mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-13 12:53:53 +00:00
Estimated hours taken: 250 Add support for tabling. This change allows for model_det, model_semidet and model_non memoing, minimal model and loop detection tabling. compiler/base_type_layout.m: Update comments to reflect new runtime naming standard. compiler/det_analysis.m: Allow tabling to change the result of det analysis. This is necessary in the case of minimal model tabling which can turn a det procedure into a semidet one. compiler/det_report.m: compiler/hlds_data.m: Add code to report error messages for various non compatible tabling methods and determinism. compiler/hlds_out.m: compiler/modules.m: Remove reference to the old memo marker. compiler/hlds_pred.m: Create new type (eval_method) to define which of the available evaluation methods should be used each procedure. Add new field to the proc_info structure. Add several new predicates relating to the new eval_method type. compiler/inlining.m: compiler/intermod.m: Make sure only procedures with normal evaluation are inlined. compiler/make_hlds.m: Add code to process new tabling pragmas. compiler/mercury_compile.m: Call the tabling transformation code. compiler/modes.m: Make sure that all procedures with non normal evaluation have no unique/partially instantiated modes. Produce error messages if they do. Support for partially instantiated modes is currently missing as it represents a large amount of work for a case that is currently not used. compiler/module_qual.m: compile/prog_data.m: compiler/prog_io_pragma.m: Add three new pragma types: `memo' `loop_check' `minimal_model' and code to support them. compiler/simplify.m: Don't report infinite recursion warning if a procedure has minimal model evaluation. compiler/stratify.m: Change the stratification analyser so that it reports cases of definite non-stratification. Rather than reporting warnings for any code that is not definitely stratified. Remove reference to the old memo marker. compiler/switch_detection.m: Fix a small bug where goal were being placed in reverse order. Call list__reverse on the list of goals. compiler/table_gen.m: New module to do the actual tabling transformation. compiler/notes/compiler_design.html: Document addition of new tabling pass to the compiler. doc/reference_manual.texi: Fix mistake in example. library/mercury_builtin.m: Add many new predicates for support of tabling. library/std_util.m: library/store.m: Move the functions : ML_compare_type_info ML_collapse_equivalences ML_create_type_info to the runtime. runtime/mercury_deep_copy.c: runtime/mercury_type_info.h: runtime/mercury_type_info.c: Move the make_type_info function into the mercury_type_info module and make it public. runtime/Mmakefile: runtime/mercury_imp.h: Add references to new files added for tabling support. runtime/mercury_string.h: Change hash macro so it does not cause a name clash with any variable called "hash". runtime/mercury_type_info.c: runtime/mercury_type_info.h: Add three new functions taken from the library : MR_compare_type_info MR_collapse_equivalences MR_create_type_info. runtime/mercury_table_any.c: runtime/mercury_table_any.h: runtime/mercury_table_enum.c: runtime/mercury_table_enum.h: runtime/mercury_table_int_float_string.c: runtime/mercury_table_int_float_string.h: runtime/mercury_table_type_info.c: runtime/mercury_table_type_info.h: runtime/mercury_tabling.h: New modules for the support of tabling.
650 lines
24 KiB
Mathematica
650 lines
24 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-1998 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Main author: conway.
|
|
|
|
:- module inlining.
|
|
|
|
% This module inlines
|
|
%
|
|
% * (--inline-simple and --inline-simple-threshold N)
|
|
% procedures whose size is below the given threshold,
|
|
% PLUS
|
|
% procedures that are flat (ie contain no branched structures)
|
|
% and are composed of inline builtins (eg arithmetic),
|
|
% and whose size is less than three times the given threshold
|
|
% (XXX shouldn't hard-code 3)
|
|
%
|
|
% * (--inline-compound-threshold N)
|
|
% procedures where the product of the number of calls to them
|
|
% and their size is below a given threshold.
|
|
%
|
|
% * (--inline-single-use)
|
|
% procedures which are called only once
|
|
%
|
|
% * procedures which have a `:- pragma inline(name/arity).'
|
|
%
|
|
% It will not inline procedures which have a
|
|
% `:- pragma no_inline(name/arity).'
