Files
mercury/compiler/bytecode_gen.m
Zoltan Somogyi ba93a52fe7 This diff changes a few types from being defined as equivalent to a pair
Estimated hours taken: 10
Branches: main

This diff changes a few types from being defined as equivalent to a pair
to being discriminated union types with their own function symbol. This
was motivated by an error message (one of many, but the one that broke
the camel's back) about "-" being used in an ambiguous manner. It will
reduce the number of such messages in the future, and will make compiler
data structures easier to inspect in the debugger.

The most important type changed by far is hlds_goal, whose function symbol
is now "hlds_goal". Second and third in importance are llds.instruction
(function symbol "llds_instr") and prog_item.m's item_and_context (function
symbol "item_and_context"). There are some others as well.

In several places, I rearranged predicates to factor the deconstruction of
goals into hlds_goal_expr and hlds_goal_into out of each clause into a single
point. In many places, I changed variable names that used "Goal" to refer
to just hlds_goal_exprs to use "GoalExpr" instead. I also changed variable
names that used "Item" to refer to item_and_contexts to use "ItemAndContext"
instead. This should make reading such code less confusing.

I renamed some function symbols and predicates to avoid ambiguities.

I only made one algorithmic change (at least intentionally).
In assertion.m, comparing two goals for equality now ignores goal_infos
for all kinds of goals, whereas previously it ignored them for most kinds
of goals, but for shorthand goals it was insisting on them being equal.
This seemed to me to be a bug. Pete, can you confirm this?
2007-01-06 09:23:59 +00:00

