possible improvements:
%
% 1) allow negative digits (-base+1 .. base-1) in lists of
% digits and normalise only when printing. This would
% probably simplify the division algorithm, also.
% (djh: this is not really done although -ve integers include a list
% of -ve digits for faster comparison and so that normal mercury
% sorting produces an intuitive order)
%
% 2) alternatively, instead of using base=10000, use *all* the
% bits in an int and make use of the properties of machine
% arithmetic. Base 10000 doesn't use even half the bits
% in an int, which is inefficient. (Base 2^14 would be
% a little better but would require a slightly more
% complex case conversion on reading and printing.)
% (djh: this is done)
%
% 3) Use an O(n^(3/2)) algorithm for multiplying large
% integers, rather than the current O(n^2) method.
% There's an obvious divide-and-conquer technique,
% Karatsuba multiplication.
%
% 4) We could overload operators so that we can have mixed operations
% on ints and integers. For example, "integer(1)+3". This
% would obviate most calls of integer().
%
% 5) Use double-ended lists rather than simple lists. This
% would improve the efficiency of the division algorithm,
% which reverse lists.
% (djh: this is obsolete - digits lists are now in normal order)
%
% 6) Add bit operations (XOR, AND, OR, etc). We would treat
% the integers as having a 2's complement bit representation.
% This is easier to do if we use base 2^14 as mentioned above.
% (djh: this is done: /\ \/ << >> xor \)
%
% 7) The implementation of `div' is slower than it need be.
% (djh: this is much improved)
%
% 8) Fourier methods such as Schoenhage-Strassen and
% multiplication via modular arithmetic are left as
% exercises to the reader. 8^)
%
%
% Of the above, 1) would have the best bang-for-buck, 5) would
% benefit division and remainder operations quite a lot, and 3)
% would benefit large multiplications (thousands of digits)
% and is straightforward to implement.
% (djh:
% I'd like to see 1) done.
% integers are now represented as
% i(Length, Digits)
% where Digits are no longer reversed.
% The only penalty for not reversing is in multiplication
% by the base which now entails walking to the end of the list
% to append a 0.
% Therefore I'd like to see:
% 9) Allow empty tails for low end zeros.
% Base multiplication is then an increment to Length.
:- type sign == int. % sign of integer and length of digit list
:- type digit == int. % base 2^14 digit
:- type integer
---> i(sign, list(digit)).
:- func base = int.
base = 16384. % 2^14
:- func basediv2 = int.
basediv2 = 8192.
:- func log2base = int.
log2base = 14.
:- func basemask = int.
basemask = 16383.
:- func highbitmask = int.
highbitmask = basediv2.
:- func lowbitmask = int.
lowbitmask = 1.
:- func evenmask = int.
evenmask = 16382.
'<'(X, Y) :-
big_cmp(X, Y) = C,
C = (<).
'>'(X, Y) :-
big_cmp(X, Y) = C,
C = (>).
'=<'(X, Y) :-
big_cmp(X, Y) = C,
( C = (<) ; C = (=)).
'>='(X, Y) :-
big_cmp(X, Y) = C,
( C = (>) ; C = (=)).
'+'(X) = X.
'-'(X) = big_neg(X).
X + Y = big_plus(X, Y).
X - Y = big_plus(X, big_neg(Y)).
X * Y = big_mul(X, Y).
X div Y = big_div(X, Y).
X // Y = big_quot(X, Y).
X rem Y = big_rem(X, Y).
X mod Y = big_mod(X, Y).
X << I = ( I > 0 -> big_left_shift(X, I) ; I < 0 -> X >> -I ; X ).
X >> I = ( I < 0 -> X << -I ; I > 0 -> big_right_shift(X, I) ; X ).
X /\ Y =
( big_isnegative(X) ->
( big_isnegative(Y) ->
\ big_or(\ X, \ Y)
;
big_and_not(Y, \ X)
)
; big_isnegative(Y) ->
big_and_not(X, \ Y)
;
big_and(X, Y)
).
X \/ Y =
( big_isnegative(X) ->
( big_isnegative(Y) ->
\ big_and(\ X, \ Y)
;
\ big_and_not(\ X, Y)
)
; big_isnegative(Y) ->
\ big_and_not(\ Y, X)
;
big_or(X, Y)
).
X `xor` Y =
( big_isnegative(X) ->
( big_isnegative(Y) ->
big_xor(\ X, \ Y)
;
big_xor_not(Y, \ X)
)
; big_isnegative(Y) ->
big_xor_not(X, \ Y)
;
big_xor(X, Y)
).