|
|
%
|
|
% If inlining a procedure takes the total number of variables over
|
|
% a given threshold (from a command-line option), then the procedure
|
|
% is not inlined - note that this means that some calls to a
|
|
% procedure may inlined while others are not.
|
|
%
|
|
% It builds the call-graph (if necessary) works from the bottom of
|
|
% the call-graph towards the top, first perfoming inlining on a
|
|
% procedure then deciding if calls to it (higher in the call-graph)
|
|
% should be inlined. SCCs get flattend and processed in the order
|
|
% returned by hlds_dependency_info_get_dependency_ordering.
|
|
%
|
|
% There are a couple of classes of procedure that we clearly want
|
|
% to inline because doing so *reduces* the size of the generated
|
|
% code:
|
|
%
|
|
% - access predicates that get or set one or more fields
|
|
% of a structure (Inlining these is almost always a win
|
|
% because the infrastructure for the call to the procedure
|
|
% is almost always larger than the code to do the access.
|
|
% In the case of `get' accessors, the call usually becomes
|
|
% a single `field' expression to get the relevant field of
|
|
% the structure. In the case of `set' accessors, it is a bit
|
|
% more complicated since the code to copy the fields can be
|
|
% quite big if there are lots of fields, however in the case
|
|
% where several `set' accessors get called one after the other,
|
|
% inlining them enables the code generator to avoid creating
|
|
% the intermediate structures which is often a win).
|
|
%
|
|
% - arithmetic predicates where the as above, the cost of the
|
|
% call will often outweigh the cost of the arithmetic.
|
|
%
|
|
% - det or semi pragma C code, where often the C operation is
|
|
% very small, inlining avoids a call and allows the C compiler
|
|
% to do a better job of optimizing it.
|
|
%
|
|
% The threshold on the size of simple goals (which covers both of the
|
|
% first two cases above), is to prevent the inlining of large goals
|
|
% such as those that construct big terms where the duplication is
|
|
% usually inappropriate (for example in nrev).
|
|
%
|
|
% The threshold on the number of variables in a procedure is to prevent
|
|
% the problem of inlining lots of calls and having a resulting
|
|
% procedure with so many variables that the back end of the compiler
|
|
% gets bogged down (for example in the pseudoknot benchmark).
|
|
%
|
|
% Due to the way in which we generate code for model_non pragma_c_code,
|
|
% procedures whose body is such a pragma_c_code must NOT be inlined.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- interface.
|
|
:- import_module hlds_goal, hlds_module, hlds_pred, prog_data.
|
|
:- import_module io, list, map, term, varset.
|
|
|
|
:- pred inlining(module_info, module_info, io__state, io__state).
|
|
:- mode inlining(in, out, di, uo) is det.
|
|
|
|
:- pred inlining__is_simple_goal(hlds_goal, int).
|
|
:- mode inlining__is_simple_goal(in, in) is semidet.
|
|
|
|
% inlining__do_inline_call(Args, CalledPredInfo, CalledProcInfo,
|
|
% VarSet0, VarSet, VarTypes0, VarTypes, TVarSet0, TVarSet,
|
|
% TypeInfoMap0, TypeInfoMap).
|
|
%
|
|
% Given the arguments to the call, the pred_info and proc_info
|
|
% for the called goal and various information about the
|
|
% procedure currently being analysed, rename the goal for
|
|
% the called procedure so that it can be inlined.
|
|
:- pred inlining__do_inline_call(list(var), pred_info, proc_info,
|
|
varset, varset, map(var, type), map(var, type),
|
|
tvarset, tvarset, map(tvar, type_info_locn),
|
|
map(tvar, type_info_locn), hlds_goal).
|
|
:- mode inlining__do_inline_call(in, in, in, in, out, in, out,
|
|
in, out, in, out, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module globals, options, llds.
|
|
:- import_module dead_proc_elim, type_util, mode_util, goal_util.
|
|
:- import_module passes_aux, code_aux, quantification, det_analysis, prog_data.
|
|
|
|
:- import_module bool, int, list, assoc_list, set, std_util.
|
|
:- import_module require, hlds_data, dependency_graph.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- type inline_params ---> params(bool, bool, int, int, int).
