Files
mercury/compiler/det_analysis.m
Oliver Hutchison bcf7dbf9f8 Add support for tabling.
Estimated hours taken: 250

Add support for tabling.

This change allows for model_det, model_semidet and model_non memoing,
minimal model and loop detection tabling.

compiler/base_type_layout.m:
	Update comments to reflect new runtime naming standard.

compiler/det_analysis.m:
	Allow tabling to change the result of det analysis. This is
	necessary in the case of minimal model tabling which can
	turn a det procedure into a semidet one.

compiler/det_report.m:
compiler/hlds_data.m:
	Add code to report error messages for various non compatible
	tabling methods and determinism.

compiler/hlds_out.m:
compiler/modules.m:
	Remove reference to the old memo marker.

compiler/hlds_pred.m:
	Create new type (eval_method) to define which of the available
	evaluation methods should be used each procedure.
	Add new field to the proc_info structure.
	Add several new predicates relating to the new eval_method type.

compiler/inlining.m:
compiler/intermod.m:
	Make sure only procedures with normal evaluation are inlined.

compiler/make_hlds.m:
	Add code to process new tabling pragmas.

compiler/mercury_compile.m:
	Call the tabling transformation code.

compiler/modes.m:
	Make sure that all procedures with non normal evaluation have
	no unique/partially instantiated modes. Produce error messages
	if they do. Support for partially instantiated modes is currently
	missing as it represents a large amount of work for a case that
	is currently not used.

compiler/module_qual.m:
compile/prog_data.m:
compiler/prog_io_pragma.m:
	Add three new pragma types:
		`memo'
		`loop_check'
		`minimal_model'
	and code to support them.

compiler/simplify.m:
	Don't report infinite recursion warning if a procedure has
	minimal model evaluation.

compiler/stratify.m:
	Change the stratification analyser so that it reports cases of
	definite non-stratification. Rather than reporting warnings for
	any code that is not definitely stratified.
	Remove reference to the old memo marker.

compiler/switch_detection.m:
	Fix a small bug where goal were being placed in reverse order.
	Call list__reverse on the list of goals.

compiler/table_gen.m:
	New module to do the actual tabling transformation.

compiler/notes/compiler_design.html:
	Document addition of new tabling pass to the compiler.

doc/reference_manual.texi:
	Fix mistake in example.

library/mercury_builtin.m:
	Add many new predicates for support of tabling.

library/std_util.m:
library/store.m:
	Move the functions :
		ML_compare_type_info
		ML_collapse_equivalences
		ML_create_type_info
	to the runtime.

runtime/mercury_deep_copy.c:
runtime/mercury_type_info.h:
runtime/mercury_type_info.c:
	Move the make_type_info function into the mercury_type_info module
	and make it public.

runtime/Mmakefile:
runtime/mercury_imp.h:
	Add references to new files added for tabling support.

runtime/mercury_string.h:
	Change hash macro so it does not cause a name clash with any
	variable called "hash".

runtime/mercury_type_info.c:
runtime/mercury_type_info.h:
	Add three new functions taken from the library :
		MR_compare_type_info
		MR_collapse_equivalences
		MR_create_type_info.

runtime/mercury_table_any.c:
runtime/mercury_table_any.h:
runtime/mercury_table_enum.c:
runtime/mercury_table_enum.h:
runtime/mercury_table_int_float_string.c:
runtime/mercury_table_int_float_string.h:
runtime/mercury_table_type_info.c:
runtime/mercury_table_type_info.h:
runtime/mercury_tabling.h:
	New modules for the support of tabling.
1998-05-15 07:09:29 +00:00