\ X = big_neg(big_plus(X, integer__one)).
integer__abs(N) = big_abs(N).
:- func big_abs(integer) = integer.
big_abs(i(Sign, Ds)) = ( Sign < 0 -> big_neg(i(Sign, Ds)) ; i(Sign, Ds) ).
:- pred neg_list(list(int)::in, list(int)::out, list(int)::in) is det.
neg_list([]) --> [].
neg_list([H | T]) --> [-H], neg_list(T).
:- pred big_isnegative(integer::in) is semidet.
big_isnegative(i(Sign, _)) :- Sign < 0.
:- pred big_iszero(integer::in) is semidet.
big_iszero(i(0, [])).
:- func big_neg(integer) = integer.
big_neg(i(S, Digits0)) = i(-S, Digits) :-
neg_list(Digits0, Digits, []).
:- func big_mul(integer, integer) = integer.
big_mul(X, Y) =
big_sign(integer_signum(X) * integer_signum(Y),
pos_mul(big_abs(X), big_abs(Y))).
:- func big_sign(int, integer) = integer.
big_sign(Sign, In) = ( Sign < 0 -> big_neg(In) ; In ).
:- func big_quot(integer, integer) = integer.
big_quot(X, Y) = Quot :-
big_quot_rem(X, Y, Quot, _Rem).
:- func big_rem(integer, integer) = integer.
big_rem(X, Y) = Rem :-
big_quot_rem(X, Y, _Quot, Rem).
:- func big_div(integer, integer) = integer.
big_div(X, Y) = Div :-
big_quot_rem(X, Y, Trunc, Rem),
( if integer_signum(Y) * integer_signum(Rem) < 0
then Div = Trunc - integer__one
else Div = Trunc
).
:- func big_mod(integer, integer) = integer.
big_mod(X, Y) = Mod :-
big_quot_rem(X, Y, _Trunc, Rem),
( if integer_signum(Y) * integer_signum(Rem) < 0
then Mod = Rem + Y
else Mod = Rem
).
:- func big_right_shift(integer, int) = integer.
big_right_shift(X, I) =
( big_iszero(X) ->
X
; big_isnegative(X) ->
\ pos_right_shift(\ X, I)
;
pos_right_shift(X, I)
).
:- func pos_right_shift(integer, int) = integer.
pos_right_shift(i(Len, Digits), I) = Integer :-
Div = I div log2base,
( Div < Len ->
Mod = I mod log2base,
Integer = decap(rightshift(Mod, log2base - Mod,
i(Len - Div, Digits), 0))
;
Integer = integer__zero
).
:- func rightshift(int, int, integer, int) = integer.
rightshift(_Mod, _InvMod, i(_Len, []), _Carry) = integer__zero.
rightshift(Mod, InvMod, i(Len, [H | T]), Carry) = Integer :-
( Len =< 0 ->
Integer = integer__zero
;
NewH = Carry \/ (H >> Mod),
NewCarry = (H /\ (basemask >> InvMod)) << InvMod,
i(TailLen, NewTail) = rightshift(Mod, InvMod, i(Len - 1, T),
NewCarry),
Integer = i(TailLen + 1, [NewH | NewTail])
).
:- func big_left_shift(integer, int) = integer.
big_left_shift(X, I) =
( big_iszero(X) ->
X
; big_isnegative(X) ->
big_neg(pos_left_shift(big_neg(X), I))
;
pos_left_shift(X, I)
).
:- func pos_left_shift(integer, int) = integer.
pos_left_shift(i(Len, Digits), I) = Integer :-
Div = I div log2base,
Mod = I mod log2base,
NewLen = Len + Div,
leftshift(Mod, log2base - Mod, NewLen, Digits, Carry, NewDigits),
( if Carry = 0
then Integer = i(NewLen, NewDigits)
else Integer = i(NewLen + 1, [Carry | NewDigits])
).
:- pred leftshift(int::in, int::in, int::in, list(digit)::in,
int::out, list(digit)::out) is det.
leftshift(_Mod, _InvMod, Len, [], Carry, DigitsOut) :-
Carry = 0,
zeros(Len, DigitsOut, []).
leftshift(Mod, InvMod, Len, [H | T], Carry, DigitsOut) :-
( Len =< 0 ->
Carry = 0,
DigitsOut = []
;
Carry = (H /\ (basemask << InvMod)) >> InvMod,
leftshift(Mod, InvMod, Len - 1, T, TailCarry, Tail),
DigitsOut = [TailCarry \/ ((H << Mod) /\ basemask) | Tail]
).
