Files
mercury/compiler/prog_io_pragma.m
Oliver Hutchison bcf7dbf9f8 Add support for tabling.
Estimated hours taken: 250

Add support for tabling.

This change allows for model_det, model_semidet and model_non memoing,
minimal model and loop detection tabling.

compiler/base_type_layout.m:
	Update comments to reflect new runtime naming standard.

compiler/det_analysis.m:
	Allow tabling to change the result of det analysis. This is
	necessary in the case of minimal model tabling which can
	turn a det procedure into a semidet one.

compiler/det_report.m:
compiler/hlds_data.m:
	Add code to report error messages for various non compatible
	tabling methods and determinism.

compiler/hlds_out.m:
compiler/modules.m:
	Remove reference to the old memo marker.

compiler/hlds_pred.m:
	Create new type (eval_method) to define which of the available
	evaluation methods should be used each procedure.
	Add new field to the proc_info structure.
	Add several new predicates relating to the new eval_method type.

compiler/inlining.m:
compiler/intermod.m:
	Make sure only procedures with normal evaluation are inlined.

compiler/make_hlds.m:
	Add code to process new tabling pragmas.

compiler/mercury_compile.m:
	Call the tabling transformation code.

compiler/modes.m:
	Make sure that all procedures with non normal evaluation have
	no unique/partially instantiated modes. Produce error messages
	if they do. Support for partially instantiated modes is currently
	missing as it represents a large amount of work for a case that
	is currently not used.

compiler/module_qual.m:
compile/prog_data.m:
compiler/prog_io_pragma.m:
	Add three new pragma types:
		`memo'
		`loop_check'
		`minimal_model'
	and code to support them.

compiler/simplify.m:
	Don't report infinite recursion warning if a procedure has
	minimal model evaluation.

compiler/stratify.m:
	Change the stratification analyser so that it reports cases of
	definite non-stratification. Rather than reporting warnings for
	any code that is not definitely stratified.
	Remove reference to the old memo marker.

compiler/switch_detection.m:
	Fix a small bug where goal were being placed in reverse order.
	Call list__reverse on the list of goals.

compiler/table_gen.m:
	New module to do the actual tabling transformation.

compiler/notes/compiler_design.html:
	Document addition of new tabling pass to the compiler.

doc/reference_manual.texi:
	Fix mistake in example.

library/mercury_builtin.m:
	Add many new predicates for support of tabling.

library/std_util.m:
library/store.m:
	Move the functions :
		ML_compare_type_info
		ML_collapse_equivalences
		ML_create_type_info
	to the runtime.

runtime/mercury_deep_copy.c:
runtime/mercury_type_info.h:
runtime/mercury_type_info.c:
	Move the make_type_info function into the mercury_type_info module
	and make it public.

runtime/Mmakefile:
runtime/mercury_imp.h:
	Add references to new files added for tabling support.

runtime/mercury_string.h:
	Change hash macro so it does not cause a name clash with any
	variable called "hash".

runtime/mercury_type_info.c:
runtime/mercury_type_info.h:
	Add three new functions taken from the library :
		MR_compare_type_info
		MR_collapse_equivalences
		MR_create_type_info.

runtime/mercury_table_any.c:
runtime/mercury_table_any.h:
runtime/mercury_table_enum.c:
runtime/mercury_table_enum.h:
runtime/mercury_table_int_float_string.c:
runtime/mercury_table_int_float_string.h:
runtime/mercury_table_type_info.c:
runtime/mercury_table_type_info.h:
runtime/mercury_tabling.h:
	New modules for the support of tabling.
1998-05-15 07:09:29 +00:00

