Files
mercury/compiler/term_errors.m
Fergus Henderson 11d8161692 Add support for nested modules.
Estimated hours taken: 50

Add support for nested modules.

- module names may themselves be module-qualified
- modules may contain `:- include_module' declarations
  which name sub-modules
- a sub-module has access to all the declarations in the
  parent module (including its implementation section).

This support is not yet complete; see the BUGS and LIMITATIONS below.

LIMITATIONS
- source file names must match module names
	(just as they did previously)
- mmc doesn't allow path names on the command line any more
	(e.g. `mmc --make-int ../library/foo.m').
- import_module declarations must use the fully-qualified module name
- module qualifiers must use the fully-qualified module name
- no support for root-qualified module names
	(e.g. `:parent:child' instead of `parent:child').
- modules may not be physically nested (only logical nesting, via
  `include_module').

BUGS
- doesn't check that the parent module is imported/used before allowing
	import/use of its sub-modules.
- doesn't check that there is an include_module declaration in the
	parent for each module claiming to be a child of that parent
- privacy of private modules is not enforced

-------------------

NEWS:
	Mention that we support nested modules.

library/ops.m:
library/nc_builtin.nl:
library/sp_builtin.nl:
compiler/mercury_to_mercury.m:
	Add `include_module' as a new prefix operator.
	Change the associativity of `:' from xfy to yfx
	(since this made parsing module qualifiers slightly easier).

compiler/prog_data.m:
	Add new `include_module' declaration.
	Change the `module_name' and `module_specifier' types
	from strings to sym_names, so that module names can
	themselves be module qualified.

compiler/modules.m:
	Add predicates module_name_to_file_name/2 and
	file_name_to_module_name/2.
	Lots of changes to handle parent module dependencies,
	to create parent interface (`.int0') files, to read them in,
	to output correct dependencies information for them to the
	`.d' and `.dep' files, etc.
	Rewrite a lot of the code to improve the readability
	(add comments, use subroutines, better variable names).
	Also fix a couple of bugs:
	- generate_dependencies was using the transitive implementation
	  dependencies rather than the transitive interface dependencies
	  to compute the `.int3' dependencies when writing `.d' files
	  (this bug was introduced during crs's changes to support
	  `.trans_opt' files)
	- when creating the `.int' file, it was reading in the
	  interfaces for modules imported in the implementation section,
	  not just those in the interface section.
	  This meant that the compiler missed a lot of errors.

library/graph.m:
library/lexer.m:
library/term.m:
library/term_io.m:
library/varset.m:
compiler/*.m:
	Add `:- import_module' declarations to the interface needed
	by declarations in the interface.  (The previous version
	of the compiler did not detect these missing interface imports,
	due to the above-mentioned bug in modules.m.)

compiler/mercury_compile.m:
compiler/intermod.m:
	Change mercury_compile__maybe_grab_optfiles and
	intermod__grab_optfiles so that they grab the opt files for
	parent modules as well as the ones for imported modules.

compiler/mercury_compile.m:
	Minor changes to handle parent module dependencies.
	(Also improve the wording of the warning about trans-opt
	dependencies.)

compiler/make_hlds.m:
compiler/module_qual.m:
	Ignore `:- include_module' declarations.

compiler/module_qual.m:
	A couple of small changes to handle nested module names.

compiler/prog_out.m:
compiler/prog_util.m:
	Add new predicates string_to_sym_name/3 (prog_util.m) and
	sym_name_to_string/{2,3} (prog_out.m).

compiler/*.m:
	Replace many occurrences of `string' with `module_name'.
	Change code that prints out module names or converts
	them to strings or filenames to handle the fact that
	module names are now sym_names intead of strings.
	Also change a few places (e.g. in intermod.m, hlds_module.m)
	where the code assumed that any qualified symbol was
	fully-qualified.

compiler/prog_io.m:
compiler/prog_io_goal.m:
	Move sym_name_and_args/3, parse_qualified_term/4 and
	parse_qualified_term/5 preds from prog_io_goal.m to prog_io.m,
	since they are very similar to the parse_symbol_name/2 predicate
	already in prog_io.m.  Rewrite these predicates, both
	to improve maintainability, and to handle the newly
	allowed syntax (module-qualified module names).
	Rename parse_qualified_term/5 as `parse_implicit_qualified_term'.