:- pred zeros(int::in, list(digit)::out, list(digit)::in) is det.
zeros(Len) -->
( { Len > 0 } ->
[0],
zeros(Len - 1)
;
[]
).
:- func big_or(integer, integer) = integer.
big_or(X, Y) = decap(or_pairs(X, Y)).
:- func or_pairs(integer, integer) = integer.
or_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( L1 = L2 ->
Integer = i(L1, or_pairs_equal(D1, D2))
; L1 < L2, D2 = [H2 | T2] ->
i(_, DsT) = or_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L2, [H2 | DsT])
; L1 > L2, D1 = [H1 | T1] ->
i(_, DsT) = or_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L1, [H1 | DsT])
;
error("integer__or_pairs")
).
:- func or_pairs_equal(list(digit), list(digit)) = list(digit).
or_pairs_equal([], _) = [].
or_pairs_equal([_ | _], []) = [].
or_pairs_equal([X | Xs], [Y | Ys]) = [X \/ Y | or_pairs_equal(Xs, Ys)].
:- func big_xor(integer, integer) = integer.
big_xor(X, Y) = decap(xor_pairs(X, Y)).
:- func xor_pairs(integer, integer) = integer.
xor_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( L1 = L2 ->
Integer = i(L1, xor_pairs_equal(D1, D2))
; L1 < L2, D2 = [H2 | T2] ->
i(_, DsT) = xor_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L2, [H2 | DsT])
; L1 > L2, D1 = [H1 | T1] ->
i(_, DsT) = xor_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L1, [H1 | DsT])
;
error("integer__xor_pairs")
).
:- func xor_pairs_equal(list(digit), list(digit)) = list(digit).
xor_pairs_equal([], _) = [].
xor_pairs_equal([_ | _], []) = [].
xor_pairs_equal([X | Xs], [Y | Ys]) =
[int__xor(X, Y) | xor_pairs_equal(Xs, Ys)].
:- func big_and(integer, integer) = integer.
big_and(X, Y) = decap(and_pairs(X, Y)).
:- func and_pairs(integer, integer) = integer.
and_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( L1 = L2 ->
Integer = i(L1, and_pairs_equal(D1, D2))
; L1 < L2, D2 = [_ | T2] ->
i(_, DsT) = and_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L1, DsT)
; L1 > L2, D1 = [_ | T1] ->
i(_, DsT) = and_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L2, DsT)
;
error("integer__and_pairs")
).
:- func and_pairs_equal(list(digit), list(digit)) = list(digit).
and_pairs_equal([], _) = [].
and_pairs_equal([_ | _], []) = [].
and_pairs_equal([X | Xs], [Y | Ys]) = [X /\ Y | and_pairs_equal(Xs, Ys)].
:- func big_and_not(integer, integer) = integer.
big_and_not(X, Y) = decap(and_not_pairs(X, Y)).
:- func and_not_pairs(integer, integer) = integer.
and_not_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( L1 = L2 ->
Integer = i(L1, and_not_pairs_equal(D1, D2))
; L1 < L2, D2 = [_ | T2] ->
i(_, DsT) = and_not_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L1, DsT)
; L1 > L2, D1 = [H1 | T1] ->
i(_, DsT) = and_not_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L1, [H1 | DsT])
;
error("integer__and_not_pairs")
).
:- func and_not_pairs_equal(list(digit), list(digit)) = list(digit).
and_not_pairs_equal([], _) = [].
and_not_pairs_equal([_ | _], []) = [].
and_not_pairs_equal([X | Xs], [Y | Ys]) =
[X /\ \ Y | and_not_pairs_equal(Xs, Ys)].
:- func big_xor_not(integer, integer) = integer.
big_xor_not(X1, NotX2) =
\ big_and_not(big_or(X1, NotX2), big_and(X1, NotX2)).
:- func big_cmp(integer, integer) = comparison_result.
big_cmp(X, Y) = Result :-
compare(Result, X, Y).
:- func pos_cmp(integer, integer) = comparison_result.
pos_cmp(X, Y) = Result :-
compare(Result, X, Y).