928 lines
29 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_pragma.m.
% Main authors: fjh, dgj.
%
% This module handles the parsing of pragma directives.
:- module prog_io_pragma.
:- interface.
:- import_module prog_data, prog_io_util.
:- import_module list, varset, term.
% parse the pragma declaration.
:- pred parse_pragma(module_name, varset, list(term), maybe1(item)).
:- mode parse_pragma(in, in, in, out) is semidet.
:- implementation.
:- import_module prog_io, prog_io_goal, hlds_pred, term_util, term_errors.
:- import_module int, string, std_util, bool, require.
parse_pragma(ModuleName, VarSet, PragmaTerms, Result) :-
(
% new syntax: `:- pragma foo(...).'
PragmaTerms = [SinglePragmaTerm],
SinglePragmaTerm = term__functor(term__atom(PragmaType),
PragmaArgs, _),
parse_pragma_type(ModuleName, PragmaType, PragmaArgs,
SinglePragmaTerm, VarSet, Result0)
->
Result = Result0
;
% old syntax: `:- pragma(foo, ...).'
% XXX we should issue a warning; this syntax is deprecated.
PragmaTerms = [PragmaTypeTerm | PragmaArgs2],
PragmaTypeTerm = term__functor(term__atom(PragmaType), [], _),
parse_pragma_type(ModuleName, PragmaType, PragmaArgs2,
PragmaTypeTerm, VarSet, Result1)
->
Result = Result1
;
fail
).
:- pred parse_pragma_type(module_name, string, list(term), term,
varset, maybe1(item)).
:- mode parse_pragma_type(in, in, in, in, in, out) is semidet.
parse_pragma_type(_, "source_file", PragmaTerms, ErrorTerm, _VarSet, Result) :-
( PragmaTerms = [SourceFileTerm] ->
(
SourceFileTerm = term__functor(term__string(SourceFile), [], _)
->
Result = ok(pragma(source_file(SourceFile)))
;
Result = error(
"string expected in `pragma source_file' declaration",
SourceFileTerm)
)
;
Result = error(
"wrong number of arguments in `pragma source_file' declaration",
ErrorTerm)
).
parse_pragma_type(_, "c_header_code", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [HeaderTerm]
->
(
HeaderTerm = term__functor(term__string(HeaderCode), [], _)
->
Result = ok(pragma(c_header_code(HeaderCode)))
;
Result = error("expected string for C header code", HeaderTerm)
)
;
Result = error(
"wrong number of arguments in `pragma c_header_code(...) declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "c_code", PragmaTerms,
ErrorTerm, VarSet, Result) :-
(
PragmaTerms = [Just_C_Code_Term]
->
(
Just_C_Code_Term = term__functor(term__string(Just_C_Code), [],
_)
->
Result = ok(pragma(c_code(Just_C_Code)))
;
Result = error("expected string for C code", Just_C_Code_Term)
)
;
PragmaTerms = [PredAndVarsTerm, C_CodeTerm]
->
% XXX we should issue a warning; this syntax is deprecated.
% Result = error("pragma c_code doesn't say whether it can call mercury", PredAndVarsTerm)
MayCallMercury = will_not_call_mercury,
(
C_CodeTerm = term__functor(term__string(C_Code), [], Context)
->
parse_pragma_c_code(ModuleName, MayCallMercury, PredAndVarsTerm,
ordinary(C_Code, yes(Context)), VarSet, Result)
;
Result = error("invalid `:- pragma c_code' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury', and a string for C code",
C_CodeTerm)
)
;
PragmaTerms = [PredAndVarsTerm, MayCallMercuryTerm, C_CodeTerm]
->
(
C_CodeTerm = term__functor(term__string(C_Code), [], Context)
->
( parse_may_call_mercury(MayCallMercuryTerm, MayCallMercury) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm, ordinary(C_Code, yes(Context)),
VarSet, Result)
; parse_may_call_mercury(PredAndVarsTerm, MayCallMercury) ->
% XXX we should issue a warning; this syntax is deprecated
parse_pragma_c_code(ModuleName, MayCallMercury,
MayCallMercuryTerm, ordinary(C_Code, yes(Context)),
VarSet, Result)
;
Result = error("invalid second argument in `:- pragma c_code' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error("invalid third argument in `:- pragma c_code' declaration -- expecting string for C code",
C_CodeTerm)
)
;
(
PragmaTerms = [PredAndVarsTerm, MayCallMercuryTerm,
FieldsTerm, FirstTerm, LaterTerm],
term__context_init(DummyContext),
SharedTerm = term__functor(term__atom("common_code"),
