Files
mercury/compiler/use_local_vars.m
Zoltan Somogyi 9bdc5db590 Try to work around the Snow Leopard linker's performance problem with
Estimated hours taken: 20
Branches: main

Try to work around the Snow Leopard linker's performance problem with
debug grade object files by greatly reducing the number of symbols needed
to represent the debugger's data structures.

Specifically, this diff groups all label layouts in a module, each of which
previously had its own named global variable, into only a few (one to four)
global variables, each of which is an array. References to the old global
variables are replaced by references to slots in these arrays.

This same treatment could also be applied to other layout structures. However,
most layouts are label layouts, so doing just label layouts gets most of the
available benefit.

When the library and compiler are compiled in grade asm_fast.gc.debug,
this diff leads to about a 1.5% increase in the size of their generated C
source files (from 338 to 343 Mb), but a more significant reduction (about 17%)
in the size of the corresponding object files (from 155 to 128 Mb). This leads
to an overall reduction in disk requirements from 493 to 471 Mb (about 4.5%).
Since we generate the same code and data as before, with the data just being
arranged differently, the decrease in object file sizes is coming from the
reduction in relocation information, the information processed by the linker.
This should speed up the linker.

compiler/layout.m:
	Make the change described above. We now define up to four arrays:
	one each for label layouts with and without information about
	variables, one for the layout structures of user events,
	and one for the variable number lists of user events.

compiler/layout_out.m:
	Generate the new arrays that the module being compiled needs.

	Use purpose-specific types instead of booleans.

compiler/trace_gen.m:
	Use a new field in foreign_proc_code instructions to record the
	identity of any labels whose layout structures we want to refer to,
	even though layout structures have not been generated yet. The labels
	will be looked up in a map (generated together with the layout
	structures) by llds_out.m.

compiler/llds.m:
	Add this extra field to foreign_proc_code instructions.

	Add the map (which is actually in two parts) to the c_file type,
	which is the data structure representing the entire LLDS.

	Also add to the c_file type some other data structures that previously
	we used to hand around alongside it. Some of these data structures
	used to conmingle layout structures that we now separate.

compiler/stack_layout.m:
	Generate array slots instead of separate structures for label layouts.
	Return the different arrays separately.

compiler/llds_out.m:
	Order the output of layout structures to require fewer forward
	declarations. The forward declarations of the few arrays holding the
	label layout structures replace a lot of the declarations previously
	needed.

	Include the information needed by layout_out.m in the llds_out_info,
	and conform to the changes above.

	As a side-effect of all these changes, we now generate proc layout
	structures in the same order as the procedures' appearence in the HLDS,
	which is the same as their order in the source code, modulo any
	procedures added by the compiler itself (for lambdas, unification
	predicates, etc).

compiler/code_info.m:
compiler/dupelim.m:
compiler/dup_proc.m:
compiler/exprn_aux.m:
compiler/frameopt.m:
compiler/global_data.m:
compiler/ite_gen.m:
compiler/jumpopt.m:
compiler/livemap.m:
compiler/llds_to_x86_64.m:
compiler/mercury_compile_llds_back_end.m:
compiler/middle_rec.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/pragma_c_gen.m:
compiler/proc_gen.m:
compiler/reassign.m:
compiler/use_local_vars.m:
	Conform to the changes above.

runtime/mercury_goto.h:
	Add the macros used by the new code in layout_out.m and llds_out.m.
	We need new macros because the old ones assumed that the
	C preprocessor can construct the address of a label's layout structure
	from the name of the label, which is obviously no longer possible.

	Make even existing families of macros handle in bulk up to 10 labels,
	up from the previous 8.

runtime/mercury_stack_layout.h:
	Add macros for use by the new code in layout.m.

tests/debugger/*.{inp,exp}:
tests/debugger/declarative/*.{inp,exp}:
	Update these test cases to account for the new (and better) order
	of proc layout structures. Where inputs changed, this was to ensure
	that we still select the same procedures from lists of procedures,
	e.g. to put a breakpoint on.
2009-10-21 06:36:37 +00:00