:- func big_plus(integer, integer) = integer.
big_plus(X, Y) = Sum :-
( X = integer__zero ->
Sum = Y
; Y = integer__zero ->
Sum = X
;
AbsX = big_abs(X),
AbsY = big_abs(Y),
SignX = integer_signum(X),
SignY = integer_signum(Y),
( SignX = SignY ->
Sum = big_sign(SignX, pos_plus(AbsX, AbsY))
;
C = pos_cmp(AbsX, AbsY),
( C = (<) ->
Sum = big_sign(SignY, pos_minus(AbsY, AbsX))
; C = (>) ->
Sum = big_sign(SignX, pos_minus(AbsX, AbsY))
;
Sum = integer__zero
)
)
).
integer(N) = int_to_integer(N).
% Note: Since most machines use 2's complement arithmetic,
% INT_MIN is usually -INT_MAX-1, hence -INT_MIN will
% cause int overflow. We handle overflow below.
% We don't check for a negative result from abs(), which
% would indicate overflow, since we may trap int overflow
% instead.
%
% XXX: What about machines that aren't 2's complement?
:- func int_to_integer(int) = integer.
int_to_integer(D) = Int :-
( D = 0 ->
Int = integer__zero
; D > 0, D < base ->
Int = i(1, [D])
; D < 0, D > -base ->
Int = i(-1, [D])
;
( int__min_int(D) ->
% were we to call int__abs, int overflow might occur.
Int = integer(D + 1) - integer__one
;
Int = big_sign(D, pos_int_to_digits(int__abs(D)))
)
).
:- func shortint_to_integer(int) = integer.
shortint_to_integer(D) =
( D = 0 -> integer__zero ; D > 0 -> i(1, [D]) ; i(-1, [D]) ).
:- func signum(int) = int.
signum(N) = ( N < 0 -> -1 ; N = 0 -> 0 ; 1 ).
:- func integer_signum(integer) = int.
integer_signum(i(Sign, _)) = signum(Sign).
:- func pos_int_to_digits(int) = integer.
pos_int_to_digits(D) = pos_int_to_digits_2(D, integer__zero).
:- func pos_int_to_digits_2(int, integer) = integer.
pos_int_to_digits_2(D, Tail) = Result :-
( D = 0 ->
Result = Tail
;
Tail = i(Length, Digits),
chop(D, Div, Mod),
Result = pos_int_to_digits_2(Div, i(Length + 1, [Mod | Digits]))
).
:- func mul_base(integer) = integer.
mul_base(i(Len, Digits)) =
( Digits = [] -> integer__zero ; i(Len + 1, mul_base_2(Digits)) ).
:- func mul_base_2(list(digit)) = list(digit).
mul_base_2([]) = [0].
mul_base_2([H | T]) = [H | mul_base_2(T)].
:- func mul_by_digit(digit, integer) = integer.
mul_by_digit(Digit, i(Len, Digits0)) = Out :-
mul_by_digit_2(Digit, Mod, Digits0, Digits),
Out = ( Mod = 0 -> i(Len, Digits) ; i(Len + 1, [Mod | Digits]) ).
:- pred mul_by_digit_2(digit::in, digit::out, list(digit)::in,
list(digit)::out) is det.
mul_by_digit_2(_, 0, [], []).
mul_by_digit_2(D, Div, [X | Xs], [Mod | NewXs]) :-
mul_by_digit_2(D, DivXs, Xs, NewXs),
chop(D * X + DivXs, Div, Mod).
:- pred chop(int::in, digit::out, digit::out) is det.
chop(N, Div, Mod) :-
Div = N >> log2base, % i.e. Div = N div base
Mod = N /\ basemask. % i.e. Mod = N mod base
:- func pos_plus(integer, integer) = integer.
pos_plus(i(L1, D1), i(L2, D2)) = Out :-
add_pairs(Div, i(L1, D1), i(L2, D2), Ds),
Len = ( L1 > L2 -> L1 ; L2 ),
Out = ( Div = 0 -> i(Len, Ds) ; i(Len + 1, [Div | Ds]) ).
:- pred add_pairs(digit::out, integer::in, integer::in,
list(digit)::out) is det.
add_pairs(Div, i(L1, D1), i(L2, D2), Ds) :-
( L1 = L2 ->
add_pairs_equal(Div, D1, D2, Ds)
; L1 < L2, D2 = [H2 | T2] ->
add_pairs(Div1, i(L1, D1), i(L2 - 1, T2), Ds1),
chop(H2 + Div1, Div, Mod),
Ds = [Mod | Ds1]
; L1 > L2, D1 = [H1 | T1] ->
add_pairs(Div1, i(L1 - 1, T1), i(L2, D2), Ds1),
chop(H1 + Div1, Div, Mod),
Ds = [Mod | Ds1]
;
error("integer__add_pairs")
).