[term__functor(term__string(""), [], DummyContext)],
DummyContext)
;
PragmaTerms = [PredAndVarsTerm, MayCallMercuryTerm,
FieldsTerm, FirstTerm, LaterTerm, SharedTerm]
)
->
( parse_may_call_mercury(MayCallMercuryTerm, MayCallMercury) ->
( parse_pragma_keyword("local_vars", FieldsTerm, Fields, FieldsContext) ->
( parse_pragma_keyword("first_code", FirstTerm, First, FirstContext) ->
( parse_pragma_keyword("retry_code", LaterTerm, Later, LaterContext) ->
( parse_pragma_keyword("shared_code", SharedTerm, Shared, SharedContext) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
share, Shared, yes(SharedContext)),
VarSet, Result)
; parse_pragma_keyword("duplicated_code", SharedTerm, Shared, SharedContext) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
duplicate, Shared, yes(SharedContext)),
VarSet, Result)
; parse_pragma_keyword("common_code", SharedTerm, Shared, SharedContext) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
automatic, Shared, yes(SharedContext)),
VarSet, Result)
;
Result = error("invalid sixth argument in `:- pragma c_code' declaration -- expecting `shared_code(<code>')",
LaterTerm)
)
;
Result = error("invalid fifth argument in `:- pragma c_code' declaration -- expecting `later_code(<code>')",
LaterTerm)
)
;
Result = error("invalid fourth argument in `:- pragma c_code' declaration -- expecting `first_code(<code>')",
FirstTerm)
)
;
Result = error("invalid third argument in `:- pragma c_code' declaration -- expecting `local_vars(<fields>)'",
FieldsTerm)
)
;
Result = error("invalid second argument in `:- pragma c_code' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error(
"wrong number of arguments in `:- pragma c_code' declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "import", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [PredAndModesTerm, MayCallMercuryTerm,
C_FunctionTerm]
->
(
PredAndModesTerm = term__functor(_, _, _),
C_FunctionTerm = term__functor(term__string(C_Function), [], _)
->
(
PredAndModesTerm = term__functor(term__atom("="),
[FuncAndArgModesTerm, RetModeTerm], _)
->
parse_implicitly_qualified_term(ModuleName,
FuncAndArgModesTerm, PredAndModesTerm,
"pragma import declaration", FuncAndArgModesResult),
(
FuncAndArgModesResult = ok(FuncName, ArgModeTerms),
(
convert_mode_list(ArgModeTerms, ArgModes),
convert_mode(RetModeTerm, RetMode)
->
list__append(ArgModes, [RetMode], Modes),
(
parse_may_call_mercury(MayCallMercuryTerm,
MayCallMercury)
->
Result = ok(pragma(import(FuncName, function,
Modes, MayCallMercury, C_Function)))
;
Result = error("invalid second argument in `:- pragma import/3' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error(
"expected pragma import(FuncName(ModeList) = Mode, MayCallMercury, C_Function)",
PredAndModesTerm)
)
;
FuncAndArgModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
parse_implicitly_qualified_term(ModuleName,
PredAndModesTerm, ErrorTerm,
"pragma import declaration", PredAndModesResult),
(
PredAndModesResult = ok(PredName, ModeTerms),
(
convert_mode_list(ModeTerms, Modes)
->
(
parse_may_call_mercury(MayCallMercuryTerm,
MayCallMercury)
->
Result = ok(pragma(import(PredName, predicate,
Modes, MayCallMercury, C_Function)))
;
Result = error("invalid second argument in `:- pragma import/3' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error(
"expected pragma import(PredName(ModeList), MayCallMercury, C_Function)",
PredAndModesTerm)
)
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
)
;
Result = error(
"expected pragma import(PredName(ModeList), MayCallMercury, C_Function)",
PredAndModesTerm)
)
;
PragmaTerms = [PredAndModesTerm, C_FunctionTerm]
->
MayCallMercury = may_call_mercury,
(
PredAndModesTerm = term__functor(_, _, _),
C_FunctionTerm = term__functor(term__string(C_Function), [], _)
->
(
PredAndModesTerm = term__functor(term__atom("="),
[FuncAndArgModesTerm, RetModeTerm], _)
->
parse_implicitly_qualified_term(ModuleName,
FuncAndArgModesTerm, PredAndModesTerm,
"pragma import declaration", FuncAndArgModesResult),