795 lines
30 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2001-2009 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: use_local_vars.m
% Author: zs.
%
% This module implements an LLDS->LLDS transformation that optimizes the
% sequence of instructions in a procedure body by replacing references to
% relatively expensive locations: fake registers (Mercury abstract machine
% registers that are not mapped to machine registers) or stack slots with
% references to cheaper locations: local variables in C blocks, which should
% be mapped to machine registers by the C compiler. The C blocks should be
% introduced later by wrap_blocks.m, possibly after the LLDS code has been
% transformed further. Wrap_blocks will know what local variables to declare
% in each block by looking for the temp(_, _) lvals that represent those local
% variables.
%
% This module looks for three patterns. The first is
%
% <instruction that defines a fake register>
% <instructions that use and possibly define the fake register>
% <end of basic block, at which the fake register is not live>
%
% When it finds an occurrence of that pattern, it replaces all references to
% the fake register with a local variable.
%
% If the basic block jumps to a code address which is not a label (e.g.
% do_redo, do_fail), we consider all registers to be live at the end of the
% basic block. This is because livemap.m, which computes liveness information
% for us, does not know about liveness requirements introduced by backtracking.
% This is a conservative approximation. The union of the livenesses of all the
% labels that represent resume points is a better approximation, but it would
% be tedious to compute and is unlikely to yield significantly better code.
%
% The second pattern we look for is simply an instruction that defines a fake
% register or stack slot, followed by some uses of that register or stack slot
% before code that redefines the register or stack slot. When we find this
% pattern, we again replace all references to the fake register or stack slot
% with a local variable, but since this time we cannot be sure that the
% original lval will not be referred to, we assign the local variable to the
% lval as well. This is a win because the cost of the assignment is less than
% the savings from replacing the fake register or stack slot references with
% local variable references.
%
% The third pattern we look for consists of a sequence of instructions in which
% a false register or stack slot is used several times, including at least once
% in the first instruction as a part of a path to a memory location, before
% being redefined or maybe aliased. This typically occurs when the code
% generator fills in the fields of a structure or extracts the fields of a
% structure. Again, we replace the false register or stack slot with a
% temporary after assigning the value in the false register or stack slot to
% the temporary.
%
% If we cannot find out what registers are live at each label, we still look
% for the second and third patterns.
%
%-----------------------------------------------------------------------------%
:- module ll_backend.use_local_vars.
:- interface.
:- import_module ll_backend.llds.
:- import_module mdbcomp.prim_data.
:- import_module bool.
:- import_module counter.
:- import_module list.
%-----------------------------------------------------------------------------%
:- pred use_local_vars_proc(list(instruction)::in, list(instruction)::out,
int::in, int::in, bool::in, proc_label::in, counter::in, counter::out)