:- pred add_pairs_equal(digit::out, list(digit)::in, list(digit)::in,
list(digit)::out) is det.
add_pairs_equal(0, [], _, []).
add_pairs_equal(0, [_ | _], [], []).
add_pairs_equal(Div, [X | Xs], [Y | Ys], [Mod | TailDs]) :-
add_pairs_equal(DivTail, Xs, Ys, TailDs),
chop(X + Y + DivTail, Div, Mod).
:- func pos_minus(integer, integer) = integer.
pos_minus(i(L1, D1), i(L2, D2)) = Out :-
diff_pairs(Mod, i(L1, D1), i(L2, D2), Ds),
Len = ( L1 > L2 -> L1 ; L2 ),
Out = ( Mod = 0 -> decap(i(Len, Ds)) ; i(Len + 1, [Mod | Ds]) ).
:- pred diff_pairs(digit::out, integer::in, integer::in,
list(digit)::out) is det.
diff_pairs(Div, i(L1, D1), i(L2, D2), Ds) :-
( L1 = L2 ->
diff_pairs_equal(Div, D1, D2, Ds)
; L1 > L2, D1 = [H1 | T1] ->
diff_pairs(Div1, i(L1 - 1, T1), i(L2, D2), Ds1),
chop(H1 + Div1, Div, Mod),
Ds = [Mod | Ds1]
;
error("integer__diff_pairs")
).
:- pred diff_pairs_equal(digit::out, list(digit)::in, list(digit)::in,
list(digit)::out) is det.
diff_pairs_equal(0, [], _, []).
diff_pairs_equal(0, [_ | _], [], []).
diff_pairs_equal(Div, [X | Xs], [Y | Ys], [Mod | TailDs]) :-
diff_pairs_equal(DivTail, Xs, Ys, TailDs),
chop(X - Y + DivTail, Div, Mod).
:- func pos_mul(integer, integer) = integer.
pos_mul(i(L1, Ds1), i(L2, Ds2)) =
( if L1 < L2
then pos_mul_list(Ds1, integer__zero, i(L2, Ds2))
else pos_mul_list(Ds2, integer__zero, i(L1, Ds1))
).
:- func pos_mul_list(list(digit), integer, integer) = integer.
pos_mul_list([], Carry, _Y) = Carry.
pos_mul_list([X | Xs], Carry, Y) =
pos_mul_list(Xs, pos_plus(mul_base(Carry), mul_by_digit(X, Y)), Y).
:- pred big_quot_rem(integer::in, integer::in, integer::out,
integer::out) is det.
big_quot_rem(X, Y, Quot, Rem) :-
( big_iszero(Y) ->
error("integer__big_quot_rem: division by zero")
; big_iszero(X) ->
Quot = integer__zero,
Rem = integer__zero
;
X = i(SignX, _),
Y = i(SignY, _),
quot_rem(big_abs(X), big_abs(Y), Quot0, Rem0),
Quot = big_sign(SignX * SignY, Quot0),
Rem = big_sign(SignX, Rem0)
).
% Algorithm: We take digits from the start of U (call them Ur)
% and divide by V to get a digit Q of the ratio.
% Essentially the usual long division algorithm.
% Qhat is an approximation to Q. It may be at most 2 too big.
%
% If the first digit of V is less than base/2, then
% we scale both the numerator and denominator. This
% way, we can use Knuth's[*] nifty trick for finding
% an accurate approximation to Q. That's all we use from
% Knuth; his MIX algorithm is fugly.
%
% [*] Knuth, Semi-numerical algorithms.
%
:- pred quot_rem(integer::in, integer::in, integer::out, integer::out) is det.
quot_rem(U, V, Quot, Rem) :-
( U = i(_, [UI]), V = i(_, [VI]) ->
Quot = shortint_to_integer(UI // VI),
Rem = shortint_to_integer(UI rem VI)
;
V0 = head(V),
( V0 < basediv2 ->
M = base div (V0 + 1),
quot_rem_2(integer__zero, mul_by_digit(M, U),
mul_by_digit(M, V), QuotZeros, R),
Rem = div_by_digit(M, R)
;
quot_rem_2(integer__zero, U, V, QuotZeros, Rem)
),
Quot = decap(QuotZeros)
).