compiler/prog_io.m:
	Rewrite the handling of `:- module' and `:- end_module'
	declarations, so that it can handle nested modules.
	Add code to parse `include_module' declarations.

compiler/prog_util.m:
compiler/*.m:
	Add new predicates mercury_public_builtin_module/1 and
	mercury_private_builtin_module/1 in prog_util.m.
	Change most of the hard-coded occurrences of "mercury_builtin"
	to call mercury_private_builtin_module/1 or
	mercury_public_builtin_module/1 or both.

compiler/llds_out.m:
	Add llds_out__sym_name_mangle/2, for mangling module names.

compiler/special_pred.m:
compiler/mode_util.m:
compiler/clause_to_proc.m:
compiler/prog_io_goal.m:
compiler/lambda.m:
compiler/polymorphism.m:
	Move the predicates in_mode/1, out_mode/1, and uo_mode/1
	from special_pred.m to mode_util.m, and change various
	hard-coded definitions to instead call these predicates.

compiler/polymorphism.m:
	Ensure that the type names `type_info' and `typeclass_info' are
	module-qualified in the generated code.  This avoids a problem
	where the code generated by polymorphism.m was not considered
	type-correct, due to the type `type_info' not matching
	`mercury_builtin:type_info'.

compiler/check_typeclass.m:
	Simplify the code for check_instance_pred and
	get_matching_instance_pred_ids.

compiler/mercury_compile.m:
compiler/modules.m:
	Disallow directory names in command-line arguments.

compiler/options.m:
compiler/handle_options.m:
compiler/mercury_compile.m:
compiler/modules.m:
	Add a `--make-private-interface' option.
	The private interface file `<module>.int0' contains
	all the declarations in the module; it is used for
	compiling sub-modules.

scripts/Mmake.rules:
scripts/Mmake.vars.in:
	Add support for creating `.int0' and `.date0' files
	by invoking mmc with `--make-private-interface'.

doc/user_guide.texi:
	Document `--make-private-interface' and the `.int0'
	and `.date0' file extensions.

doc/reference_manual.texi:
	Document nested modules.

util/mdemangle.c:
profiler/demangle.m:
	Demangle names with multiple module qualifiers.

tests/general/Mmakefile:
tests/general/string_format_test.m:
tests/general/string_format_test.exp:
tests/general/string__format_test.m:
tests/general/string__format_test.exp:
tests/general/.cvsignore:
	Change the `:- module string__format_test' declaration in
	`string__format_test.m' to `:- module string_format_test',
	because with the original declaration the `__' was taken
	as a module qualifier, which lead to an error message.
	Hence rename the file accordingly, to avoid the warning
	about file name not matching module name.

tests/invalid/Mmakefile:
tests/invalid/missing_interface_import.m:
tests/invalid/missing_interface_import.err_exp:
	Regression test to check that the compiler reports
	errors for missing `import_module' in the interface section.

tests/invalid/*.err_exp:
tests/warnings/unused_args_test.exp:
tests/warnings/unused_import.exp:
	Update the expected diagnostics output for the test cases to
	reflect a few minor changes to the warning messages.

tests/hard_coded/Mmakefile:
tests/hard_coded/parent.m:
tests/hard_coded/parent.child.m:
tests/hard_coded/parent.exp:
tests/hard_coded/parent2.m:
tests/hard_coded/parent2.child.m:
tests/hard_coded/parent2.exp:
	Two simple tests case for the use of nested modules with
	separate compilation.
1998-03-03 17:48:14 +00:00