is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module ll_backend.basic_block.
:- import_module ll_backend.code_util.
:- import_module ll_backend.exprn_aux.
:- import_module ll_backend.livemap.
:- import_module ll_backend.opt_debug.
:- import_module ll_backend.opt_util.
:- import_module parse_tree.prog_data.
:- import_module int.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module string.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
use_local_vars_proc(Instrs0, Instrs, NumRealRRegs, AccessThreshold,
AutoComments, ProcLabel, !C) :-
create_basic_blocks(Instrs0, Comments0, ProcLabel, !C, NewLabels,
LabelSeq, BlockMap0),
flatten_basic_blocks(LabelSeq, BlockMap0, TentativeInstrs),
build_livemap(TentativeInstrs, MaybeLiveMap),
extend_basic_blocks(LabelSeq, EBBLabelSeq, BlockMap0, EBBBlockMap0,
NewLabels),
list.foldl(use_local_vars_block(MaybeLiveMap, NumRealRRegs,
AccessThreshold), EBBLabelSeq, EBBBlockMap0, EBBBlockMap),
flatten_basic_blocks(EBBLabelSeq, EBBBlockMap, Instrs1),
(
MaybeLiveMap = yes(LiveMap),
AutoComments = yes
->
NewComment = "\n" ++ dump_livemap(yes(ProcLabel), LiveMap),
NewCommentInstr = llds_instr(comment(NewComment), ""),
Comments = Comments0 ++ [NewCommentInstr]
;
Comments = Comments0
),
Instrs = Comments ++ Instrs1.
:- pred use_local_vars_block(maybe(livemap)::in, int::in, int::in, label::in,
block_map::in, block_map::out) is det.
use_local_vars_block(MaybeLiveMap, NumRealRRegs, AccessThreshold, Label,
!BlockMap) :-
map.lookup(!.BlockMap, Label, BlockInfo0),
BlockInfo0 = block_info(BlockLabel, LabelInstr, RestInstrs0,
FallInto, JumpLabels, MaybeFallThrough),
counter.init(1, TempCounter0),
use_local_vars_instrs(RestInstrs0, RestInstrs, TempCounter0, TempCounter,
NumRealRRegs, AccessThreshold, MaybeLiveMap, MaybeFallThrough),
( TempCounter = TempCounter0 ->
true
;
BlockInfo = block_info(BlockLabel, LabelInstr, RestInstrs, FallInto,
JumpLabels, MaybeFallThrough),
map.det_update(!.BlockMap, Label, BlockInfo, !:BlockMap)
).
%-----------------------------------------------------------------------------%
:- pred use_local_vars_instrs(list(instruction)::in, list(instruction)::out,
counter::in, counter::out, int::in, int::in, maybe(livemap)::in,
maybe(label)::in) is det.
use_local_vars_instrs(!RestInstrs, !TempCounter,
NumRealRRegs, AccessThreshold, MaybeLiveMap, MaybeFallThrough) :-
opt_assign(!RestInstrs, !TempCounter, NumRealRRegs, [], MaybeLiveMap,
MaybeFallThrough),
( AccessThreshold >= 1 ->
opt_access(!RestInstrs, !TempCounter, NumRealRRegs,
set.init, AccessThreshold)
;
true
).
%-----------------------------------------------------------------------------%
:- pred opt_assign(list(instruction)::in, list(instruction)::out,
counter::in, counter::out, int::in, list(lval)::in,
maybe(livemap)::in, maybe(label)::in) is det.
opt_assign([], [], !TempCounter, _, _, _, _).
opt_assign([Instr0 | TailInstrs0], Instrs, !TempCounter, NumRealRRegs,
!.AvoidLvals, MaybeLiveMap, MaybeFallThrough) :-
Instr0 = llds_instr(Uinstr0, _Comment0),
(
(
% We don't optimize keep_assign instructions.
(
Uinstr0 = assign(ToLval, _FromRval)
;
Uinstr0 = incr_hp(ToLval, _MaybeTag, _SizeRval, _MO, _Type,
_Atomic, _, _)
),
base_lval_worth_replacing(NumRealRRegs, ToLval),
MaybeMore = no
;
Uinstr0 = foreign_proc_code(_D, Comps, _MCM, _FNL, _FL, _FOL, _NF,
_MDL, _S, _MD),
opt_assign_find_output_in_components(Comps, NumRealRRegs,
!.AvoidLvals, ToLval),
MaybeMore = yes
)
->
(
ToLval = reg(_, _),
find_compulsory_lvals(TailInstrs0, MaybeLiveMap, MaybeFallThrough,
no, MaybeCompulsoryLvals),
MaybeCompulsoryLvals = known(CompulsoryLvals),
not set.member(ToLval, CompulsoryLvals)
->