|
|
% simple, single_use,
|
|
% size-threshold, simple-goal-threshold
|
|
% var-threshold
|
|
|
|
inlining(ModuleInfo0, ModuleInfo) -->
|
|
%
|
|
% Package up all the inlining options
|
|
% - whether to inline simple conj's of builtins
|
|
% - whether to inline predicates that are
|
|
% only called once
|
|
% - the threshold for determining whether to
|
|
% inline more complicated goals
|
|
% - the threshold for determining whether to
|
|
% inline the simple conj's
|
|
% - the upper limit on the number of variables
|
|
% we want in procedures - if inlining a procedure
|
|
% would cause the number of variables to exceed
|
|
% this threshold then we don't inline it.
|
|
%
|
|
globals__io_lookup_bool_option(inline_simple, Simple),
|
|
globals__io_lookup_bool_option(inline_single_use, SingleUse),
|
|
globals__io_lookup_int_option(inline_compound_threshold,
|
|
CompoundThreshold),
|
|
globals__io_lookup_int_option(inline_simple_threshold, SimpleThreshold),
|
|
globals__io_lookup_int_option(inline_vars_threshold, VarThreshold),
|
|
{ Params = params(Simple, SingleUse, CompoundThreshold,
|
|
SimpleThreshold, VarThreshold) },
|
|
|
|
%
|
|
% Get the usage counts for predicates
|
|
% (but only if needed, i.e. only if --inline-single-use
|
|
% or --inline-compound-threshold has been specified)
|
|
%
|
|
(
|
|
( { SingleUse = yes }
|
|
; { CompoundThreshold > 0 }
|
|
)
|
|
->
|
|
{ dead_proc_elim__analyze(ModuleInfo0, NeededMap) }
|
|
;
|
|
{ map__init(NeededMap) }
|
|
),
|
|
|
|
% build the call graph and extract the topological sort
|
|
% Note: the topological sort returns a list of SCCs.
|
|
% Clearly, we want to process the SCCs bottom to top
|
|
% (which is the order that they are returned), but it
|
|
% is not easy to guess the best way to flatten each SCC
|
|
% to achieve the best result. The current implementation
|
|
% just uses the ordering of the list returned by the
|
|
% topological sort. A more sophisticated approach would be
|
|
% to break the cycle so that the procedure(s) that are called
|
|
% by higher SCCs are processed last, but we do not implement
|
|
% that yet.
|
|
{ module_info_ensure_dependency_info(ModuleInfo0, ModuleInfo1) },
|
|
{ module_info_dependency_info(ModuleInfo1, DepInfo) },
|
|
{ hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs) },
|
|
{ list__condense(SCCs, PredProcs) },
|
|
{ set__init(InlinedProcs0) },
|
|
inlining__do_inlining(PredProcs, NeededMap, Params, InlinedProcs0,
|
|
ModuleInfo1, ModuleInfo).
|
|
|
|
:- pred inlining__do_inlining(list(pred_proc_id), needed_map, inline_params,
|
|
set(pred_proc_id), module_info, module_info,
|
|
io__state, io__state).
|
|
:- mode inlining__do_inlining(in, in, in, in, in, out, di, uo) is det.
|
|
|
|
inlining__do_inlining([], _Needed, _Params, _Inlined, Module, Module) --> [].
|
|
inlining__do_inlining([PPId|PPIds], Needed, Params, Inlined0,
|
|
Module0, Module) -->
|
|
inlining__in_predproc(PPId, Inlined0, Params, Module0, Module1),
|
|
inlining__mark_predproc(PPId, Needed, Params, Module1,
|
|
Inlined0, Inlined1),
|
|
inlining__do_inlining(PPIds, Needed, Params, Inlined1, Module1, Module).
|
|
|
|
:- pred inlining__mark_predproc(pred_proc_id, needed_map, inline_params,
|
|
module_info, set(pred_proc_id), set(pred_proc_id),
|
|
io__state, io__state).
|
|
:- mode inlining__mark_predproc(in, in, in, in, in, out, di, uo) is det.