577 lines
19 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_errors.m
% Main author: crs.
%
% This module prints out the various error messages that are produced by
% the various modules of termination analysis.
%
%-----------------------------------------------------------------------------%
:- module term_errors.
:- interface.
:- import_module hlds_module, hlds_pred.
:- import_module io, bag, std_util, list, assoc_list, term.
:- type termination_error
---> pragma_c_code
% The analysis result depends on the change constant
% of a piece of pragma C code, (which cannot be
% obtained without analyzing the C code, which is
% something we cannot do).
% Valid in both passes.
; imported_pred
% The SCC contains some imported procedures,
% whose code is not accessible.
; can_loop_proc_called(pred_proc_id, pred_proc_id)
% can_loop_proc_called(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose termination
% info is set to can_loop.
% Although this error does not prevent us from
% producing argument size information, it would
% prevent us from proving termination.
% We look for this error in pass 1; if we find it,
% we do not perform pass 2.
; horder_args(pred_proc_id, pred_proc_id)
% horder_args(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context has some arguments of a higher order type.
% Valid in both passes.
; horder_call
% horder_call
% There is a higher order call at the associated
% context.
% Valid in both passes.
; inf_termination_const(pred_proc_id, pred_proc_id)
% inf_termination_const(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose arg size
% info is set to infinite.
% Valid in both passes.
; not_subset(pred_proc_id, bag(var), bag(var))
% not_subset(Proc, SupplierVariables, InHeadVariables)
% This error occurs when the bag of active variables
% is not a subset of the input head variables.
% Valid error only in pass 1.
; inf_call(pred_proc_id, pred_proc_id)
% inf_call(Caller, Callee)
% The call from Caller to Callee at the associated
% context has infinite weight.
% Valid error only in pass 2.
; cycle(pred_proc_id, assoc_list(pred_proc_id, term__context))
% cycle(StartPPId, CallSites)
% In the cycle of calls starting at StartPPId and
% going through the named call sites may be an
% infinite loop.
% Valid error only in pass 2.
; no_eqns
% There are no equations in this SCC.
% This has 2 possible causes. (1) If the predicate has
% no output arguments, no equations will be created
% for them. The change constant of the predicate is
% undefined, but it will also never be used.
% (2) If the procedure is a builtin predicate, with
% an empty body, traversal cannot create any equations.
% Valid error only in pass 1.
; too_many_paths
% There were too many distinct paths to be analyzed.
% Valid in both passes (which analyze different sets
% of paths).
; solver_failed
% The solver could not find finite termination
% constants for the procedures in the SCC.
% Valid only in pass 1.
; is_builtin(pred_id)
% The termination constant of the given builtin is
% set to infinity; this happens when the type of at
% least one output argument permits a norm greater
% than zero.
; does_not_term_pragma(pred_id).
% The given procedure has a does_not_terminate pragma.
:- type term_errors__error == pair(term__context, termination_error).
:- pred term_errors__report_term_errors(list(pred_proc_id)::in,
list(term_errors__error)::in, module_info::in,
io__state::di, io__state::uo) is det.
% An error is considered an indirect error if it is due either to a
% language feature we cannot analyze or due to an error in another part
% of the code. By default, we do not issue warnings about indirect errors,
% since in the first case, the programmer cannot do anything about it,
% and in the second case, the piece of code that the programmer *can* do
% something about is not this piece.
:- pred indirect_error(term_errors__termination_error).
:- mode indirect_error(in) is semidet.
:- implementation.
:- import_module hlds_out, prog_out, passes_aux, error_util.
:- import_module mercury_to_mercury, term_util, options, globals.
:- import_module bool, int, string, map, bag, require, varset.
indirect_error(horder_call).
indirect_error(pragma_c_code).
indirect_error(imported_pred).
indirect_error(can_loop_proc_called(_, _)).
indirect_error(horder_args(_, _)).
indirect_error(does_not_term_pragma(_)).
term_errors__report_term_errors(SCC, Errors, Module) -->