(
FuncAndArgModesResult = ok(FuncName, ArgModeTerms),
(
convert_mode_list(ArgModeTerms, ArgModes),
convert_mode(RetModeTerm, RetMode)
->
list__append(ArgModes, [RetMode], Modes),
Result = ok(pragma(import(FuncName, function,
Modes, MayCallMercury, C_Function)))
;
Result = error(
"expected pragma import(FuncName(ModeList) = Mode, C_Function)",
PredAndModesTerm)
)
;
FuncAndArgModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
parse_implicitly_qualified_term(ModuleName,
PredAndModesTerm, ErrorTerm,
"pragma import declaration", PredAndModesResult),
(
PredAndModesResult = ok(PredName, ModeTerms),
(
convert_mode_list(ModeTerms, Modes)
->
Result = ok(pragma(import(PredName, predicate,
Modes, MayCallMercury, C_Function)))
;
Result = error(
"expected pragma import(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
)
;
Result = error(
"expected pragma import(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
Result =
error(
"wrong number of arguments in `pragma import(...)' declaration",
ErrorTerm)
).
parse_pragma_type(_ModuleName, "export", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [PredAndModesTerm, C_FunctionTerm]
->
(
PredAndModesTerm = term__functor(_, _, _),
C_FunctionTerm = term__functor(term__string(C_Function), [], _)
->
(
PredAndModesTerm = term__functor(term__atom("="),
[FuncAndArgModesTerm, RetModeTerm], _)
->
parse_qualified_term(FuncAndArgModesTerm, PredAndModesTerm,
"pragma export declaration", FuncAndArgModesResult),
(
FuncAndArgModesResult = ok(FuncName, ArgModeTerms),
(
convert_mode_list(ArgModeTerms, ArgModes),
convert_mode(RetModeTerm, RetMode)
->
list__append(ArgModes, [RetMode], Modes),
Result =
ok(pragma(export(FuncName, function,
Modes, C_Function)))
;
Result = error(
"expected pragma export(FuncName(ModeList) = Mode, C_Function)",
PredAndModesTerm)
)
;
FuncAndArgModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
parse_qualified_term(PredAndModesTerm, ErrorTerm,
"pragma export declaration", PredAndModesResult),
(
PredAndModesResult = ok(PredName, ModeTerms),
(
convert_mode_list(ModeTerms, Modes)
->
Result =
ok(pragma(export(PredName, predicate, Modes,
C_Function)))
;
Result = error(
"expected pragma export(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
)
;
Result = error(
"expected pragma export(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
Result =
error(
"wrong number of arguments in `pragma export(...)' declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "inline", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "inline",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = inline(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "no_inline", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "no_inline",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = no_inline(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "memo", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_tabling_pragma(ModuleName, "memo", eval_memo,
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "loop_check", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_tabling_pragma(ModuleName, "loop_check", eval_loop_check,
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "minimal_model", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_tabling_pragma(ModuleName, "minimal_model", eval_minimal,
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "obsolete", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "obsolete",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = obsolete(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
% pragma unused_args should never appear in user programs,
% only in .opt files.
parse_pragma_type(_ModuleName, "unused_args", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [
PredOrFuncTerm,
PredNameTerm,
term__functor(term__integer(Arity), [], _),
term__functor(term__integer(ProcInt), [], _),
UnusedArgsTerm
],
proc_id_to_int(ProcId, ProcInt),
(
PredOrFuncTerm = term__functor(
term__atom("predicate"), [], _),