:- pred quot_rem_2(integer::in, integer::in, integer::in, integer::out,
integer::out) is det.
quot_rem_2(Ur, U, V, Quot, Rem) :-
( pos_lt(Ur, V) ->
( U = i(_, [Ua | _]) ->
quot_rem_2(integer_append(Ur, Ua), tail(U), V,
Quot0, Rem0),
Quot = integer_prepend(0, Quot0),
Rem = Rem0
;
Quot = i(1, [0]),
Rem = Ur
)
;
( length(Ur) > length(V) ->
Qhat = (head(Ur) * base + head_tail(Ur)) div head(V)
;
Qhat = head(Ur) div head(V)
),
QhatByV = mul_by_digit(Qhat, V),
( pos_geq(Ur, QhatByV) ->
Q = Qhat,
QByV = QhatByV
;
QhatMinus1ByV = pos_minus(QhatByV, V),
( pos_geq(Ur, QhatMinus1ByV) ->
Q = Qhat - 1,
QByV = QhatMinus1ByV
;
Q = Qhat - 2,
QByV = pos_minus(QhatMinus1ByV, V)
)
),
NewUr = pos_minus(Ur, QByV),
( U = i(_, [Ua | _]) ->
quot_rem_2(integer_append(NewUr, Ua), tail(U), V,
Quot0, Rem0),
Quot = integer_prepend(Q, Quot0),
Rem = Rem0
;
Quot = i(1, [Q]),
Rem = NewUr
)
).
:- func length(integer) = int.
length(i(L, _)) = L.
:- func decap(integer) = integer.
decap(i(_, [])) = integer__zero.
decap(i(L, [H | T])) = ( H = 0 -> decap(i(L - 1, T)) ; i(L, [H | T]) ).
:- func head(integer) = digit.
head(I) = (I = i(_, [Hd|_T]) -> Hd ; func_error("integer__head: []") ).
:- func head_tail(integer) = digit.
head_tail(I) =
(I = i(_, [_ | [HT | _]]) ->
HT
;
func_error("integer__head_tail: []")
).
:- func tail(integer) = integer.
tail(i(_, [])) = func_error("integer__tail: []").
tail(i(Len, [_ | Tail])) = i(Len - 1, Tail).
:- func integer_append(integer, digit) = integer.
integer_append(i(L, List), Digit) = i(L + 1, NewList) :-
list__append(List, [Digit], NewList).
:- func integer_prepend(digit, integer) = integer.
integer_prepend(Digit, i(L, List)) = i(L + 1, [Digit | List]).
:- func div_by_digit(digit, integer) = integer.
div_by_digit(_, i(_, [])) = integer__zero.
div_by_digit(Digit, i(_, [X | Xs])) = div_by_digit_1(X, Xs, Digit).
:- func div_by_digit_1(digit, list(digit), digit) = integer.
div_by_digit_1(X, [], D) = ( Q = 0 -> integer__zero ; i(1, [Q]) ) :-
Q = X div D.
div_by_digit_1(X, [H | T], D) = Integer :-
Q = X div D,
( Q = 0 ->
Integer = div_by_digit_1((X rem D) * base + H, T, D)
;
i(L, Ds) = div_by_digit_2((X rem D) * base + H, T, D),
Integer = i(L + 1, [Q | Ds])
).
:- func div_by_digit_2(digit, list(digit), digit) = integer.
div_by_digit_2(X, [], D) = i(1, [X div D]).
div_by_digit_2(X, [H | T], D) = i(Len + 1, [X div D | Tail]) :-
i(Len, Tail) = div_by_digit_2((X rem D) * base + H, T, D).
:- pred pos_lt(integer::in, integer::in) is semidet.
pos_lt(Xs, Ys) :-
(<) = pos_cmp(Xs, Ys).
:- pred pos_geq(integer::in, integer::in) is semidet.
pos_geq(Xs, Ys) :-
C = pos_cmp(Xs, Ys),
( C = (>) ; C = (=) ).
integer__pow(A, N) = P :-
integer__pow(A, N, P).
integer__pow(A, N, P) :-
( if big_isnegative(N)
then error("integer__pow: negative exponent")
else P = big_pow(A, N)
).
:- func big_pow(integer, integer) = integer.
big_pow(A, N) =
( N = integer__zero ->
integer__one
; N = integer__one ->
A
; A = integer__one ->
integer__one
; A = integer__zero ->
integer__zero
; N = i(_, [Head | Tail]) ->
bits_pow_list(Tail, A, bits_pow_head(Head, A))
;
integer__zero
).