1127 lines
42 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% det_analysis.m - the determinism analysis pass.
% Main authors: conway, fjh, zs.
% This pass has three components:
%
% o Segregate the procedures into those that have determinism
% declarations, and those that don't
%
% o A step of performing a local inference pass on each procedure
% without a determinism declaration is iterated until
% a fixpoint is reached
%
% o A checking step is performed on all the procedures that have
% determinism declarations to ensure that they are at
% least as deterministic as their declaration. This uses
% a form of the local inference pass.
%
% If we are to avoid global inference for predicates with
% declarations, then it must be an error, not just a warning,
% if the determinism checking step detects that the determinism
% annotation was wrong. If we were to issue just a warning, then
% we would have to override the determinism annotation, and that
% would force us to re-check the inferred determinism for all
% calling predicates.
%
% Alternately, we could leave it as a warning, but then we would
% have to _make_ the predicate deterministic (or semideterministic)
% by inserting run-time checking code which calls error/1 if the
% predicate really isn't deterministic (semideterministic).
% Determinism has three components:
%
% whether a goal can fail
% whether a goal has more than one possible solution
% whether a goal occurs in a context where only the first solution
% is required
%
% The first two components are synthesized attributes: they are inferred
% bottom-up. The last component is an inherited attribute: it is
% propagated top-down.
%-----------------------------------------------------------------------------%
:- module det_analysis.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_data, det_report, globals.
:- import_module list, std_util, io.
% Perform determinism inference for local predicates with no
% determinism declarations, and determinism checking for all other
% predicates.
:- pred determinism_pass(module_info, module_info, io__state, io__state).
:- mode determinism_pass(in, out, di, uo) is det.
% Check the determinism of a single procedure
% (only works if the determinism of the procedures it calls
% has already been inferred).
:- pred determinism_check_proc(proc_id, pred_id, module_info, module_info,
io__state, io__state).
:- mode determinism_check_proc(in, in, in, out, di, uo) is det.
% Infer the determinism of a procedure.
:- pred det_infer_proc(pred_id, proc_id, module_info, module_info, globals,
determinism, determinism, list(det_msg)).
:- mode det_infer_proc(in, in, in, out, in, out, out, out) is det.
% The tables for computing the determinism of compound goals
% from the determinism of their components.
:- pred det_conjunction_detism(determinism, determinism, determinism).
:- mode det_conjunction_detism(in, in, out) is det.
:- pred det_par_conjunction_detism(determinism, determinism, determinism).
:- mode det_par_conjunction_detism(in, in, out) is det.
:- pred det_disjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_disjunction_maxsoln(in, in, out) is det.
:- pred det_disjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_disjunction_canfail(in, in, out) is det.
:- pred det_switch_maxsoln(soln_count, soln_count, soln_count).
:- mode det_switch_maxsoln(in, in, out) is det.
:- pred det_switch_canfail(can_fail, can_fail, can_fail).
:- mode det_switch_canfail(in, in, out) is det.
:- pred det_negation_det(determinism, maybe(determinism)).
:- mode det_negation_det(in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds_goal, prog_data, det_report, det_util.
:- import_module type_util, mode_util, options, passes_aux.
:- import_module hlds_out, mercury_to_mercury, instmap.
:- import_module bool, map, set, require, term.
%-----------------------------------------------------------------------------%
determinism_pass(ModuleInfo0, ModuleInfo) -->
{ determinism_declarations(ModuleInfo0, DeclaredProcs,
UndeclaredProcs, NoInferProcs) },
{ list__foldl(set_non_inferred_proc_determinism, NoInferProcs,
ModuleInfo0, ModuleInfo1) },
globals__io_lookup_bool_option(verbose, Verbose),
globals__io_lookup_bool_option(debug_det, Debug),
( { UndeclaredProcs = [] } ->
{ ModuleInfo2 = ModuleInfo1 }
;
maybe_write_string(Verbose,
"% Doing determinism inference...\n"),
global_inference_pass(ModuleInfo1, UndeclaredProcs, Debug,
ModuleInfo2),
maybe_write_string(Verbose, "% done.\n")
),
maybe_write_string(Verbose, "% Doing determinism checking...\n"),
global_final_pass(ModuleInfo2, DeclaredProcs, Debug, ModuleInfo),
maybe_write_string(Verbose, "% done.\n").
determinism_check_proc(ProcId, PredId, ModuleInfo0, ModuleInfo) -->
globals__io_lookup_bool_option(debug_det, Debug),
global_final_pass(ModuleInfo0, [proc(PredId, ProcId)], Debug,
ModuleInfo).
%-----------------------------------------------------------------------------%
:- pred global_inference_pass(module_info, pred_proc_list, bool, module_info,
io__state, io__state).
:- mode global_inference_pass(in, in, in, out, di, uo) is det.
% Iterate until a fixpoint is reached. This can be expensive