PredOrFunc = predicate
;
PredOrFuncTerm = term__functor(
term__atom("function"), [], _),
PredOrFunc = function
),
parse_qualified_term(PredNameTerm, ErrorTerm,
"predicate name", PredNameResult),
PredNameResult = ok(PredName, []),
convert_int_list(UnusedArgsTerm, UnusedArgsResult),
UnusedArgsResult = ok(UnusedArgs)
->
Result = ok(pragma(unused_args(PredOrFunc, PredName,
Arity, ProcId, UnusedArgs)))
;
Result = error("error in pragma unused_args", ErrorTerm)
).
parse_pragma_type(ModuleName, "fact_table", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [PredAndArityTerm, FileNameTerm]
->
(
PredAndArityTerm = term__functor(term__atom("/"),
[PredNameTerm, ArityTerm], _)
->
(
parse_implicitly_qualified_term(ModuleName, PredNameTerm,
PredAndArityTerm, "pragma fact_table declaration",
ok(PredName, [])),
ArityTerm = term__functor(term__integer(Arity), [], _)
->
(
FileNameTerm =
term__functor(term__string(FileName), [], _)
->
Result = ok(pragma(fact_table(PredName, Arity,
FileName)))
;
Result = error(
"expected string for fact table filename",
FileNameTerm)
)
;
Result = error(
"expected predname/arity for `pragma fact_table(..., ...)'",
PredAndArityTerm)
)
;
Result = error(
"expected predname/arity for `pragma fact_table(..., ...)'",
PredAndArityTerm)
)
;
Result =
error(
"wrong number of arguments in pragma fact_table(..., ...) declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "promise_pure", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "promise_pure",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = promise_pure(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "termination_info", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
(
PragmaTerms = [
PredAndModesTerm0,
ArgSizeTerm,
TerminationTerm
],
(
PredAndModesTerm0 = term__functor(Const, Terms0, _)
->
(
Const = term__atom("="),
Terms0 = [FuncAndModesTerm, FuncResultTerm0]
->
% function
PredOrFunc = function,
PredAndModesTerm = FuncAndModesTerm,
FuncResultTerm = [FuncResultTerm0]
;
% predicate
PredOrFunc = predicate,
PredAndModesTerm = PredAndModesTerm0,
FuncResultTerm = []
),
parse_implicitly_qualified_term(ModuleName,
PredAndModesTerm, ErrorTerm,
"`pragma termination_info' declaration", PredNameResult),
PredNameResult = ok(PredName, ModeListTerm0),
(
PredOrFunc = predicate,
ModeListTerm = ModeListTerm0
;
PredOrFunc = function,
list__append(ModeListTerm0, FuncResultTerm, ModeListTerm)
),
convert_mode_list(ModeListTerm, ModeList),
(
ArgSizeTerm = term__functor(term__atom("not_set"), [], _),
MaybeArgSizeInfo = no
;
ArgSizeTerm = term__functor(term__atom("infinite"), [],
ArgSizeContext),
MaybeArgSizeInfo = yes(infinite(
[ArgSizeContext - imported_pred]))
;
ArgSizeTerm = term__functor(term__atom("finite"),
[IntTerm, UsedArgsTerm], _),
IntTerm = term__functor(term__integer(Int), [], _),
convert_bool_list(UsedArgsTerm, UsedArgs),
MaybeArgSizeInfo = yes(finite(Int, UsedArgs))
),
(
TerminationTerm = term__functor(term__atom("not_set"), [], _),
MaybeTerminationInfo = no
;
TerminationTerm = term__functor(term__atom("can_loop"),
[], TermContext),
MaybeTerminationInfo = yes(can_loop(
[TermContext - imported_pred]))
;
TerminationTerm = term__functor(term__atom("cannot_loop"),
[], _),
MaybeTerminationInfo = yes(cannot_loop)
),
Result0 = ok(pragma(termination_info(PredOrFunc, PredName,
ModeList, MaybeArgSizeInfo, MaybeTerminationInfo)))
;
Result0 = error("unexpected variable in pragma termination_info",
ErrorTerm)
)
->
Result = Result0
;
Result = error("syntax error in `pragma termination_info'", ErrorTerm)
).
parse_pragma_type(ModuleName, "terminates", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "terminates",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = terminates(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "does_not_terminate", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "does_not_terminate",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = does_not_terminate(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "check_termination", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "check_termination",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = check_termination(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