|
|
|
|
inlining__mark_predproc(PredProcId, NeededMap, Params, ModuleInfo,
|
|
InlinedProcs0, InlinedProcs) -->
|
|
(
|
|
{ Params = params(Simple, SingleUse, CompoundThreshold,
|
|
SimpleThreshold, _VarThreshold) },
|
|
{ PredProcId = proc(PredId, ProcId) },
|
|
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
|
|
{ pred_info_procedures(PredInfo, Procs) },
|
|
{ map__lookup(Procs, ProcId, ProcInfo) },
|
|
{ proc_info_goal(ProcInfo, CalledGoal) },
|
|
{ Entity = proc(PredId, ProcId) },
|
|
|
|
%
|
|
% the heuristic represented by the following code
|
|
% could be improved
|
|
%
|
|
(
|
|
{ Simple = yes },
|
|
{ inlining__is_simple_goal(CalledGoal,
|
|
SimpleThreshold) }
|
|
;
|
|
{ CompoundThreshold > 0 },
|
|
{ map__search(NeededMap, Entity, Needed) },
|
|
{ Needed = yes(NumUses) },
|
|
{ goal_size(CalledGoal, Size) },
|
|
{ Size * NumUses =< CompoundThreshold }
|
|
;
|
|
{ SingleUse = yes },
|
|
{ map__search(NeededMap, Entity, Needed) },
|
|
{ Needed = yes(NumUses) },
|
|
{ NumUses = 1 }
|
|
),
|
|
% Don't inline recursive predicates
|
|
{ \+ goal_calls(CalledGoal, PredProcId) },
|
|
|
|
% Under no circumstances inline model_non pragma c codes.
|
|
% The resulting code would not work properly.
|
|
\+ {
|
|
CalledGoal = pragma_c_code(_,_,_,_,_,_,_) - _,
|
|
proc_info_interface_code_model(ProcInfo, model_non)
|
|
}
|
|
->
|
|
inlining__mark_proc_as_inlined(PredProcId, ModuleInfo,
|
|
InlinedProcs0, InlinedProcs)
|
|
;
|
|
{ InlinedProcs = InlinedProcs0 }
|
|
).
|
|
|
|
% this heuristic is used for both local and intermodule inlining
|
|
|
|
inlining__is_simple_goal(CalledGoal, SimpleThreshold) :-
|
|
goal_size(CalledGoal, Size),
|
|
(
|
|
Size < SimpleThreshold
|
|
;
|
|
%
|
|
% For flat goals, we are more likely to be able to
|
|
% optimize stuff away, so we use a higher threshold.
|
|
% XXX this should be a separate option, we shouldn't
|
|
% hardcode the number `3' (which is just a guess).
|
|
%
|
|
Size < SimpleThreshold * 3,
|
|
inlining__is_flat_simple_goal(CalledGoal)
|
|
).
|
|
|
|
:- pred inlining__is_flat_simple_goal(hlds_goal::in) is semidet.
|
|
|
|
inlining__is_flat_simple_goal(conj(Goals) - _) :-
|
|
inlining__is_flat_simple_goal_list(Goals).
|
|
inlining__is_flat_simple_goal(not(Goal) - _) :-
|
|
inlining__is_flat_simple_goal(Goal).
|
|
inlining__is_flat_simple_goal(some(_, Goal) - _) :-
|
|
inlining__is_flat_simple_goal(Goal).
|
|
inlining__is_flat_simple_goal(call(_, _, _, BuiltinState, _, _) - _) :-
|
|
BuiltinState = inline_builtin.
|
|
inlining__is_flat_simple_goal(unify(_, _, _, _, _) - _).
|
|
|
|
:- pred inlining__is_flat_simple_goal_list(hlds_goals::in) is semidet.
|
|
|
|
inlining__is_flat_simple_goal_list([]).
|
|
inlining__is_flat_simple_goal_list([Goal | Goals]) :-
|
|
inlining__is_flat_simple_goal(Goal),
|
|
inlining__is_flat_simple_goal_list(Goals).
|
|
|
|
:- pred inlining__mark_proc_as_inlined(pred_proc_id, module_info,
|
|
set(pred_proc_id), set(pred_proc_id), io__state, io__state).
|
|
:- mode inlining__mark_proc_as_inlined(in, in, in, out, di, uo) is det.