% if a module has many predicates with undeclared determinisms.
% If this ever becomes a problem, we should switch to doing
% iterations only on strongly connected components of the
% dependency graph.
global_inference_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
[], Msgs, unchanged, Changed),
maybe_write_string(Debug, "% Inference pass complete\n"),
( { Changed = changed } ->
global_inference_pass(ModuleInfo1, ProcList, Debug, ModuleInfo)
;
% We have arrived at a fixpoint. Therefore all the messages we
% have are based on the final determinisms of all procedures,
% which means it is safe to print them.
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo)
).
:- pred global_inference_single_pass(pred_proc_list, bool,
module_info, module_info, list(det_msg), list(det_msg),
maybe_changed, maybe_changed, io__state, io__state).
:- mode global_inference_single_pass(in, in, in, out, in, out, in, out, di, uo)
is det.
global_inference_single_pass([], _, ModuleInfo, ModuleInfo, Msgs, Msgs,
Changed, Changed) --> [].
global_inference_single_pass([proc(PredId, ProcId) | PredProcs], Debug,
ModuleInfo0, ModuleInfo, Msgs0, Msgs, Changed0, Changed) -->
globals__io_get_globals(Globals),
{ det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1, Globals,
Detism0, Detism, ProcMsgs) },
( { Detism = Detism0 } ->
( { Debug = yes } ->
io__write_string("% Inferred old detism "),
mercury_output_det(Detism),
io__write_string(" for "),
hlds_out__write_pred_proc_id(ModuleInfo1,
PredId, ProcId),
io__write_string("\n")
;
[]
),
{ Changed1 = Changed0 }
;
( { Debug = yes } ->
io__write_string("% Inferred new detism "),
mercury_output_det(Detism),
io__write_string(" for "),
hlds_out__write_pred_proc_id(ModuleInfo1,
PredId, ProcId),
io__write_string("\n")
;
[]
),
{ Changed1 = changed }
),
{ list__append(ProcMsgs, Msgs0, Msgs1) },
global_inference_single_pass(PredProcs, Debug,
ModuleInfo1, ModuleInfo, Msgs1, Msgs, Changed1, Changed).
:- pred global_final_pass(module_info, pred_proc_list, bool,
module_info, io__state, io__state).
:- mode global_final_pass(in, in, in, out, di, uo) is det.
global_final_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
[], Msgs, unchanged, _),
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo2),
global_checking_pass(ProcList, ModuleInfo2, ModuleInfo).
%-----------------------------------------------------------------------------%
:- type soln_context ---> all_solns ; first_soln.
det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo, Globals,
Detism0, Detism, Msgs) :-
% Get the proc_info structure for this procedure
module_info_preds(ModuleInfo0, Preds0),
map__lookup(Preds0, PredId, Pred0),
pred_info_procedures(Pred0, Procs0),
map__lookup(Procs0, ProcId, Proc0),
% Remember the old inferred determinism of this procedure
proc_info_inferred_determinism(Proc0, Detism0),
% Work out whether the procedure occurs in a single-solution
% context or not. Currently we only assume so if
% the predicate has an explicit determinism declaration
% that says so.
(
proc_info_declared_determinism(Proc0, yes(DeclaredDetism)),
determinism_components(DeclaredDetism, _, at_most_many_cc)
->
SolnContext = first_soln
;
SolnContext = all_solns
),
% Infer the determinism of the goal
proc_info_goal(Proc0, Goal0),
proc_info_get_initial_instmap(Proc0, ModuleInfo0, InstMap0),
det_info_init(ModuleInfo0, PredId, ProcId, Globals, DetInfo),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs),
% Take the worst of the old and new detisms.
% This is needed to prevent loops on p :- not(p)
% at least if the initial assumed detism is det.
% This may also be needed to ensure that we don't change
% the interface determinism of procedures, if we are
% re-running determinism analysis.
determinism_components(Detism0, CanFail0, MaxSoln0),
determinism_components(Detism1, CanFail1, MaxSoln1),
det_switch_canfail(CanFail0, CanFail1, CanFail),
det_switch_maxsoln(MaxSoln0, MaxSoln1, MaxSoln),
determinism_components(Detism2, CanFail, MaxSoln),
% Now see if the evaluation model can change the detism
proc_info_eval_method(Proc0, EvalMethod),
eval_method_change_determinism(EvalMethod, Detism2, Detism),
% Save the newly inferred information
proc_info_set_goal(Proc0, Goal, Proc1),
proc_info_set_inferred_determinism(Proc1, Detism, Proc),
% Put back the new proc_info structure.
map__det_update(Procs0, ProcId, Proc, Procs),
pred_info_set_procedures(Pred0, Procs, Pred),
map__det_update(Preds0, PredId, Pred, Preds),
module_info_set_preds(ModuleInfo0, Preds, ModuleInfo).
%-----------------------------------------------------------------------------%
% Infers the determinism of `Goal0' and returns this in `Detism'.
% It annotates the goal and all its subgoals with their determinism
% and returns the annotated goal in `Goal'.
:- pred det_infer_goal(hlds_goal, instmap, soln_context, det_info,
hlds_goal, determinism, list(det_msg)).
:- mode det_infer_goal(in, in, in, in, out, out, out) is det.
det_infer_goal(Goal0 - GoalInfo0, InstMap0, SolnContext0, DetInfo,
Goal - GoalInfo, Detism, Msgs) :-
goal_info_get_nonlocals(GoalInfo0, NonLocalVars),
goal_info_get_instmap_delta(GoalInfo0, DeltaInstMap),
% If a goal has no output variables, then the goal is in