counter.allocate(TempNum, !TempCounter),
NewLval = temp(reg_r, TempNum),
substitute_lval_in_defn(ToLval, NewLval, Instr0, Instr),
list.map_foldl(
exprn_aux.substitute_lval_in_instr(ToLval, NewLval),
TailInstrs0, TailInstrs1, 0, _),
(
MaybeMore = no,
opt_assign(TailInstrs1, TailInstrs, !TempCounter, NumRealRRegs,
[], MaybeLiveMap, MaybeFallThrough),
Instrs = [Instr | TailInstrs]
;
MaybeMore = yes,
!:AvoidLvals = [ToLval | !.AvoidLvals],
Instrs1 = [Instr | TailInstrs1],
opt_assign(Instrs1, Instrs, !TempCounter, NumRealRRegs,
!.AvoidLvals, MaybeLiveMap, MaybeFallThrough)
)
;
counter.allocate(TempNum, !TempCounter),
NewLval = temp(reg_r, TempNum),
substitute_lval_in_instr_until_defn(ToLval, NewLval,
TailInstrs0, TailInstrs1, 0, NumSubst),
NumSubst > 1
->
substitute_lval_in_defn(ToLval, NewLval, Instr0, Instr),
CopyInstr = llds_instr(assign(ToLval, lval(NewLval)), ""),
(
MaybeMore = no,
opt_assign(TailInstrs1, TailInstrs, !TempCounter, NumRealRRegs,
[], MaybeLiveMap, MaybeFallThrough),
Instrs = [Instr, CopyInstr | TailInstrs]
;
MaybeMore = yes,
!:AvoidLvals = [ToLval | !.AvoidLvals],
Instrs1 = [Instr, CopyInstr | TailInstrs1],
opt_assign(Instrs1, Instrs, !TempCounter, NumRealRRegs,
!.AvoidLvals, MaybeLiveMap, MaybeFallThrough)
)
;
(
MaybeMore = no,
opt_assign(TailInstrs0, TailInstrs, !TempCounter, NumRealRRegs,
[], MaybeLiveMap, MaybeFallThrough),
Instrs = [Instr0 | TailInstrs]
;
MaybeMore = yes,
!:AvoidLvals = [ToLval | !.AvoidLvals],
Instrs1 = [Instr0 | TailInstrs0],
opt_assign(Instrs1, Instrs, !TempCounter, NumRealRRegs,
!.AvoidLvals, MaybeLiveMap, MaybeFallThrough)
)
)
;
opt_assign(TailInstrs0, TailInstrs, !TempCounter, NumRealRRegs,
[], MaybeLiveMap, MaybeFallThrough),
Instrs = [Instr0 | TailInstrs]
).
:- pred opt_assign_find_output_in_components(list(foreign_proc_component)::in,
int::in, list(lval)::in, lval::out) is semidet.
opt_assign_find_output_in_components([Comp | Comps], NumRealRRegs, AvoidLvals,
ToLval) :-
(
Comp = foreign_proc_outputs(Outputs),
opt_assign_find_output_in_outputs(Outputs, NumRealRRegs, AvoidLvals,
ToLvalPrime)
->
ToLval = ToLvalPrime
;
opt_assign_find_output_in_components(Comps, NumRealRRegs, AvoidLvals,
ToLval)
).
:- pred opt_assign_find_output_in_outputs(list(foreign_proc_output)::in,
int::in, list(lval)::in, lval::out) is semidet.
opt_assign_find_output_in_outputs([Output | Outputs], NumRealRRegs, AvoidLvals,
ToLval) :-
Output = foreign_proc_output(Dest, _Type, _IsDummy, _VarName,
_OrigType, _MaybeForeignType, _BoxPolicy),
(
base_lval_worth_replacing(NumRealRRegs, Dest),
not list.member(Dest, AvoidLvals)
->
ToLval = Dest
;
opt_assign_find_output_in_outputs(Outputs, NumRealRRegs, AvoidLvals,
ToLval)
).
%-----------------------------------------------------------------------------%
:- type maybe_compulsory_lvals
---> known(lvalset)
; unknown_must_assume_all.
:- pred find_compulsory_lvals(list(instruction)::in, maybe(livemap)::in,
maybe(label)::in, bool::in, maybe_compulsory_lvals::out) is det.
find_compulsory_lvals([], MaybeLiveMap, MaybeFallThrough, _PrevLivevals,
MaybeCompulsoryLvals) :-
(
MaybeFallThrough = yes(FallThrough),
(
MaybeLiveMap = yes(LiveMap),
map.lookup(LiveMap, FallThrough, CompulsoryLvals),
MaybeCompulsoryLvals = known(CompulsoryLvals)
;
MaybeLiveMap = no,
MaybeCompulsoryLvals = unknown_must_assume_all
)
;
MaybeFallThrough = no,
MaybeCompulsoryLvals = unknown_must_assume_all
).
find_compulsory_lvals([Instr | Instrs], MaybeLiveMap, MaybeFallThrough,
PrevLivevals, !:MaybeCompulsoryLvals) :-
Instr = llds_instr(Uinstr, _),
(
Uinstr = livevals(LiveLvals)
->
find_compulsory_lvals(Instrs, MaybeLiveMap, MaybeFallThrough,