|
|
|
|
inlining__mark_proc_as_inlined(proc(PredId, ProcId), ModuleInfo,
|
|
InlinedProcs0, InlinedProcs) -->
|
|
{ set__insert(InlinedProcs0, proc(PredId, ProcId), InlinedProcs) },
|
|
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
|
|
( { pred_info_requested_inlining(PredInfo) } ->
|
|
[]
|
|
;
|
|
write_proc_progress_message("% Inlining ", PredId, ProcId,
|
|
ModuleInfo)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% inline_info contains the information that is changed
|
|
% as a result of inlining. It is threaded through the
|
|
% inlining process, and when finished, contains the
|
|
% updated information associated with the new goal.
|
|
%
|
|
% It also stores some necessary information that is not
|
|
% updated.
|
|
|
|
:- type inline_info --->
|
|
|
|
inline_info(
|
|
int, % variable threshold for inlining
|
|
set(pred_proc_id), % inlined procs
|
|
module_info, % module_info
|
|
|
|
% the following fields are updated as a result
|
|
% of inlining
|
|
varset, % varset
|
|
map(var, type), % variable types
|
|
tvarset, % type variables
|
|
map(tvar, type_info_locn),% type_info varset, a mapping from
|
|
% type variables to variables
|
|
% where their type_info is
|
|
% stored.
|
|
bool % Did we change the determinism
|
|
% of any subgoal?
|
|
).
|
|
|
|
:- pred inlining__in_predproc(pred_proc_id, set(pred_proc_id), inline_params,
|
|
module_info, module_info, io__state, io__state).
|
|
:- mode inlining__in_predproc(in, in, in, in, out, di, uo) is det.
|
|
|
|
inlining__in_predproc(PredProcId, InlinedProcs, Params,
|
|
ModuleInfo0, ModuleInfo, IoState0, IoState) :-
|
|
Params = params(_Simple, _SingleUse, _CompoundThreshold,
|
|
_SimpleThreshold, VarThresh),
|
|
PredProcId = proc(PredId, ProcId),
|
|
|
|
module_info_preds(ModuleInfo0, PredTable0),
|
|
map__lookup(PredTable0, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, ProcTable0),
|
|
map__lookup(ProcTable0, ProcId, ProcInfo0),
|
|
|
|
pred_info_typevarset(PredInfo0, TypeVarSet0),
|
|
|
|
proc_info_goal(ProcInfo0, Goal0),
|
|
proc_info_varset(ProcInfo0, VarSet0),
|
|
proc_info_vartypes(ProcInfo0, VarTypes0),
|
|
proc_info_typeinfo_varmap(ProcInfo0, TypeInfoVarMap0),
|
|
|
|
DetChanged0 = no,
|
|
|
|
InlineInfo0 = inline_info(VarThresh, InlinedProcs, ModuleInfo0,
|
|
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0, DetChanged0),
|
|
|
|
inlining__inlining_in_goal(Goal0, Goal, InlineInfo0, InlineInfo),
|
|
|
|
InlineInfo = inline_info(_, _, _, VarSet, VarTypes, TypeVarSet,
|
|
TypeInfoVarMap, DetChanged),
|
|
|
|
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1),
|
|
|
|
proc_info_set_varset(ProcInfo0, VarSet, ProcInfo1),
|
|
proc_info_set_vartypes(ProcInfo1, VarTypes, ProcInfo2),
|
|
proc_info_set_typeinfo_varmap(ProcInfo2, TypeInfoVarMap, ProcInfo3),
|
|
proc_info_set_goal(ProcInfo3, Goal, ProcInfo),
|
|
|
|
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
|
|
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
|
|
map__det_update(PredTable0, PredId, PredInfo, PredTable),
|
|
module_info_set_preds(ModuleInfo0, PredTable, ModuleInfo1),
|
|
|
|
% If the determinism of some sub-goals has changed,
|
|
% then we re-run determinism analysis, because
|
|
% propagating the determinism information through
|
|
% the procedure may lead to more efficient code.
|
|
( DetChanged = yes,
|
|
globals__io_get_globals(Globals, IoState0, IoState),
|
|
det_infer_proc(PredId, ProcId, ModuleInfo1, ModuleInfo,
|
|
Globals, _, _, _)
|
|
; DetChanged = no,
|
|
ModuleInfo = ModuleInfo1,
|
|
IoState = IoState0
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_goal(hlds_goal, hlds_goal, inline_info,
|
|
inline_info).