% single-solution context
( det_no_output_vars(NonLocalVars, InstMap0, DeltaInstMap, DetInfo) ->
OutputVars = no,
SolnContext = first_soln
;
OutputVars = yes,
SolnContext = SolnContext0
),
det_infer_goal_2(Goal0, GoalInfo0, InstMap0, SolnContext, DetInfo,
NonLocalVars, DeltaInstMap, Goal1, InternalDetism0, Msgs1),
determinism_components(InternalDetism0, InternalCanFail,
InternalSolns0),
(
% if mode analysis notices that a goal cannot succeed,
% then determinism analysis should notice this too
instmap_delta_is_unreachable(DeltaInstMap)
->
InternalSolns = at_most_zero
;
InternalSolns = InternalSolns0
),
determinism_components(InternalDetism, InternalCanFail, InternalSolns),
(
% If a goal with multiple solutions has no output variables,
% then it really it has only one solution
% (we will need to do pruning)
( InternalSolns = at_most_many
; InternalSolns = at_most_many_cc
),
OutputVars = no
->
Solns = at_most_one
;
% If a goal with multiple solutions occurs in a single-solution
% context, then we will need to do pruning
InternalSolns = at_most_many,
SolnContext = first_soln
->
Solns = at_most_many_cc
;
Solns = InternalSolns
),
determinism_components(Detism, InternalCanFail, Solns),
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
% See how we should introduce the commit operator, if one is needed.
(
% do we need a commit?
Detism \= InternalDetism,
% for disjunctions, we want to use a semidet
% or cc_nondet disjunction which avoids creating a
% choice point at all, rather than wrapping a
% some [] around a nondet disj, which would
% create a choice point and then prune it.
Goal1 \= disj(_, _),
% do we already have a commit?
Goal1 \= some(_, _)
->
% a commit needed - we must introduce an explicit `some'
% so that the code generator knows to insert the appropriate
% code for pruning
goal_info_set_determinism(GoalInfo0, InternalDetism, InnerInfo),
Goal = some([], Goal1 - InnerInfo),
Msgs = Msgs1
;
% either no commit needed, or a `some' already present
Goal = Goal1,
Msgs = Msgs1
).
%-----------------------------------------------------------------------------%
:- pred det_infer_goal_2(hlds_goal_expr, hlds_goal_info, instmap,
soln_context, det_info, set(var), instmap_delta,
hlds_goal_expr, determinism, list(det_msg)).
:- mode det_infer_goal_2(in, in, in, in, in, in, in, out, out, out) is det.
% The determinism of a conjunction is the worst case of the elements
% of that conjuction.
det_infer_goal_2(conj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
conj(Goals), Detism, Msgs) :-
det_infer_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, Detism, Msgs).
det_infer_goal_2(disj(Goals0, SM), _, InstMap0, SolnContext, DetInfo, _, _,
disj(Goals, SM), Detism, Msgs) :-
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo,
can_fail, at_most_zero, Goals, Detism, Msgs).
% The determinism of a switch is the worst of the determinism of each
% of the cases. Also, if only a subset of the constructors are handled,
% then it is semideterministic or worse - this is determined
% in switch_detection.m and handled via the SwitchCanFail field.
det_infer_goal_2(switch(Var, SwitchCanFail, Cases0, SM), GoalInfo,
InstMap0, SolnContext, DetInfo, _, _,
switch(Var, SwitchCanFail, Cases, SM), Detism, Msgs) :-
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo,
cannot_fail, at_most_zero, Cases, CasesDetism, Msgs0),
determinism_components(CasesDetism, CasesCanFail, CasesSolns),
% The switch variable tests are in a first_soln context if and only
% if the switch goal as a whole was in a first_soln context and the
% cases cannot fail.
(
CasesCanFail = cannot_fail,
SolnContext = first_soln
->
SwitchSolnContext = first_soln
;
SwitchSolnContext = all_solns
),
ExaminesRep = yes,
det_check_for_noncanonical_type(Var, ExaminesRep, SwitchCanFail,
SwitchSolnContext, GoalInfo, switch, DetInfo, Msgs0,
SwitchSolns, Msgs),
det_conjunction_canfail(SwitchCanFail, CasesCanFail, CanFail),
det_conjunction_maxsoln(SwitchSolns, CasesSolns, NumSolns),
determinism_components(Detism, CanFail, NumSolns).
% For calls, just look up the determinism entry associated with
% the called predicate.
% This is the point at which annotations start changing
% when we iterate to fixpoint for global determinism inference.
det_infer_goal_2(call(PredId, ModeId, A, B, C, N), GoalInfo, _, SolnContext,
DetInfo, _, _,
call(PredId, ModeId, A, B, C, N), Detism, Msgs) :-
det_lookup_detism(DetInfo, PredId, ModeId, Detism0),
%
% Make sure we don't try to call a committed-choice pred
% from a non-committed-choice context.
%
determinism_components(Detism0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ModeId)],
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Detism, CanFail, at_most_many)
;
Msgs = [],
Detism = Detism0
).
det_infer_goal_2(higher_order_call(PredVar, ArgVars, Types, Modes, Det0,
IsPredOrFunc),
GoalInfo, _InstMap0, SolnContext,
_MiscInfo, _NonLocalVars, _DeltaInstMap,
higher_order_call(PredVar, ArgVars, Types, Modes, Det0,
IsPredOrFunc),
Det, Msgs) :-
determinism_components(Det0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
Msgs = [higher_order_cc_pred_in_wrong_context(GoalInfo, Det0)],