yes, !:MaybeCompulsoryLvals),
union_maybe_compulsory_lvals(LiveLvals, !MaybeCompulsoryLvals)
;
Uinstr = llcall(_, _, _, _, _, _)
->
expect(unify(PrevLivevals, yes),
this_file, "find_compulsory_lvals: call without livevals"),
% The livevals instruction will include all the live lvals
% in MaybeCompulsoryLvals after we return.
!:MaybeCompulsoryLvals = known(set.init)
;
Uinstr = goto(_Target),
PrevLivevals = yes
->
% The livevals instruction will include all the live lvals
% in MaybeCompulsoryLvals after we return.
!:MaybeCompulsoryLvals = known(set.init)
;
possible_targets(Uinstr, Labels, NonLabelCodeAddrs),
(
NonLabelCodeAddrs = [],
(
Labels = [],
% Optimize the common case
find_compulsory_lvals(Instrs, MaybeLiveMap, MaybeFallThrough,
no, !:MaybeCompulsoryLvals)
;
Labels = [_ | _],
(
MaybeLiveMap = yes(LiveMap),
list.map(map.lookup(LiveMap), Labels, LabelsLiveLvals),
AllLabelsLiveLvals = set.union_list(LabelsLiveLvals),
find_compulsory_lvals(Instrs, MaybeLiveMap,
MaybeFallThrough, no, !:MaybeCompulsoryLvals),
union_maybe_compulsory_lvals(AllLabelsLiveLvals,
!MaybeCompulsoryLvals)
;
MaybeLiveMap = no,
!:MaybeCompulsoryLvals = unknown_must_assume_all
)
)
;
NonLabelCodeAddrs = [_ | _],
!:MaybeCompulsoryLvals = unknown_must_assume_all
)
).
:- pred union_maybe_compulsory_lvals(lvalset::in,
maybe_compulsory_lvals::in, maybe_compulsory_lvals::out) is det.
union_maybe_compulsory_lvals(New, !MaybeCompulsoryLvals) :-
(
!.MaybeCompulsoryLvals = known(OldCompulsoryLvals),
set.union(New, OldCompulsoryLvals, AllCompulsoryLvals),
!:MaybeCompulsoryLvals = known(AllCompulsoryLvals)
;
!.MaybeCompulsoryLvals = unknown_must_assume_all
).
%-----------------------------------------------------------------------------%
:- pred opt_access(list(instruction)::in, list(instruction)::out,
counter::in, counter::out, int::in, lvalset::in, int::in) is det.
opt_access([], [], !TempCounter, _, _, _).
opt_access([Instr0 | TailInstrs0], Instrs, !TempCounter, NumRealRRegs,
AlreadyTried0, AccessThreshold) :-
Instr0 = llds_instr(Uinstr0, _Comment0),
(
Uinstr0 = assign(ToLval, FromRval),
SubLvals = lvals_in_lval(ToLval) ++ lvals_in_rval(FromRval),
list.filter(
base_lval_worth_replacing_not_tried(AlreadyTried0, NumRealRRegs),
SubLvals, ReplaceableSubLvals),
ReplaceableSubLvals = [ChosenLval | ChooseableRvals]
->
OrigTempCounter = !.TempCounter,
counter.allocate(TempNum, !TempCounter),
TempLval = temp(reg_r, TempNum),
SubChosenLvals = lvals_in_lval(ChosenLval),
expect(unify(SubChosenLvals, []),
this_file, "opt_access: nonempty SubChosenLvals"),
substitute_lval_in_instr_until_defn(ChosenLval, TempLval,
[Instr0 | TailInstrs0], Instrs1, 0, NumReplacements),
set.insert(AlreadyTried0, ChosenLval, AlreadyTried1),
( NumReplacements >= AccessThreshold ->
TempAssign = llds_instr(assign(TempLval, lval(ChosenLval)),
"factor out common sub lval"),
Instrs2 = [TempAssign | Instrs1],
opt_access(Instrs2, Instrs, !TempCounter, NumRealRRegs,
AlreadyTried1, AccessThreshold)
;
(
ChooseableRvals = [_ | _],
!:TempCounter = OrigTempCounter,
opt_access([Instr0 | TailInstrs0], Instrs, !TempCounter,
NumRealRRegs, AlreadyTried1, AccessThreshold)
;
ChooseableRvals = [],
!:TempCounter = OrigTempCounter,
opt_access(TailInstrs0, TailInstrs, !TempCounter, NumRealRRegs,
set.init, AccessThreshold),
Instrs = [Instr0 | TailInstrs]
)
)
;
opt_access(TailInstrs0, TailInstrs, !TempCounter, NumRealRRegs,
set.init, AccessThreshold),
Instrs = [Instr0 | TailInstrs]
).
%-----------------------------------------------------------------------------%
:- pred base_lval_worth_replacing(int::in, lval::in) is semidet.