|
|
:- mode inlining__inlining_in_goal(in, out, in, out) is det.
|
|
|
|
inlining__inlining_in_goal(conj(Goals0) - GoalInfo, conj(Goals) - GoalInfo) -->
|
|
inlining__inlining_in_conj(Goals0, Goals).
|
|
|
|
inlining__inlining_in_goal(disj(Goals0, SM) - GoalInfo,
|
|
disj(Goals, SM) - GoalInfo) -->
|
|
inlining__inlining_in_disj(Goals0, Goals).
|
|
|
|
inlining__inlining_in_goal(switch(Var, Det, Cases0, SM) - GoalInfo,
|
|
switch(Var, Det, Cases, SM) - GoalInfo) -->
|
|
inlining__inlining_in_cases(Cases0, Cases).
|
|
|
|
inlining__inlining_in_goal(
|
|
if_then_else(Vars, Cond0, Then0, Else0, SM) - GoalInfo,
|
|
if_then_else(Vars, Cond, Then, Else, SM) - GoalInfo) -->
|
|
inlining__inlining_in_goal(Cond0, Cond),
|
|
inlining__inlining_in_goal(Then0, Then),
|
|
inlining__inlining_in_goal(Else0, Else).
|
|
|
|
inlining__inlining_in_goal(not(Goal0) - GoalInfo, not(Goal) - GoalInfo) -->
|
|
inlining__inlining_in_goal(Goal0, Goal).
|
|
|
|
inlining__inlining_in_goal(some(Vars, Goal0) - GoalInfo,
|
|
some(Vars, Goal) - GoalInfo) -->
|
|
inlining__inlining_in_goal(Goal0, Goal).
|
|
|
|
inlining__inlining_in_goal(call(PredId, ProcId, ArgVars, Builtin, Context,
|
|
Sym) - GoalInfo0, Goal - GoalInfo, InlineInfo0, InlineInfo) :-
|
|
|
|
InlineInfo0 = inline_info(VarThresh, InlinedProcs, ModuleInfo,
|
|
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0,
|
|
DetChanged0),
|
|
|
|
% should we inline this call?
|
|
(
|
|
inlining__should_inline_proc(PredId, ProcId, Builtin,
|
|
InlinedProcs, ModuleInfo),
|
|
% okay, but will we exceed the number-of-variables
|
|
% threshold?
|
|
varset__vars(VarSet0, ListOfVars),
|
|
list__length(ListOfVars, ThisMany),
|
|
% We need to find out how many variables the
|
|
% Callee has
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
PredInfo, ProcInfo),
|
|
proc_info_varset(ProcInfo, CalleeVarSet),
|
|
varset__vars(CalleeVarSet, CalleeListOfVars),
|
|
list__length(CalleeListOfVars, CalleeThisMany),
|
|
TotalVars is ThisMany + CalleeThisMany,
|
|
TotalVars =< VarThresh
|
|
->
|
|
inlining__do_inline_call(ArgVars, PredInfo,
|
|
ProcInfo, VarSet0, VarSet, VarTypes0, VarTypes,
|
|
TypeVarSet0, TypeVarSet, TypeInfoVarMap0,
|
|
TypeInfoVarMap, Goal - GoalInfo),
|
|
|
|
% If the inferred determinism of the called
|
|
% goal differs from the declared determinism,
|
|
% flag that we should re-run determinism analysis
|
|
% on this proc.
|
|
goal_info_get_determinism(GoalInfo0, Determinism0),
|
|
goal_info_get_determinism(GoalInfo, Determinism),
|
|
( Determinism0 = Determinism ->
|
|
DetChanged = DetChanged0
|
|
;
|
|
DetChanged = yes
|
|
)
|
|
;
|
|
Goal = call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
|
|
GoalInfo = GoalInfo0,
|
|
VarSet = VarSet0,
|
|
VarTypes = VarTypes0,
|
|
TypeVarSet = TypeVarSet0,
|
|
TypeInfoVarMap = TypeInfoVarMap0,
|
|
DetChanged = DetChanged0
|
|
),
|
|
InlineInfo = inline_info(VarThresh, InlinedProcs, ModuleInfo,
|
|
VarSet, VarTypes, TypeVarSet, TypeInfoVarMap, DetChanged).