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Det, CanFail, at_most_many)
;
Msgs = [],
Det = Det0
).
det_infer_goal_2(class_method_call(TCVar, Num, ArgVars, Types, Modes, Det0),
GoalInfo, _InstMap0, SolnContext,
_MiscInfo, _NonLocalVars, _DeltaInstMap,
class_method_call(TCVar, Num, ArgVars, Types, Modes, Det0),
Det, Msgs) :-
determinism_components(Det0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
% If called, this would give a slightly misleading
% error message. class_method_calls are introduced
% after det_analysis, though, so it doesn't really
% matter.
Msgs = [higher_order_cc_pred_in_wrong_context(GoalInfo, Det0)],
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Det, CanFail, at_most_many)
;
Msgs = [],
Det = Det0
).
% unifications are either deterministic or semideterministic.
% (see det_infer_unify).
det_infer_goal_2(unify(LT, RT0, M, U, C), GoalInfo, InstMap0, SolnContext,
DetInfo, _, _, unify(LT, RT, M, U, C), UnifyDet, Msgs) :-
(
RT0 = lambda_goal(PredOrFunc, NonLocalVars, Vars,
Modes, LambdaDeclaredDet, Goal0)
->
(
determinism_components(LambdaDeclaredDet, _,
at_most_many_cc)
->
LambdaSolnContext = first_soln
;
LambdaSolnContext = all_solns
),
det_info_get_module_info(DetInfo, ModuleInfo),
instmap__pre_lambda_update(ModuleInfo, Vars, Modes,
InstMap0, InstMap1),
det_infer_goal(Goal0, InstMap1, LambdaSolnContext, DetInfo,
Goal, LambdaInferredDet, Msgs1),
det_check_lambda(LambdaDeclaredDet, LambdaInferredDet,
Goal, GoalInfo, DetInfo, Msgs2),
list__append(Msgs1, Msgs2, Msgs3),
RT = lambda_goal(PredOrFunc, NonLocalVars, Vars,
Modes, LambdaDeclaredDet, Goal)
;
RT = RT0,
Msgs3 = []
),
det_infer_unify_canfail(U, UnifyCanFail),
det_infer_unify_examines_rep(U, ExaminesRepresentation),
det_check_for_noncanonical_type(LT, ExaminesRepresentation,
UnifyCanFail, SolnContext, GoalInfo, unify(C), DetInfo, Msgs3,
UnifyNumSolns, Msgs),
determinism_components(UnifyDet, UnifyCanFail, UnifyNumSolns).
det_infer_goal_2(if_then_else(Vars, Cond0, Then0, Else0, SM), _GoalInfo0,
InstMap0, SolnContext, DetInfo, _NonLocalVars, _DeltaInstMap,
if_then_else(Vars, Cond, Then, Else, SM), Detism, Msgs) :-
% We process the goal right-to-left, doing the `then' before
% the condition of the if-then-else, so that we can propagate
% the SolnContext correctly.
% First process the `then' part
update_instmap(Cond0, InstMap0, InstMap1),
det_infer_goal(Then0, InstMap1, SolnContext, DetInfo,
Then, ThenDetism, ThenMsgs),
determinism_components(ThenDetism, ThenCanFail, ThenMaxSoln),
% Next, work out the right soln_context to use for the condition.
% The condition is in a first_soln context if and only if the goal
% as a whole was in a first_soln context and the `then' part
% cannot fail.
(
ThenCanFail = cannot_fail,
SolnContext = first_soln
->
CondSolnContext = first_soln
;
CondSolnContext = all_solns
),
% Process the `condition' part
det_infer_goal(Cond0, InstMap0, CondSolnContext, DetInfo,
Cond, CondDetism, CondMsgs),
determinism_components(CondDetism, CondCanFail, CondMaxSoln),
% Process the `else' part
det_infer_goal(Else0, InstMap0, SolnContext, DetInfo,
Else, ElseDetism, ElseMsgs),
determinism_components(ElseDetism, ElseCanFail, ElseMaxSoln),
% Finally combine the results from the three parts
( CondCanFail = cannot_fail ->
% A -> B ; C is equivalent to A, B if A cannot fail
det_conjunction_detism(CondDetism, ThenDetism, Detism)
; CondMaxSoln = at_most_zero ->
% A -> B ; C is equivalent to ~A, C if A cannot succeed
det_negation_det(CondDetism, MaybeNegDetism),
(
MaybeNegDetism = no,
error("cannot find determinism of negated condition")
;
MaybeNegDetism = yes(NegDetism)
),
det_conjunction_detism(NegDetism, ElseDetism, Detism)
;
det_conjunction_maxsoln(CondMaxSoln, ThenMaxSoln, CTMaxSoln),
det_switch_maxsoln(CTMaxSoln, ElseMaxSoln, MaxSoln),
det_switch_canfail(ThenCanFail, ElseCanFail, CanFail),
determinism_components(Detism, CanFail, MaxSoln)
),
list__append(ThenMsgs, ElseMsgs, AfterMsgs),
list__append(CondMsgs, AfterMsgs, Msgs).
% Negations are almost always semideterministic. It is an error for
% a negation to further instantiate any non-local variable. Such
% errors will be reported by the mode analysis.
%
% Question: should we warn about the negation of goals that either
% cannot succeed or cannot fail?
% Answer: yes, probably, but it's not a high priority.
det_infer_goal_2(not(Goal0), _, InstMap0, _SolnContext, DetInfo, _, _,
not(Goal), Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, first_soln, DetInfo,
Goal, NegDet, Msgs),
det_negation_det(NegDet, MaybeDet),
(
MaybeDet = no,
error("inappropriate determinism inside a negation")
;
MaybeDet = yes(Det)
).
% Existential quantification may require a cut to throw away solutions,
% but we cannot rely on explicit quantification to detect this.
% Therefore cuts are handled in det_infer_goal.
det_infer_goal_2(some(Vars, Goal0), _, InstMap0, SolnContext, DetInfo, _, _,
some(Vars, Goal), Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Det, Msgs).
% pragma c_codes are handled in the same way as predicate calls
det_infer_goal_2(pragma_c_code(IsRecursive, PredId, ProcId, Args,
ArgNameMap, OrigArgTypes, PragmaCode),
GoalInfo, _, SolnContext, DetInfo, _, _,