:- pred parse_simple_pragma(module_name, string,
pred(sym_name, int, pragma_type),
list(term), term, maybe1(item)).
:- mode parse_simple_pragma(in, in, pred(in, in, out) is det,
in, in, out) is det.
parse_simple_pragma(ModuleName, PragmaType, MakePragma,
PragmaTerms, ErrorTerm, Result) :-
(
PragmaTerms = [PredAndArityTerm]
->
(
PredAndArityTerm = term__functor(term__atom("/"),
[PredNameTerm, ArityTerm], _)
->
(
parse_implicitly_qualified_term(ModuleName,
PredNameTerm, ErrorTerm, "", ok(PredName, [])),
ArityTerm = term__functor(term__integer(Arity), [], _)
->
call(MakePragma, PredName, Arity, Pragma),
Result = ok(pragma(Pragma))
;
string__append_list(
["expected predname/arity for `pragma ",
PragmaType, "(...)' declaration"], ErrorMsg),
Result = error(ErrorMsg, PredAndArityTerm)
)
;
string__append_list(["expected predname/arity for `pragma ",
PragmaType, "(...)' declaration"], ErrorMsg),
Result = error(ErrorMsg, PredAndArityTerm)
)
;
string__append_list(["wrong number of arguments in `pragma ",
PragmaType, "(...)' declaration"], ErrorMsg),
Result = error(ErrorMsg, ErrorTerm)
).
%-----------------------------------------------------------------------------%
:- pred parse_pragma_keyword(string, term, string, term__context).
:- mode parse_pragma_keyword(in, in, out, out) is semidet.
parse_pragma_keyword(ExpectedKeyword, Term, StringArg, StartContext) :-
Term = term__functor(term__atom(ExpectedKeyword), [Arg], _),
Arg = term__functor(term__string(StringArg), [], StartContext).
:- pred parse_may_call_mercury(term, may_call_mercury).
:- mode parse_may_call_mercury(in, out) is semidet.
parse_may_call_mercury(term__functor(term__atom("recursive"), [], _),
may_call_mercury).
parse_may_call_mercury(term__functor(term__atom("non_recursive"), [], _),
will_not_call_mercury).
parse_may_call_mercury(term__functor(term__atom("may_call_mercury"), [], _),
may_call_mercury).
parse_may_call_mercury(term__functor(term__atom("will_not_call_mercury"), [],
_), will_not_call_mercury).
% parse a pragma c_code declaration
:- pred parse_pragma_c_code(module_name, may_call_mercury, term,
pragma_c_code_impl, varset, maybe1(item)).
:- mode parse_pragma_c_code(in, in, in, in, in, out) is det.
parse_pragma_c_code(ModuleName, MayCallMercury, PredAndVarsTerm0, PragmaImpl,
VarSet, Result) :-
(
PredAndVarsTerm0 = term__functor(Const, Terms0, _)
->
(
% is this a function or a predicate?
Const = term__atom("="),
Terms0 = [FuncAndVarsTerm, FuncResultTerm0]
->
% function
PredOrFunc = function,
PredAndVarsTerm = FuncAndVarsTerm,
FuncResultTerms = [FuncResultTerm0]
;
% predicate
PredOrFunc = predicate,
PredAndVarsTerm = PredAndVarsTerm0,
FuncResultTerms = []
),
parse_implicitly_qualified_term(ModuleName,
PredAndVarsTerm, PredAndVarsTerm0,
"pragma c_code declaration", PredNameResult),
(
PredNameResult = ok(PredName, VarList0),
(
PredOrFunc = predicate,
VarList = VarList0
;
PredOrFunc = function,
list__append(VarList0, FuncResultTerms, VarList)
),
parse_pragma_c_code_varlist(VarSet, VarList, PragmaVars, Error),
(
Error = no,
Result = ok(pragma(c_code(MayCallMercury, PredName,
PredOrFunc, PragmaVars, VarSet, PragmaImpl)))
;
Error = yes(ErrorMessage),
Result = error(ErrorMessage, PredAndVarsTerm)
)
;
PredNameResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
Result = error("unexpected variable in `pragma c_code' declaration",
PredAndVarsTerm0)
).
% parse the variable list in the pragma c code declaration.
% The final argument is 'no' for no error, or 'yes(ErrorMessage)'.
:- pred parse_pragma_c_code_varlist(varset, list(term), list(pragma_var),
maybe(string)).
:- mode parse_pragma_c_code_varlist(in, in, out, out) is det.
parse_pragma_c_code_varlist(_, [], [], no).
parse_pragma_c_code_varlist(VarSet, [V|Vars], PragmaVars, Error):-