{ get_context_from_scc(SCC, Module, Context) },
( { SCC = [PPId] } ->
{ Pieces0 = [words("Termination of")] },
{ term_errors__describe_one_proc_name(PPId, Module, PredName) },
{ list__append(Pieces0, [fixed(PredName)], Pieces1) },
{ Single = yes(PPId) }
;
{ Pieces0 = [words("Termination of the mutually recursive procedures")] },
{ term_errors__describe_several_proc_names(SCC, Module, Context,
ProcNames) },
{ list__map(lambda([PN::in, FPN::out] is det,
(FPN = fixed(PN))),
ProcNames, ProcNamePieces) },
{ list__append(Pieces0, ProcNamePieces, Pieces1) },
{ Single = no }
),
(
{ Errors = [] },
% XXX this should never happen
% XXX but for some reason, it often does
% { error("empty list of errors") }
{ Pieces2 = [words("not proven, for unknown reason(s).")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces)
;
{ Errors = [Error] },
{ Pieces2 = [words("not proven for the following reason:")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_error(Error, Single, no, 0, Module)
;
{ Errors = [_, _ | _] },
{ Pieces2 = [words("not proven for the following reasons:")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_errors(Errors, Single, 1, 0, Module)
).
:- pred term_errors__report_arg_size_errors(list(pred_proc_id)::in,
list(term_errors__error)::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__report_arg_size_errors(SCC, Errors, Module) -->
{ get_context_from_scc(SCC, Module, Context) },
( { SCC = [PPId] } ->
{ Pieces0 = [words("Termination constant of")] },
{ term_errors__describe_one_proc_name(PPId, Module, ProcName) },
{ list__append(Pieces0, [fixed(ProcName)], Pieces1) },
{ Single = yes(PPId) }
;
{ Pieces0 = [words("Termination constants"),
words("of the mutually recursive procedures")] },
{ term_errors__describe_several_proc_names(SCC, Module,
Context, ProcNames) },
{ list__map(lambda([PN::in, FPN::out] is det,
(FPN = fixed(PN))),
ProcNames, ProcNamePieces) },
{ list__append(Pieces0, ProcNamePieces, Pieces1) },
{ Single = no }
),
{ Piece2 = words("set to infinity for the following") },
(
{ Errors = [] },
{ error("empty list of errors") }
;
{ Errors = [Error] },
{ Piece3 = words("reason:") },
{ list__append(Pieces1, [Piece2, Piece3], Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_error(Error, Single, no, 0, Module)
;
{ Errors = [_, _ | _] },
{ Piece3 = words("reasons:") },
{ list__append(Pieces1, [Piece2, Piece3], Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_errors(Errors, Single, 1, 0, Module)
).
:- pred term_errors__output_errors(list(term_errors__error)::in,
maybe(pred_proc_id)::in, int::in, int::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__output_errors([], _, _, _, _) --> [].
term_errors__output_errors([Error | Errors], Single, ErrNum0, Indent, Module)
-->
term_errors__output_error(Error, Single, yes(ErrNum0), Indent, Module),
{ ErrNum1 is ErrNum0 + 1 },
term_errors__output_errors(Errors, Single, ErrNum1, Indent, Module).
:- pred term_errors__output_error(term_errors__error::in,
maybe(pred_proc_id)::in, maybe(int)::in, int::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__output_error(Context - Error, Single, ErrorNum, Indent, Module) -->
{ term_errors__description(Error, Single, Module, Pieces0, Reason) },
{ ErrorNum = yes(N) ->
string__int_to_string(N, Nstr),
string__append_list(["Reason ", Nstr, ":"], Preamble),
Pieces = [fixed(Preamble) | Pieces0]
;
Pieces = Pieces0
},
write_error_pieces(Context, Indent, Pieces),
( { Reason = yes(InfArgSizePPId) } ->
{ lookup_proc_arg_size_info(Module, InfArgSizePPId, ArgSize) },
( { ArgSize = yes(infinite(ArgSizeErrors)) } ->
% XXX the next line is cheating
{ ArgSizePPIdSCC = [InfArgSizePPId] },
term_errors__report_arg_size_errors(ArgSizePPIdSCC,
ArgSizeErrors, Module)
;
{ error("inf arg size procedure does not have inf arg size") }
)
;
[]
).
:- pred term_errors__description(termination_error::in,
maybe(pred_proc_id)::in, module_info::in, list(format_component)::out,
maybe(pred_proc_id)::out) is det.
term_errors__description(horder_call, _, _, Pieces, no) :-
Pieces = [words("It contains a higher order call.")].
term_errors__description(pragma_c_code, _, _, Pieces, no) :-
Pieces = [words("It depends on the properties of"),
words("foreign language code included via a"),
fixed("`pragma c_code'"),
words("declaration.")].
term_errors__description(inf_call(CallerPPId, CalleePPId),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