pragma_c_code(IsRecursive, PredId, ProcId, Args,
ArgNameMap, OrigArgTypes, PragmaCode),
Detism, Msgs) :-
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_declared_determinism(ProcInfo, MaybeDetism),
( MaybeDetism = yes(Detism0) ->
determinism_components(Detism0, CanFail, NumSolns0),
( PragmaCode = nondet(_, _, _, _, _, _, _, _, _) ->
% pragma C codes of this form
% can have more than one solution
NumSolns1 = at_most_many
;
NumSolns1 = NumSolns0
),
(
NumSolns1 = at_most_many_cc,
SolnContext \= first_soln
->
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ProcId)],
NumSolns = at_most_many
;
Msgs = [],
NumSolns = NumSolns1
),
determinism_components(Detism, CanFail, NumSolns)
;
Msgs = [pragma_c_code_without_det_decl(PredId, ProcId)],
Detism = erroneous
).
%-----------------------------------------------------------------------------%
:- pred det_infer_conj(list(hlds_goal), instmap, soln_context, det_info,
list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_conj(in, in, in, in, out, out, out) is det.
det_infer_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
det_infer_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
[Goal | Goals], Detism, Msgs) :-
% We should look to see when we get to a not_reached point
% and optimize away the remaining elements of the conjunction.
% But that optimization is done in the code generation anyway.
% We infer the determinisms right-to-left, so that we can propagate
% the SolnContext properly.
%
% First, process the second and subsequent conjuncts.
%
update_instmap(Goal0, InstMap0, InstMap1),
det_infer_conj(Goals0, InstMap1, SolnContext, DetInfo,
Goals, DetismB, MsgsB),
determinism_components(DetismB, CanFailB, _MaxSolnsB),
%
% Next, work out whether the first conjunct is in a first_soln context
% or not. We obviously need all its solutions if we need all the
% solutions of the conjunction. However, even if we need only the
% first solution of the conjunction, we may need to generate more
% than one solution of the first conjunct if the later conjuncts
% may possibly fail.
%
(
CanFailB = cannot_fail,
SolnContext = first_soln
->
SolnContextA = first_soln
;
SolnContextA = all_solns
),
%
% Process the first conjunct.
%
det_infer_goal(Goal0, InstMap0, SolnContextA, DetInfo,
Goal, DetismA, MsgsA),
%
% Finally combine the results computed above.
%
det_conjunction_detism(DetismA, DetismB, Detism),
list__append(MsgsA, MsgsB, Msgs).
:- pred det_infer_disj(list(hlds_goal), instmap, soln_context, det_info,
can_fail, soln_count, list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_disj(in, in, in, in, in, in, out, out, out) is det.
det_infer_disj([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_disj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Goal | Goals1], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs1),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_disjunction_canfail(CanFail0, CanFail1, CanFail2),
det_disjunction_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns2, Goals1, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
:- pred det_infer_switch(list(case), instmap, soln_context, det_info,
can_fail, soln_count, list(case), determinism, list(det_msg)).
:- mode det_infer_switch(in, in, in, in, in, in, out, out, out) is det.
det_infer_switch([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_switch([Case0 | Cases0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Case | Cases], Detism, Msgs) :-
% Technically, we should update the instmap to reflect the
% knowledge that the var is bound to this particular
% constructor, but we wouldn't use that information here anyway,
% so we don't bother.
Case0 = case(ConsId, Goal0),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs1),
Case = case(ConsId, Goal),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_switch_canfail(CanFail0, CanFail1, CanFail2),
det_switch_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns2, Cases, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
%-----------------------------------------------------------------------------%
:- pred det_check_for_noncanonical_type(var, bool, can_fail, soln_context,
hlds_goal_info, cc_unify_context, det_info, list(det_msg),
soln_count, list(det_msg)).
:- mode det_check_for_noncanonical_type(in, in, in, in,
in, in, in, in, out, out) is det.
det_check_for_noncanonical_type(Var, ExaminesRepresentation, CanFail,
SolnContext, GoalInfo, GoalContext, DetInfo, Msgs0,
NumSolns, Msgs) :-
(
%
% check for unifications that attempt to examine
% the representation of a type that does not have
% a single representation for each abstract value
%
ExaminesRepresentation = yes,
det_get_proc_info(DetInfo, ProcInfo),
proc_info_vartypes(ProcInfo, VarTypes),
map__lookup(VarTypes, Var, Type),
det_type_has_user_defined_equality_pred(DetInfo, Type,
_TypeContext)
->
( CanFail = can_fail ->
proc_info_varset(ProcInfo, VarSet),
Msgs = [cc_unify_can_fail(GoalInfo, Var, Type,
VarSet, GoalContext) | Msgs0]
; SolnContext \= first_soln ->
proc_info_varset(ProcInfo, VarSet),
Msgs = [cc_unify_in_wrong_context(GoalInfo, Var,
Type, VarSet, GoalContext) | Msgs0]
;
Msgs = Msgs0
),
( SolnContext = first_soln ->