|
|
|
|
inlining__inlining_in_goal(higher_order_call(A, B, C, D, E, F) - GoalInfo,
|
|
higher_order_call(A, B, C, D, E, F) - GoalInfo) --> [].
|
|
|
|
inlining__inlining_in_goal(class_method_call(A, B, C, D, E, F) - GoalInfo,
|
|
class_method_call(A, B, C, D, E, F) - GoalInfo) --> [].
|
|
|
|
inlining__inlining_in_goal(unify(A, B, C, D, E) - GoalInfo,
|
|
unify(A, B, C, D, E) - GoalInfo) --> [].
|
|
|
|
inlining__inlining_in_goal(pragma_c_code(A, B, C, D, E, F, G) - GoalInfo,
|
|
pragma_c_code(A, B, C, D, E, F, G) - GoalInfo) --> [].
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
inlining__do_inline_call(ArgVars, PredInfo, ProcInfo,
|
|
VarSet0, VarSet, VarTypes0, VarTypes, TypeVarSet0, TypeVarSet,
|
|
TypeInfoVarMap0, TypeInfoVarMap, Goal) :-
|
|
|
|
proc_info_goal(ProcInfo, CalledGoal),
|
|
|
|
% look up the rest of the info for the called procedure.
|
|
|
|
pred_info_typevarset(PredInfo, CalleeTypeVarSet),
|
|
proc_info_headvars(ProcInfo, HeadVars),
|
|
proc_info_vartypes(ProcInfo, CalleeVarTypes0),
|
|
proc_info_varset(ProcInfo, CalleeVarSet),
|
|
varset__vars(CalleeVarSet, CalleeListOfVars),
|
|
proc_info_typeinfo_varmap(ProcInfo, CalleeTypeInfoVarMap0),
|
|
|
|
% Substitute the appropriate types into the type
|
|
% mapping of the called procedure. For example, if we
|
|
% call `:- pred foo(T)' with an argument of type
|
|
% `int', then we need to replace all occurrences of
|
|
% type `T' with type `int' when we inline it.
|
|
|
|
% first, rename apart the type variables in the callee.
|
|
% (we can almost throw away the new typevarset, since we
|
|
% are about to substitute away any new type variables,
|
|
% but any unbound type variables in the callee will not
|
|
% be substituted away)
|
|
|
|
varset__merge_subst(TypeVarSet0, CalleeTypeVarSet,
|
|
TypeVarSet, TypeRenaming),
|
|
apply_substitution_to_type_map(CalleeVarTypes0, TypeRenaming,
|
|
CalleeVarTypes1),
|
|
|
|
% next, compute the type substitution and then apply it
|
|
|
|
map__apply_to_list(HeadVars, CalleeVarTypes1, HeadTypes),
|
|
map__apply_to_list(ArgVars, VarTypes0, ArgTypes),
|
|
(
|
|
type_list_subsumes(HeadTypes, ArgTypes, TypeSubn)
|
|
->
|
|
apply_rec_substitution_to_type_map(CalleeVarTypes1,
|
|
TypeSubn, CalleeVarTypes)
|
|
;
|
|
% The head types should always subsume the
|
|
% actual argument types, otherwise it is a type error
|
|
% that should have been detected by typechecking
|
|
% But polymorphism.m introduces type-incorrect code --
|
|
% e.g. compare(Res, EnumA, EnumB) gets converted
|
|
% into builtin_compare_int(Res, EnumA, EnumB), which
|
|
% is a type error since it assumes that an enumeration
|
|
% is an int. In those cases, we don't need to
|
|
% worry about the type substitution.
|
|
CalleeVarTypes = CalleeVarTypes1
|
|
),
|
|
|
|
% Now rename apart the variables in the called goal.