term_errors__describe_one_proc_name(CallerPPId, Module,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
term_errors__describe_one_proc_name(CalleePPId, Module, CalleePiece),
Pieces3 = [words("with an unbounded increase"),
words("in the size of the input arguments.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(can_loop_proc_called(CallerPPId, CalleePPId),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
term_errors__describe_one_proc_name(CallerPPId, Module,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
term_errors__describe_one_proc_name(CalleePPId, Module, CalleePiece),
Pieces3 = [words("which could not be proven to terminate.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(imported_pred, _, _, Pieces, no) :-
Pieces = [words("It contains one or more"),
words("predicates and/or functions"),
words("imported from another module.")].
term_errors__description(horder_args(CallerPPId, CalleePPId), Single, Module,
Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
term_errors__describe_one_proc_name(CallerPPId, Module,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
term_errors__describe_one_proc_name(CalleePPId, Module, CalleePiece),
Pieces3 = [words("with one or more higher order arguments.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(inf_termination_const(CallerPPId, CalleePPId),
Single, Module, Pieces, yes(CalleePPId)) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
term_errors__describe_one_proc_name(CallerPPId, Module,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
term_errors__describe_one_proc_name(CalleePPId, Module, CalleePiece),
Pieces3 = [words("which has a termination constant of infinity.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(not_subset(ProcPPId, OutputSuppliers, HeadVars),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
( PPId = ProcPPId ->
Pieces1 = [words("The set of"),
words("its output supplier variables")]
;
% XXX this should never happen (but it does)
% error("not_subset outside this SCC"),
term_errors__describe_one_proc_name(ProcPPId, Module,
PPIdPiece),
Pieces1 = [words("The set of"),
words("output supplier variables of"),
fixed(PPIdPiece)]
)
;
Single = no,
term_errors__describe_one_proc_name(ProcPPId, Module,
PPIdPiece),
Pieces1 = [words("The set of output supplier variables of"),
fixed(PPIdPiece)]
),
ProcPPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_varset(ProcInfo, Varset),
term_errors_var_bag_description(OutputSuppliers, Varset,
OutputSuppliersNames),
list__map(lambda([OS::in, FOS::out] is det, (FOS = fixed(OS))),
OutputSuppliersNames, OutputSuppliersPieces),
Pieces3 = [words("was not a subset of the head variables")],
term_errors_var_bag_description(HeadVars, Varset, HeadVarsNames),
list__map(lambda([HV::in, FHV::out] is det, (FHV = fixed(HV))),
HeadVarsNames, HeadVarsPieces),
list__condense([Pieces1, OutputSuppliersPieces, Pieces3,
HeadVarsPieces], Pieces).
term_errors__description(cycle(_StartPPId, CallSites), _, Module, Pieces, no) :-
( CallSites = [DirectCall] ->
term_errors__describe_one_call_site(DirectCall, Module, Site),
Pieces = [words("At the recursive call to"),
fixed(Site),
words("the arguments are"),
words("not guaranteed to decrease in size.")]
;
Pieces1 = [words("In the recursive cycle"),
words("through the calls to")],
term_errors__describe_several_call_sites(CallSites, Module,
Sites),
list__map(lambda([S::in, FS::out] is det, (FS = fixed(S))),
Sites, SitePieces),
Pieces2 = [words("the arguments are"),
words("not guaranteed to decrease in size.")],
list__condense([Pieces1, SitePieces, Pieces2], Pieces)
).
term_errors__description(too_many_paths, _, _, Pieces, no) :-
Pieces = [words("There were too many execution paths"),
words("for the analysis to process.")].
term_errors__description(no_eqns, _, _, Pieces, no) :-
Pieces = [words("The analysis was unable to form any constraints"),
words("between the arguments of this group of procedures.")].
term_errors__description(solver_failed, _, _, Pieces, no) :-
Pieces = [words("The solver found the constraints produced"),
words("by the analysis to be infeasible.")].
term_errors__description(is_builtin(_PredId), _Single, _, Pieces, no) :-
% XXX require(unify(Single, yes(_)), "builtin not alone in SCC"),
Pieces = [words("It is a builtin predicate.")].
term_errors__description(does_not_term_pragma(PredId), Single, Module,
Pieces, no) :-
Pieces1 = [words("There was a `does_not_terminate' pragma defined on")],
(
Single = yes(PPId),