NumSolns = at_most_many_cc
;
NumSolns = at_most_many
)
;
NumSolns = at_most_one,
Msgs = Msgs0
).
% return true iff there was a `where equality is <predname>' declaration
% for the specified type.
:- pred det_type_has_user_defined_equality_pred(det_info::in, (type)::in,
term__context::out) is semidet.
det_type_has_user_defined_equality_pred(DetInfo, Type, TypeContext) :-
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_types(ModuleInfo, TypeTable),
type_to_type_id(Type, TypeId, _TypeArgs),
map__search(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
TypeBody = du_type(_, _, _, yes(_)),
hlds_data__get_type_defn_context(TypeDefn, TypeContext).
% return yes iff the results of the specified unification might depend on
% the concrete representation of the abstract values involved.
:- pred det_infer_unify_examines_rep(unification::in, bool::out) is det.
det_infer_unify_examines_rep(assign(_, _), no).
det_infer_unify_examines_rep(construct(_, _, _, _), no).
det_infer_unify_examines_rep(deconstruct(_, _, _, _, _), yes).
det_infer_unify_examines_rep(simple_test(_, _), yes).
det_infer_unify_examines_rep(complicated_unify(_, _), no).
% Some complicated modes of complicated unifications _do_
% examine the representation...
% but we will catch those by reporting errors in the
% compiler-generated code for the complicated unification.
% Deconstruction unifications cannot fail if the type
% only has one constructor, or if the variable is known to be
% already bound to the appropriate functor.
%
% This is handled (modulo bugs) by modes.m, which sets
% the appropriate field in the deconstruct(...) to can_fail for
% those deconstruction unifications which might fail.
% But switch_detection.m may set it back to cannot_fail again,
% if it moves the functor test into a switch instead.
:- pred det_infer_unify_canfail(unification, can_fail).
:- mode det_infer_unify_canfail(in, out) is det.
det_infer_unify_canfail(deconstruct(_, _, _, _, CanFail), CanFail).
det_infer_unify_canfail(assign(_, _), cannot_fail).
det_infer_unify_canfail(construct(_, _, _, _), cannot_fail).
det_infer_unify_canfail(simple_test(_, _), can_fail).
det_infer_unify_canfail(complicated_unify(_, CanFail), CanFail).
%-----------------------------------------------------------------------------%
% When figuring out the determinism of a conjunction,
% if the second goal is unreachable, then then the
% determinism of the conjunction is just the determinism
% of the first goal.
det_conjunction_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
( MaxSolnA = at_most_zero ->
Detism = DetismA
;
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln)
).
% Figuring out the determinism of a parallel conjunction is much
% easier than for a sequential conjunction, since you simply
% ignore the case where the second goal is unreachable. Just do
% a normal solution count.
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
% For the at_most_zero, at_most_one, at_most_many,
% we're just doing abstract interpretation to count
% the number of solutions. Similarly, for the can_fail
% and cannot_fail components, we're doing abstract
% interpretation to count the possible number of failures.
% If the num_solns is at_most_many_cc, this means that
% the goal might have many logical solutions if there were no
% pruning, but that the goal occurs in a single-solution
% context, so only the first solution will be returned.
:- pred det_conjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_conjunction_maxsoln(in, in, out) is det.
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first conjunct could be cc pruned,
% the second conj ought to have been cc pruned too
error("det_conjunction_maxsoln: many_cc , many").
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
:- pred det_conjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_conjunction_canfail(in, in, out) is det.
det_conjunction_canfail(can_fail, can_fail, can_fail).
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first disjunct could be cc pruned,
% the second disjunct ought to have been cc pruned too
error("det_disjunction_maxsoln: cc in first case, not cc in second case").
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_many_cc, _) :-
% if the first disjunct could be cc pruned,
% the second disjunct ought to have been cc pruned too
error("det_disjunction_maxsoln: cc in second case, not cc in first case").
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
det_disjunction_canfail(can_fail, can_fail, can_fail).
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first case could be cc pruned,
% the second case ought to have been cc pruned too
error("det_switch_maxsoln: cc in first case, not cc in second case").
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
det_switch_maxsoln(at_most_many, at_most_many_cc, _) :-
% if the first case could be cc pruned,
% the second case ought to have been cc pruned too
error("det_switch_maxsoln: cc in second case, not cc in first case").
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
det_switch_canfail(can_fail, can_fail, can_fail).
det_switch_canfail(can_fail, cannot_fail, can_fail).
det_switch_canfail(cannot_fail, can_fail, can_fail).