|
|
|
|
map__from_corresponding_lists(HeadVars, ArgVars, Subn0),
|
|
goal_util__create_variables(CalleeListOfVars, VarSet0,
|
|
VarTypes0, Subn0, CalleeVarTypes, CalleeVarSet,
|
|
VarSet, VarTypes, Subn),
|
|
goal_util__must_rename_vars_in_goal(CalledGoal, Subn, Goal),
|
|
|
|
apply_substitutions_to_var_map(CalleeTypeInfoVarMap0,
|
|
TypeRenaming, Subn, CalleeTypeInfoVarMap1),
|
|
map__merge(TypeInfoVarMap0, CalleeTypeInfoVarMap1,
|
|
TypeInfoVarMap).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_disj(list(hlds_goal), list(hlds_goal),
|
|
inline_info, inline_info).
|
|
:- mode inlining__inlining_in_disj(in, out, in, out) is det.
|
|
|
|
inlining__inlining_in_disj([], []) --> [].
|
|
inlining__inlining_in_disj([Goal0 | Goals0], [Goal | Goals]) -->
|
|
inlining__inlining_in_goal(Goal0, Goal),
|
|
inlining__inlining_in_disj(Goals0, Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_cases(list(case), list(case), inline_info,
|
|
inline_info).
|
|
:- mode inlining__inlining_in_cases(in, out, in, out) is det.
|
|
|
|
inlining__inlining_in_cases([], []) --> [].
|
|
inlining__inlining_in_cases([case(Cons, Goal0) | Goals0],
|
|
[case(Cons, Goal) | Goals]) -->
|
|
inlining__inlining_in_goal(Goal0, Goal),
|
|
inlining__inlining_in_cases(Goals0, Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_conj(list(hlds_goal), list(hlds_goal),
|
|
inline_info, inline_info).
|
|
:- mode inlining__inlining_in_conj(in, out, in, out) is det.
|
|
|
|
% Since a single goal may become a conjunction,
|
|
% we flatten the conjunction as we go.
|
|
|
|
inlining__inlining_in_conj([], []) --> [].
|
|
inlining__inlining_in_conj([Goal0 | Goals0], Goals) -->
|
|
inlining__inlining_in_goal(Goal0, Goal1),
|
|
{ goal_to_conj_list(Goal1, Goal1List) },
|
|
inlining__inlining_in_conj(Goals0, Goals1),
|
|
{ list__append(Goal1List, Goals1, Goals) }.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Check to see if we should inline a call.
|
|
%
|
|
% Fails if the called predicate is a builtin or is imported.
|
|
%
|
|
% Succeeds if the called predicate has an annotation
|
|
% indicating that it should be inlined, or if the goal
|
|
% is a conjunction of builtins.
|
|
|
|
:- pred inlining__should_inline_proc(pred_id, proc_id, builtin_state,
|
|
set(pred_proc_id), module_info).
|
|
:- mode inlining__should_inline_proc(in, in, in, in, in) is semidet.
|
|
|
|
inlining__should_inline_proc(PredId, ProcId, BuiltinState, InlinedProcs,
|
|
ModuleInfo) :-
|
|
|
|
% don't inline builtins, the code generator will handle them
|
|
|
|
BuiltinState = not_builtin,
|
|
|
|
% don't try to inline imported predicates, since we don't
|
|
% have the code for them.
|
|
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo,
|
|
ProcInfo),
|
|
\+ pred_info_is_imported(PredInfo),
|
|
% this next line catches the case of locally defined
|
|
% unification predicates for imported types.
|
|
\+ (
|
|
pred_info_is_pseudo_imported(PredInfo),
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
),
|
|
|
|
% Only try to inline procedures which are evaluated using
|
|
% normal evaluation. Currently we can't inline procs evaluated
|
|
% using any of the other methods because the code generator for
|
|
% the methods can only handle whole procedures not code
|
|
% fragments.
|
|
|
|
proc_info_eval_method(ProcInfo, eval_normal),
|
|
|
|
% don't inlining anything we have been specifically requested
|
|
% not to inline.
|
|
|
|
\+ pred_info_requested_no_inlining(PredInfo),
|
|
|
|
% OK, we could inline it - but should we? Apply our heuristic.
|
|
|
|
(
|
|
pred_info_requested_inlining(PredInfo)
|
|
;
|
|
set__member(proc(PredId, ProcId), InlinedProcs)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|