:- func bits_pow_head(int, integer) = integer.
bits_pow_head(H, A) =
( H = 0 ->
integer__one
; H /\ lowbitmask = 1 ->
A * bits_pow_head(H /\ evenmask, A)
;
big_sqr(bits_pow_head(H >> 1, A))
).
:- func bits_pow_list(list(int), integer, integer) = integer.
bits_pow_list([], _, Accum) = Accum.
bits_pow_list([H | T], A, Accum) =
bits_pow_list(T, A, bits_pow(log2base, H, A, Accum)).
:- func bits_pow(int, int, integer, integer) = integer.
bits_pow(Shifts, H, A, Accum) =
( Shifts =< 0 ->
Accum
; H /\ lowbitmask = 1 ->
A * bits_pow(Shifts, H /\ evenmask, A, Accum)
;
big_sqr(bits_pow(Shifts - 1, H >> 1, A, Accum))
).
:- func big_sqr(integer) = integer.
big_sqr(A) = A * A.
integer__float(i(_, List)) = float_list(float__float(base), 0.0, List).
:- func float_list(float, float, list(int)) = float.
float_list(_, Accum, []) = Accum.
float_list(FBase, Accum, [H | T]) =
float_list(FBase, Accum * FBase + float__float(H), T).
integer__int(Integer) = Int :-
(
Integer >= integer(int__min_int),
Integer =< integer(int__max_int)
->
Integer = i(_Sign, Digits),
Int = int_list(Digits, 0)
;
error("integer.int: domain error (conversion would overflow)")
).
:- func int_list(list(int), int) = int.
int_list([], Accum) = Accum.
int_list([H | T], Accum) = int_list(T, Accum * base + H).
integer__zero = i(0, []).
integer__one = i(1, [1]).
%-----------------------------------------------------------------------------%
%
% Converting strings to integers.
%
integer__from_string(S) = Big :-
string__to_char_list(S, Cs),
string_to_integer(Cs) = Big.
:- func string_to_integer(list(char)::in) = (integer::out) is semidet.
string_to_integer(CCs @ [C | Cs]) =
( if C = ('-')
then big_sign(-1, string_to_integer(Cs))
else string_to_integer_acc(CCs, integer__zero)
).
:- func string_to_integer_acc(list(char), integer) = integer.
:- mode string_to_integer_acc(in, in) = out is semidet.
string_to_integer_acc([], Acc) = Acc.
string_to_integer_acc([C | Cs], Acc) = Result :-
% The if-then-else here is acting as a sequential conjunction.
% It is needed to guarantee termination with --reorder-conj.
% Without it, the value of `Digit0 - Z' might be negative and
% then the call to pos_int_to_digits/1 may not terminate.
( char__is_digit(C) ->
Digit0 = char__to_int(C),
Z = char__to_int('0'),
Digit = pos_int_to_digits(Digit0 - Z),
NewAcc = pos_plus(Digit, mul_by_digit(10, Acc)),
Result = string_to_integer_acc(Cs, NewAcc)
;
fail
).
%-----------------------------------------------------------------------------%
%
% Converting integers to strings.
%
integer__to_string(i(Sign, Digits)) = SignStr ++ digits_to_string(AbsDigits) :-
( Sign < 0 ->
SignStr = "-",
neg_list(Digits, AbsDigits, [])
;
SignStr = "",
Digits = AbsDigits
).
:- func digits_to_string(list(digit)) = string.
digits_to_string([]) = "0".
digits_to_string(Digits @ [_|_]) = Str :-
printbase_rep(printbase_pos_int_to_digits(base),
Digits, i(_, DigitsInPrintBase)),
( DigitsInPrintBase = [Head | Tail] ->
string__int_to_string(Head, SHead),
digits_to_strings(Tail, Ss, []),
string__append_list([SHead | Ss], Str)
;
error("integer.digits_to_string/1: empty list")
).
:- pred digits_to_strings(list(digit)::in, list(string)::out,
list(string)::in) is det.
digits_to_strings([]) --> [].
digits_to_strings([H | T]) -->
{ digit_to_string(H, S) },
[ S ],
digits_to_strings(T).
:- pred printbase_rep(integer::in, list(digit)::in, integer::out)
is det.
printbase_rep(Base, Digits, printbase_rep_1(Digits, Base, integer__zero)).
:- func printbase_rep_1(list(digit), integer, integer) = integer.
printbase_rep_1([], _Base, Carry) = Carry.
printbase_rep_1([X|Xs], Base, Carry) =
printbase_rep_1(Xs, Base,
printbase_pos_plus(printbase_pos_mul(Base, Carry),
printbase_pos_int_to_digits(X))).