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
det_negation_det(det, yes(failure)).
det_negation_det(semidet, yes(semidet)).
det_negation_det(multidet, no).
det_negation_det(nondet, no).
det_negation_det(cc_multidet, no).
det_negation_det(cc_nondet, no).
det_negation_det(erroneous, yes(erroneous)).
det_negation_det(failure, yes(det)).
%-----------------------------------------------------------------------------%
% determinism_declarations takes a module_info as input and
% returns two lists of procedure ids, the first being those
% with determinism declarations, and the second being those without.
:- pred determinism_declarations(module_info, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode determinism_declarations(in, out, out, out) is det.
determinism_declarations(ModuleInfo, DeclaredProcs,
UndeclaredProcs, NoInferProcs) :-
get_all_pred_procs(ModuleInfo, PredProcs),
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
UndeclaredProcs, NoInferProcs).
% get_all_pred_procs takes a module_info and returns a list
% of all the procedures ids for that module (except class methods,
% which do not need to be checked since we generate the code ourselves).
:- pred get_all_pred_procs(module_info, pred_proc_list).
:- mode get_all_pred_procs(in, out) is det.
get_all_pred_procs(ModuleInfo, PredProcs) :-
module_info_predids(ModuleInfo, PredIds),
module_info_preds(ModuleInfo, Preds),
get_all_pred_procs_2(Preds, PredIds, [], PredProcs).
:- pred get_all_pred_procs_2(pred_table, list(pred_id),
pred_proc_list, pred_proc_list).
:- mode get_all_pred_procs_2(in, in, in, out) is det.
get_all_pred_procs_2(_Preds, [], PredProcs, PredProcs).
get_all_pred_procs_2(Preds, [PredId|PredIds], PredProcs0, PredProcs) :-
map__lookup(Preds, PredId, Pred),
pred_info_procids(Pred, ProcIds),
fold_pred_modes(PredId, ProcIds, PredProcs0, PredProcs1),
get_all_pred_procs_2(Preds, PredIds, PredProcs1, PredProcs).
:- pred fold_pred_modes(pred_id, list(proc_id), pred_proc_list, pred_proc_list).
:- mode fold_pred_modes(in, in, in, out) is det.
fold_pred_modes(_PredId, [], PredProcs, PredProcs).
fold_pred_modes(PredId, [ProcId|ProcIds], PredProcs0, PredProcs) :-
fold_pred_modes(PredId, ProcIds, [proc(PredId, ProcId) | PredProcs0],
PredProcs).
% segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs)
% splits the list of procedures PredProcs into DeclaredProcs and
% UndeclaredProcs.
:- pred segregate_procs(module_info, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode segregate_procs(in, in, out, out, out) is det.
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
UndeclaredProcs, NoInferProcs) :-
segregate_procs_2(ModuleInfo, PredProcs, [], DeclaredProcs,
[], UndeclaredProcs, [], NoInferProcs).
:- pred segregate_procs_2(module_info, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode segregate_procs_2(in, in, in, out, in, out, in, out) is det.
segregate_procs_2(_ModuleInfo, [], DeclaredProcs, DeclaredProcs,
UndeclaredProcs, UndeclaredProcs, NoInferProcs, NoInferProcs).
segregate_procs_2(ModuleInfo, [proc(PredId, ProcId) | PredProcs],
DeclaredProcs0, DeclaredProcs,
UndeclaredProcs0, UndeclaredProcs,
NoInferProcs0, NoInferProcs) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, Pred),
(
(
pred_info_is_imported(Pred)
;
pred_info_is_pseudo_imported(Pred),
hlds_pred__in_in_unification_proc_id(ProcId)
;
pred_info_get_markers(Pred, Markers),
check_marker(Markers, class_method)
)
->
UndeclaredProcs1 = UndeclaredProcs0,
DeclaredProcs1 = DeclaredProcs0,
NoInferProcs1 = [proc(PredId, ProcId) | NoInferProcs0]
;
pred_info_procedures(Pred, Procs),
map__lookup(Procs, ProcId, Proc),
proc_info_declared_determinism(Proc, MaybeDetism),
(
MaybeDetism = no,
UndeclaredProcs1 =
[proc(PredId, ProcId) | UndeclaredProcs0],
DeclaredProcs1 = DeclaredProcs0
;
MaybeDetism = yes(_),
DeclaredProcs1 =
[proc(PredId, ProcId) | DeclaredProcs0],
UndeclaredProcs1 = UndeclaredProcs0
),
NoInferProcs1 = NoInferProcs0
),
segregate_procs_2(ModuleInfo, PredProcs, DeclaredProcs1, DeclaredProcs,
UndeclaredProcs1, UndeclaredProcs,
NoInferProcs1, NoInferProcs).
% We can't infer a tighter determinism for imported procedures or
% for class methods, so set the inferred determinism to be the
% same as the declared determinism. This can't be done easily in
% make_hlds.m since inter-module optimization means that the
% import_status of procedures isn't determined until after all
% items are processed.
:- pred set_non_inferred_proc_determinism(pred_proc_id,
module_info, module_info).
:- mode set_non_inferred_proc_determinism(in, in, out) is det.
set_non_inferred_proc_determinism(proc(PredId, ProcId),
ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, Procs0),
map__lookup(Procs0, ProcId, ProcInfo0),
proc_info_declared_determinism(ProcInfo0, MaybeDet),
( MaybeDet = yes(Det) ->
proc_info_set_inferred_determinism(ProcInfo0, Det, ProcInfo),
map__det_update(Procs0, ProcId, ProcInfo, Procs),
pred_info_set_procedures(PredInfo0, Procs, PredInfo),
module_info_set_pred_info(ModuleInfo0,
PredId, PredInfo, ModuleInfo)
;
ModuleInfo = ModuleInfo0
).
%-----------------------------------------------------------------------------%