(
V = term__functor(term__atom("::"), [VarTerm, ModeTerm], _),
VarTerm = term__variable(Var)
->
(
varset__search_name(VarSet, Var, VarName)
->
(
convert_mode(ModeTerm, Mode)
->
P = (pragma_var(Var, VarName, Mode)),
parse_pragma_c_code_varlist(VarSet,
Vars, PragmaVars0, Error),
PragmaVars = [P|PragmaVars0]
;
PragmaVars = [],
Error = yes("unknown mode in pragma c_code")
)
;
% if the variable wasn't in the varset it must be an
% underscore variable.
PragmaVars = [], % return any old junk for that.
Error = yes(
"sorry, not implemented: anonymous `_' variable in pragma c_code")
)
;
PragmaVars = [], % return any old junk in PragmaVars
Error = yes("arguments not in form 'Var :: mode'")
).
:- pred parse_tabling_pragma(module_name, string, eval_method, list(term),
term, maybe1(item)).
:- mode parse_tabling_pragma(in, in, in, in, in, out) is det.
parse_tabling_pragma(ModuleName, PragmaName, TablingType, PragmaTerms,
ErrorTerm, Result) :-
(
PragmaTerms = [PredAndModesTerm0]
->
(
% Is this a simple pred/arity pragma
PredAndModesTerm0 = term__functor(term__atom("/"),
[PredNameTerm, ArityTerm], _)
->
(
parse_implicitly_qualified_term(ModuleName, PredNameTerm,
PredAndModesTerm0, "", ok(PredName, [])),
ArityTerm = term__functor(term__integer(Arity), [], _)
->
Result = ok(pragma(tabled(TablingType, PredName, Arity,
no, no)))
;
string__append_list(
["expected predname/arity for `pragma ",
PragmaName, "(...)' declaration"], ErrorMsg),
Result = error(ErrorMsg, PredAndModesTerm0)
)
;
% Is this a specific mode pragma
PredAndModesTerm0 = term__functor(Const, Terms0, _)
->
(
% is this a function or a predicate?
Const = term__atom("="),
Terms0 = [FuncAndModesTerm, FuncResultTerm0]
->
% function
PredOrFunc = function,
PredAndModesTerm = FuncAndModesTerm,
FuncResultTerms = [ FuncResultTerm0 ]
;
% predicate
PredOrFunc = predicate,
PredAndModesTerm = PredAndModesTerm0,
FuncResultTerms = []
),
string__append_list(["`pragma ", PragmaName, "(...)' declaration"],
ParseMsg),
parse_qualified_term(PredAndModesTerm, PredAndModesTerm0,
ParseMsg, PredNameResult),
(
PredNameResult = ok(PredName, ModeList0),
(
PredOrFunc = predicate,
ModeList = ModeList0
;
PredOrFunc = function,
list__append(ModeList0, FuncResultTerms, ModeList)
),
(
convert_mode_list(ModeList, Modes)
->
list__length(Modes, Arity0),
(
PredOrFunc = function
->
Arity is Arity0 - 1
;
Arity = Arity0
),
Result = ok(pragma(tabled(TablingType, PredName, Arity,
yes(PredOrFunc), yes(Modes))))
;
string__append_list(["syntax error in pragma '",
PragmaName, "(...)' declaration"],ErrorMessage),
Result = error(ErrorMessage, PredAndModesTerm)
)
;
PredNameResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
string__append_list(["unexpected variable in `pragma ", PragmaName,
"'"], ErrorMessage),
Result = error(ErrorMessage, PredAndModesTerm0)
)
;
string__append_list(["wrong number of arguments in `pragma ",
PragmaName, "(...)' declaration"], ErrorMessage),
Result = error(ErrorMessage, ErrorTerm)
).
:- pred convert_int_list(term::in, maybe1(list(int))::out) is det.
convert_int_list(term__variable(V),
error("variable in int list", term__variable(V))).
convert_int_list(term__functor(Functor, Args, Context), Result) :-
(
Functor = term__atom("."),
Args = [term__functor(term__integer(Int), [], _), RestTerm]
->
convert_int_list(RestTerm, RestResult),
(
RestResult = ok(List0),
Result = ok([Int | List0])
;
RestResult = error(_, _),
Result = RestResult
)
;
Functor = term__atom("[]"),
Args = []
->
Result = ok([])
;
Result = error("error in int list",
term__functor(Functor, Args, Context))
).
:- pred convert_bool_list(term::in, list(bool)::out) is semidet.
convert_bool_list(term__functor(Functor, Args, _), Bools) :-
(
Functor = term__atom("."),
Args = [term__functor(AtomTerm, [], _), RestTerm],
(
AtomTerm = term__atom("yes"),
Bool = yes
;
AtomTerm = term__atom("no"),
Bool = no
),
convert_bool_list(RestTerm, RestList),
Bools = [ Bool | RestList ]
;
Functor = term__atom("[]"),
Args = [],
Bools = []
).