PPId = proc(SCCPredId, _),
require(unify(PredId, SCCPredId), "does not terminate pragma outside this SCC"),
Piece2 = words("It")
;
Single = no,
term_errors__describe_one_pred_name(PredId, Module,
Piece2Nodot),
string__append(Piece2Nodot, ".", Piece2Str),
Piece2 = fixed(Piece2Str)
),
list__append(Pieces1, [Piece2], Pieces).
%----------------------------------------------------------------------------%
:- pred term_errors_var_bag_description(bag(var)::in, varset::in,
list(string)::out) is det.
term_errors_var_bag_description(HeadVars, Varset, Pieces) :-
bag__to_assoc_list(HeadVars, HeadVarCountList),
term_errors_var_bag_description_2(HeadVarCountList, Varset, yes,
Pieces).
:- pred term_errors_var_bag_description_2(assoc_list(var, int)::in, varset::in,
bool::in, list(string)::out) is det.
term_errors_var_bag_description_2([], _, _, ["{}"]).
term_errors_var_bag_description_2([Var - Count | VarCounts], Varset, First,
[Piece | Pieces]) :-
varset__lookup_name(Varset, Var, VarName),
( Count > 1 ->
string__append(VarName, "*", VarCountPiece0),
string__int_to_string(Count, CountStr),
string__append(VarCountPiece0, CountStr, VarCountPiece)
;
VarCountPiece = VarName
),
( First = yes ->
string__append("{", VarCountPiece, Piece0)
;
Piece0 = VarCountPiece
),
( VarCounts = [] ->
string__append(Piece0, "}.", Piece),
Pieces = []
;
Piece = Piece0,
term_errors_var_bag_description_2(VarCounts, Varset, First,
Pieces)
).
%----------------------------------------------------------------------------%
:- pred term_errors__describe_one_pred_name(pred_id::in, module_info::in,
string::out) is det.
% The code of this predicate duplicates the functionality of
% hlds_out__write_pred_id. Changes here should be made there as well.
term_errors__describe_one_pred_name(PredId, Module, Piece) :-
module_info_pred_info(Module, PredId, PredInfo),
pred_info_module(PredInfo, ModuleName),
prog_out__sym_name_to_string(ModuleName, ModuleNameString),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
(
PredOrFunc = predicate,
PredOrFuncPart = "predicate ",
OrigArity = Arity
;
PredOrFunc = function,
PredOrFuncPart = "function ",
OrigArity is Arity - 1
),
string__int_to_string(OrigArity, ArityPart),
string__append_list([
PredOrFuncPart,
ModuleNameString,
":",
PredName,
"/",
ArityPart
], Piece).
:- pred term_errors__describe_one_proc_name(pred_proc_id::in, module_info::in,
string::out) is det.
term_errors__describe_one_proc_name(proc(PredId, ProcId), Module, Piece) :-
term_errors__describe_one_pred_name(PredId, Module, PredPiece),
proc_id_to_int(ProcId, ProcIdInt),
string__int_to_string(ProcIdInt, ProcIdPart),
string__append_list([
PredPiece,
" mode ",
ProcIdPart
], Piece).
:- pred term_errors__describe_several_proc_names(list(pred_proc_id)::in,
module_info::in, term__context::in, list(string)::out) is det.
term_errors__describe_several_proc_names([], _, _, []).
term_errors__describe_several_proc_names([PPId | PPIds], Module,
Context, Pieces) :-
term_errors__describe_one_proc_name(PPId, Module, Piece0),
( PPIds = [] ->
Pieces = [Piece0]
; PPIds = [LastPPId] ->
term_errors__describe_one_proc_name(LastPPId, Module,
LastPiece),
Pieces = [Piece0, "and", LastPiece]
;
string__append(Piece0, ",", Piece),
term_errors__describe_several_proc_names(PPIds, Module,
Context, Pieces1),
Pieces = [Piece | Pieces1]
).
:- pred term_errors__describe_one_call_site(pair(pred_proc_id,
term__context)::in, module_info::in, string::out) is det.
term_errors__describe_one_call_site(PPId - Context, Module, Piece) :-
term_errors__describe_one_proc_name(PPId, Module, ProcName),
Context = term__context(FileName, LineNumber),
string__int_to_string(LineNumber, LineNumberPart),
string__append_list([
ProcName,
" at ",
FileName,
":",
LineNumberPart
], Piece).
:- pred term_errors__describe_several_call_sites(assoc_list(pred_proc_id,
term__context)::in, module_info::in, list(string)::out) is det.
term_errors__describe_several_call_sites([], _, []).
term_errors__describe_several_call_sites([Site | Sites], Module, Pieces) :-
term_errors__describe_one_call_site(Site, Module, Piece0),
( Sites = [] ->
Pieces = [Piece0]
; Sites = [LastSite] ->
term_errors__describe_one_call_site(LastSite, Module,
LastPiece),
Pieces = [Piece0, "and", LastPiece]
;
string__append(Piece0, ",", Piece),
term_errors__describe_several_call_sites(Sites, Module,
Pieces1),
Pieces = [Piece | Pieces1]
).
%----------------------------------------------------------------------------%