base_lval_worth_replacing(NumRealRRegs, Lval) :-
(
Lval = reg(reg_r, RegNum),
RegNum > NumRealRRegs
;
Lval = stackvar(_)
;
Lval = framevar(_)
).
:- pred base_lval_worth_replacing_not_tried(lvalset::in, int::in, lval::in)
is semidet.
base_lval_worth_replacing_not_tried(AlreadyTried, NumRealRRegs, Lval) :-
\+ set.member(Lval, AlreadyTried),
base_lval_worth_replacing(NumRealRRegs, Lval).
%-----------------------------------------------------------------------------%
% When processing substituting e.g. tempr1 for e.g. r2 in the instruction
% that defines r2, we must be careful to leave intact the value being
% assigned. Given the instruction
%
% r2 = field(0, r2, 5)
%
% we must generate
%
% tempr1 = field(0, r2, 5)
%
% Generating
%
% tempr1 = field(0, tempr1, 5)
%
% would introduce a bug, since the right hand side now refers to
% an as yet undefined variable.
%
:- pred substitute_lval_in_defn(lval::in, lval::in,
instruction::in, instruction::out) is det.
substitute_lval_in_defn(OldLval, NewLval, Instr0, Instr) :-
Instr0 = llds_instr(Uinstr0, Comment),
(
Uinstr0 = assign(ToLval, FromRval)
->
expect(unify(ToLval, OldLval),
this_file, "substitute_lval_in_defn: mismatch in assign"),
Uinstr = assign(NewLval, FromRval)
;
Uinstr0 = incr_hp(ToLval, MaybeTag, SizeRval, MO, Type,
MayUseAtomic, MaybeRegionRval, MaybeReuse)
->
expect(unify(ToLval, OldLval),
this_file, "substitute_lval_in_defn: mismatch in incr_hp"),
Uinstr = incr_hp(NewLval, MaybeTag, SizeRval, MO, Type,
MayUseAtomic, MaybeRegionRval, MaybeReuse)
;
Uinstr0 = foreign_proc_code(D, Comps0, MCM, FNL, FL, FOL, NF, MDL,
S, MD)
->
substitute_lval_in_defn_components(OldLval, NewLval, Comps0, Comps,
0, NumSubsts),
expect(unify(NumSubsts, 1), this_file,
"substitute_lval_in_defn: mismatch in foreign_proc_code"),
Uinstr = foreign_proc_code(D, Comps, MCM, FNL, FL, FOL, NF, MDL, S, MD)
;
unexpected(this_file,
"substitute_lval_in_defn: unexpected instruction")
),
Instr = llds_instr(Uinstr, Comment).
:- pred substitute_lval_in_defn_components(lval::in, lval::in,
list(foreign_proc_component)::in, list(foreign_proc_component)::out,
int::in, int::out) is det.
substitute_lval_in_defn_components(_OldLval, _NewLval, [], [], !NumSubsts).
substitute_lval_in_defn_components(OldLval, NewLval,
[Comp0 | Comps0], [Comp | Comps], !NumSubsts) :-
(
Comp0 = foreign_proc_outputs(Outputs0),
substitute_lval_in_defn_outputs(OldLval, NewLval,
Outputs0, Outputs, !NumSubsts),
Comp = foreign_proc_outputs(Outputs)
;
( Comp0 = foreign_proc_inputs(_)
; Comp0 = foreign_proc_user_code(_, _, _)
; Comp0 = foreign_proc_raw_code(_, _, _, _)
; Comp0 = foreign_proc_fail_to(_)
; Comp0 = foreign_proc_noop
),
Comp = Comp0
),
substitute_lval_in_defn_components(OldLval, NewLval, Comps0, Comps,
!NumSubsts).
:- pred substitute_lval_in_defn_outputs(lval::in, lval::in,
list(foreign_proc_output)::in, list(foreign_proc_output)::out,
int::in, int::out) is det.
substitute_lval_in_defn_outputs(_OldLval, _NewLval, [], [], !NumSubsts).
substitute_lval_in_defn_outputs(OldLval, NewLval,
[Output0 | Outputs0], [Output | Outputs], !NumSubsts) :-
Output0 = foreign_proc_output(Dest0, Type, IsDummy, VarName,
OrigType, MaybeForeignType, BoxPolicy),
( Dest0 = OldLval ->
Output = foreign_proc_output(NewLval, Type, IsDummy, VarName,
OrigType, MaybeForeignType, BoxPolicy),
!:NumSubsts = !.NumSubsts + 1
;
Output = Output0
),
substitute_lval_in_defn_outputs(OldLval, NewLval, Outputs0, Outputs,
!NumSubsts).
% Substitute NewLval for OldLval in an instruction sequence
% until we come an instruction that may define OldLval.