:- pred digit_to_string(digit::in, string::out) is det.
digit_to_string(D, S) :-
string__int_to_string(D, S1),
string__pad_left(S1, '0', log10printbase, S).
%-----------------------------------------------------------------------------%
%
% Essentially duplicated code to work in base `printbase' follows
%
:- func printbase = int.
printbase = 10000.
:- func log10printbase = int.
log10printbase = 4.
:- func printbase_pos_int_to_digits(int) = integer.
printbase_pos_int_to_digits(D) =
printbase_pos_int_to_digits_2(D, integer__zero).
:- func printbase_pos_int_to_digits_2(int, integer) = integer.
printbase_pos_int_to_digits_2(D, Tail) = Result :-
( D = 0 ->
Result = Tail
;
Tail = i(Length, Digits),
printbase_chop(D, Div, Mod),
Result = printbase_pos_int_to_digits_2(Div,
i(Length + 1, [Mod | Digits]))
).
:- pred printbase_chop(int::in, digit::out, digit::out) is det.
printbase_chop(N, Div, Mod) :-
Mod = N mod printbase,
Div = N div printbase.
:- func printbase_mul_by_digit(digit, integer) = integer.
printbase_mul_by_digit(D, i(Len, Ds)) = Out :-
printbase_mul_by_digit_2(D, Div, Ds, DsOut),
Out = ( Div = 0 -> i(Len, DsOut) ; i(Len + 1, [Div | DsOut]) ).
:- pred printbase_mul_by_digit_2(digit::in, digit::out,
list(digit)::in, list(digit)::out) is det.
printbase_mul_by_digit_2(_, 0, [], []).
printbase_mul_by_digit_2(D, Div, [X | Xs], [Mod | NewXs]) :-
printbase_mul_by_digit_2(D, DivXs, Xs, NewXs),
printbase_chop(D * X + DivXs, Div, Mod).
:- func printbase_pos_plus(integer, integer) = integer.
printbase_pos_plus(i(L1, D1), i(L2, D2)) = Out :-
printbase_add_pairs(Div, i(L1, D1), i(L2, D2), Ds),
Len = ( L1 > L2 -> L1 ; L2 ),
Out = ( Div = 0 -> i(Len, Ds) ; i(Len + 1, [Div | Ds]) ).
:- pred printbase_add_pairs(digit::out, integer::in, integer::in,
list(digit)::out) is det.
printbase_add_pairs(Div, i(L1, D1), i(L2, D2), Ds) :-
( L1 = L2 ->
printbase_add_pairs_equal(Div, D1, D2, Ds)
; L1 < L2, D2 = [H2 | T2] ->
printbase_add_pairs(Div1, i(L1, D1), i(L2 - 1, T2), Ds1),
printbase_chop(H2 + Div1, Div, Mod),
Ds = [Mod | Ds1]
; L1 > L2, D1 = [H1 | T1] ->
printbase_add_pairs(Div1, i(L1 - 1, T1), i(L2, D2), Ds1),
printbase_chop(H1 + Div1, Div, Mod),
Ds = [Mod | Ds1]
;
error("integer__printbase_add_pairs")
).
:- pred printbase_add_pairs_equal(digit::out, list(digit)::in, list(digit)::in,
list(digit)::out) is det.
printbase_add_pairs_equal(0, [], _, []).
printbase_add_pairs_equal(0, [_ | _], [], []).
printbase_add_pairs_equal(Div, [X | Xs], [Y | Ys], [Mod | TailDs]) :-
printbase_add_pairs_equal(DivTail, Xs, Ys, TailDs),
printbase_chop(X + Y + DivTail, Div, Mod).
:- func printbase_pos_mul(integer, integer) = integer.
printbase_pos_mul(i(L1, Ds1), i(L2, Ds2)) =
( if L1 < L2
then printbase_pos_mul_list(Ds1, integer__zero, i(L2, Ds2))
else printbase_pos_mul_list(Ds2, integer__zero, i(L1, Ds1))
).
:- func printbase_pos_mul_list(list(digit), integer, integer) = integer.
printbase_pos_mul_list([], Carry, _Y) = Carry.
printbase_pos_mul_list([X|Xs], Carry, Y) =
printbase_pos_mul_list(Xs, printbase_pos_plus(mul_base(Carry),
printbase_mul_by_digit(X, Y)), Y).
%-----------------------------------------------------------------------------%
:- end_module integer.
%-----------------------------------------------------------------------------%