% We don't worry about instructions that define a variable that
% occurs in the access path to OldLval (and which therefore indirectly
% modifies the value that OldLval refers to), because our caller will
% call us only with OldLvals (and NewLvals for that matter) that have
% no lvals in their access path. The NewLvals will be temporaries,
% representing local variables in C blocks.
%
% When control leaves this instruction sequence via a if_val, goto or
% call, the local variables of the block in which this instruction
% sequence will go out of scope, so we must stop using them. At points
% at which control can enter this instruction sequence, i.e. at labels,
% the C block ends, so again we must stop using its local variables.
% (Livevals pseudo-instructions occur only immediately before
% instructions that cause control transfer, so we stop at them too.)
%
% Our caller ensures that we can also so stop at any point. By doing so
% we may fail to exploit an optimization opportunity, but the code we
% generate will still be correct. At the moment we stop at instructions
% whose correct handling would be non-trivial and which rarely if ever
% appear between the definition and a use of a location we want to
% substitute. These include instructions that manipulate stack frames,
% the heap, the trail and synchronization data.
%
:- pred substitute_lval_in_instr_until_defn(lval::in, lval::in,
list(instruction)::in, list(instruction)::out, int::in, int::out)
is det.
substitute_lval_in_instr_until_defn(_, _, [], [], !N).
substitute_lval_in_instr_until_defn(OldLval, NewLval,
[Instr0 | Instrs0], [Instr | Instrs], !N) :-
substitute_lval_in_instr_until_defn_2(OldLval, NewLval,
Instr0, Instr, Instrs0, Instrs, !N).
:- pred substitute_lval_in_instr_until_defn_2(lval::in, lval::in,
instruction::in, instruction::out,
list(instruction)::in, list(instruction)::out, int::in, int::out) is det.
substitute_lval_in_instr_until_defn_2(OldLval, NewLval, !Instr, !Instrs, !N) :-
!.Instr = llds_instr(Uinstr0, _),
(
Uinstr0 = block(_, _, _),
unexpected(this_file,
"substitute_lval_in_instr_until_defn: found block")
;
Uinstr0 = assign(Lval, _),
( assignment_updates_oldlval(Lval, OldLval) = yes ->
% XXX we should still substitute on the rhs
% If we alter any lval that occurs in OldLval, we must stop
% the substitutions.
true
;
exprn_aux.substitute_lval_in_instr(OldLval, NewLval, !Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval, !Instrs, !N)
)
;
Uinstr0 = keep_assign(_, _),
exprn_aux.substitute_lval_in_instr(OldLval, NewLval, !Instr, !N)
;
( Uinstr0 = incr_hp(Lval, _, _, _, _, _, _, _)
; Uinstr0 = save_maxfr(Lval)
; Uinstr0 = mark_hp(Lval)
),
( assignment_updates_oldlval(Lval, OldLval) = yes ->
% If we alter any lval that occurs in OldLval, we must stop
% the substitutions.
true
;
exprn_aux.substitute_lval_in_instr(OldLval, NewLval, !Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval, !Instrs, !N)
)
;
Uinstr0 = region_fill_frame(_, _, _, NumLval, AddrLval),
(
( assignment_updates_oldlval(NumLval, OldLval) = yes
; assignment_updates_oldlval(AddrLval, OldLval) = yes
)
->
% If we alter any lval that occurs in NumLval or AddrLval,
% we must stop the substitutions.
true
;
exprn_aux.substitute_lval_in_instr(OldLval, NewLval, !Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval, !Instrs, !N)
)
;
( Uinstr0 = restore_maxfr(_)
; Uinstr0 = restore_hp(_)
; Uinstr0 = push_region_frame(_, _)
; Uinstr0 = region_set_fixed_slot(_, _, _)
; Uinstr0 = use_and_maybe_pop_region_frame(_, _)
),
exprn_aux.substitute_lval_in_instr(OldLval, NewLval, !Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval, !Instrs, !N)
;
Uinstr0 = foreign_proc_code(_, Components, _, _, _, _, _, _, _, _),
AffectsLiveness = components_affect_liveness(Components),
(
AffectsLiveness = no,
( components_update_oldlval(Components, OldLval) = yes ->
% If we alter any lval that occurs in OldLval, we must stop
% the substitutions.
true
;
exprn_aux.substitute_lval_in_instr(OldLval, NewLval,
!Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval,
!Instrs, !N)
)
;
AffectsLiveness = yes
)
;
Uinstr0 = comment(_),
substitute_lval_in_instr_until_defn(OldLval, NewLval, !Instrs, !N)
;
Uinstr0 = if_val(_, _),
exprn_aux.substitute_lval_in_instr(OldLval, NewLval, !Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval, !Instrs, !N)
;
Uinstr0 = computed_goto(_, _),
exprn_aux.substitute_lval_in_instr(OldLval, NewLval, !Instr, !N)
;
( Uinstr0 = label(_)
; Uinstr0 = livevals(_)
; Uinstr0 = llcall(_, _, _, _, _, _)
; Uinstr0 = mkframe(_, _)
; Uinstr0 = goto(_)
; Uinstr0 = free_heap(_)
; Uinstr0 = store_ticket(_)
; Uinstr0 = reset_ticket(_, _)
; Uinstr0 = discard_ticket
; Uinstr0 = prune_ticket
; Uinstr0 = mark_ticket_stack(_)
; Uinstr0 = prune_tickets_to(_)
; Uinstr0 = incr_sp(_, _, _)
; Uinstr0 = decr_sp(_)
; Uinstr0 = decr_sp_and_return(_)
; Uinstr0 = init_sync_term(_, _)
; Uinstr0 = fork_new_child(_, _)
; Uinstr0 = join_and_continue(_, _)
; Uinstr0 = arbitrary_c_code(_, _, _)
)
).
:- func assignment_updates_oldlval(lval, lval) = bool.
assignment_updates_oldlval(Lval, OldLval) =
( Lval = OldLval ->
% If we alter any lval that occurs in OldLval, we must stop the
% substitutions. At the moment, the only lval OldLval can contain
% is itself.
yes
;
no
).
:- func components_update_oldlval(list(foreign_proc_component), lval) = bool.
components_update_oldlval([], _Lval) = no.
components_update_oldlval([Component | Components], Lval) =
( component_updates_oldlval(Component, Lval) = yes ->
yes
;
components_update_oldlval(Components, Lval)
).
:- func component_updates_oldlval(foreign_proc_component, lval) = bool.
component_updates_oldlval(Component, Lval) = Updates :-
(
Component = foreign_proc_outputs(Outputs),
(
some [Output] (
list.member(Output, Outputs),
Output ^ out_arg_dest = Lval
)
->
Updates = yes
;
Updates = no
)
;
( Component = foreign_proc_inputs(_)
; Component = foreign_proc_fail_to(_)
; Component = foreign_proc_noop
; Component = foreign_proc_user_code(_, _, _)
; Component = foreign_proc_raw_code(_, _, _, _)
),
Updates = no
).
:- func components_affect_liveness(list(foreign_proc_component))
= bool.
components_affect_liveness([]) = no.
components_affect_liveness([Component | Components]) =
( component_affects_liveness(Component) = yes ->
yes
;
components_affect_liveness(Components)
).
:- func component_affects_liveness(foreign_proc_component) = bool.
component_affects_liveness(Component) = Affects :-
(
( Component = foreign_proc_inputs(_)
; Component = foreign_proc_outputs(_)
; Component = foreign_proc_fail_to(_)
; Component = foreign_proc_noop
),
Affects = no
;
( Component = foreign_proc_user_code(_, AffectsLiveness, Code)
; Component = foreign_proc_raw_code(_, AffectsLiveness, _, Code)
),
(
AffectsLiveness = proc_affects_liveness,
Affects = yes
;
AffectsLiveness = proc_does_not_affect_liveness,
Affects = no
;
AffectsLiveness = proc_default_affects_liveness,
( Code = "" ->
Affects = no
;
Affects = yes
)
)
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "use_local_vars.m".
%-----------------------------------------------------------------------------%
:- end_module use_local_vars.
%-----------------------------------------------------------------------------%