919 lines
34 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1996-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: bytecode_gen.m.
% Author: zs.
%
% This module generates bytecode, which is intended to be used by a
% (not yet implemented) bytecode interpreter/debugger.
%
%---------------------------------------------------------------------------%
:- module bytecode_backend.bytecode_gen.
:- interface.
:- import_module bytecode_backend.bytecode.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module io.
:- import_module list.
%---------------------------------------------------------------------------%
:- pred gen_module(module_info::in, list(byte_code)::out,
io::di, io::uo) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
% We make use of some stuff from the LLDS back-end, in particular the stuff
% relating to the argument passing convention in arg_info.m and call_gen.m.
% The intent here is to use the same argument passing convention as for
% the LLDS, to allow interoperability between code compiled to bytecode
% and code compiled to machine code.
%
% XXX It might be nice to move the argument passing related stuff
% in call_gen.m that we use here into arg_info.m, and to then rework
% arg_info.m so that it didn't depend on the LLDS.
:- import_module backend_libs.
:- import_module backend_libs.builtin_ops.
:- import_module check_hlds. % for type_util and mode_util
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.arg_info.
:- import_module hlds.code_model.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_code_util.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module hlds.passes_aux.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module libs.tree.
:- import_module ll_backend. % bytecode_gen uses ll_backend__call_gen.m
:- import_module ll_backend.call_gen. % XXX for arg passing convention
:- import_module mdbcomp.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type.
:- import_module assoc_list.
:- import_module counter.
:- import_module deconstruct.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%---------------------------------------------------------------------------%
gen_module(ModuleInfo, Code, !IO) :-
module_info_predids(ModuleInfo, PredIds),
gen_preds(PredIds, ModuleInfo, CodeTree, !IO),
tree.flatten(CodeTree, CodeList),
list.condense(CodeList, Code).
:- pred gen_preds(list(pred_id)::in, module_info::in, byte_tree::out,
io::di, io::uo) is det.
gen_preds([], _ModuleInfo, empty, !IO).
gen_preds([PredId | PredIds], ModuleInfo, Code, !IO) :-
module_info_preds(ModuleInfo, PredTable),
map.lookup(PredTable, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
(
ProcIds = [],
PredCode = empty
;
ProcIds = [_ | _],
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
PredName = predicate_name(ModuleInfo, PredId),
list.length(ProcIds, ProcsCount),
Arity = pred_info_orig_arity(PredInfo),
get_is_func(PredInfo, IsFunc),
EnterCode = node([byte_enter_pred(PredName, Arity, IsFunc,
ProcsCount)]),
EndofCode = node([byte_endof_pred]),
PredCode = tree_list([EnterCode, ProcsCode, EndofCode])
),
gen_preds(PredIds, ModuleInfo, OtherCode, !IO),
Code = tree(PredCode, OtherCode).
:- pred gen_pred(pred_id::in, list(proc_id)::in, pred_info::in,
module_info::in, byte_tree::out, io::di, io::uo) is det.
gen_pred(_PredId, [], _PredInfo, _ModuleInfo, empty, !IO).
gen_pred(PredId, [ProcId | ProcIds], PredInfo, ModuleInfo, Code, !IO) :-
write_proc_progress_message("% Generating bytecode for ",
PredId, ProcId, ModuleInfo, !IO),
gen_proc(ProcId, PredInfo, ModuleInfo, ProcCode),
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
Code = tree(ProcCode, ProcsCode).
:- pred gen_proc(proc_id::in, pred_info::in,
module_info::in, byte_tree::out) is det.
gen_proc(ProcId, PredInfo, ModuleInfo, Code) :-
pred_info_get_procedures(PredInfo, ProcTable),
map.lookup(ProcTable, ProcId, ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
proc_info_get_vartypes(ProcInfo, VarTypes),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_interface_determinism(ProcInfo, Detism),
determinism_to_code_model(Detism, CodeModel),
goal_util.goal_vars(Goal, GoalVars),
proc_info_get_headvars(ProcInfo, ArgVars),
set.insert_list(GoalVars, ArgVars, Vars),
set.to_sorted_list(Vars, VarList),
map.init(VarMap0),
create_varmap(VarList, VarSet, VarTypes, 0, VarMap0, VarMap, VarInfos),
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo0),
get_next_label(ZeroLabel, ByteInfo0, ByteInfo1),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, Args),
call_gen.input_arg_locs(Args, InputArgs),
gen_pickups(InputArgs, ByteInfo, PickupCode),
call_gen.output_arg_locs(Args, OutputArgs),
gen_places(OutputArgs, ByteInfo, PlaceCode),
% If semideterministic, reserve temp slot 0 for the return value
( CodeModel = model_semi ->
get_next_temp(_FrameTemp, ByteInfo1, ByteInfo2)
;
ByteInfo2 = ByteInfo1
),
gen_goal(Goal, ByteInfo2, ByteInfo3, GoalCode),
get_next_label(EndLabel, ByteInfo3, ByteInfo),
get_counts(ByteInfo, LabelCount, TempCount),
ZeroLabelCode = node([byte_label(ZeroLabel)]),
BodyTree = tree_list([PickupCode, ZeroLabelCode, GoalCode, PlaceCode]),
tree.flatten(BodyTree, BodyList),
list.condense(BodyList, BodyCode0),
( list.member(byte_not_supported, BodyCode0) ->
BodyCode = node([byte_not_supported])
;
BodyCode = node(BodyCode0)
),
proc_id_to_int(ProcId, ProcInt),
EnterCode = node([byte_enter_proc(ProcInt, Detism, LabelCount, EndLabel,
TempCount, VarInfos)]),
( CodeModel = model_semi ->
EndofCode = node([byte_semidet_succeed, byte_label(EndLabel),
byte_endof_proc])
;
EndofCode = node([byte_label(EndLabel), byte_endof_proc])
),
Code = tree_list([EnterCode, BodyCode, EndofCode]).
%---------------------------------------------------------------------------%
:- pred gen_goal(hlds_goal::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_goal(hlds_goal(GoalExpr, GoalInfo), !ByteInfo, Code) :-
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, GoalCode),
goal_info_get_context(GoalInfo, Context),
term.context_line(Context, Line),
Code = tree(node([byte_context(Line)]), GoalCode).
:- pred gen_goal_expr(hlds_goal_expr::in, hlds_goal_info::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, Code) :-
(
GoalExpr = generic_call(GenericCallType,
ArgVars, ArgModes, Detism),
( GenericCallType = higher_order(PredVar, _, _, _) ->
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism,
!.ByteInfo, Code)
;
% XXX
% string.append_list([
% "bytecode for ", GenericCallFunctor, " calls"], Msg),
% sorry(this_file, Msg)
functor(GenericCallType, canonicalize, _GenericCallFunctor, _),
Code = node([byte_not_supported])
)
;
GoalExpr = plain_call(PredId, ProcId, ArgVars, BuiltinState, _, _),
( BuiltinState = not_builtin ->
goal_info_get_determinism(GoalInfo, Detism),
gen_call(PredId, ProcId, ArgVars, Detism, !.ByteInfo, Code)
;
gen_builtin(PredId, ProcId, ArgVars, !.ByteInfo, Code)
)
;
GoalExpr = unify(Var, RHS, _Mode, Unification, _),
gen_unify(Unification, Var, RHS, !.ByteInfo, Code)
;
GoalExpr = negation(Goal),
gen_goal(Goal, !ByteInfo, SomeCode),
get_next_label(EndLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
EnterCode = node([byte_enter_negation(FrameTemp, EndLabel)]),
EndofCode = node([byte_endof_negation_goal(FrameTemp),
byte_label(EndLabel), byte_endof_negation]),
Code = tree_list([EnterCode, SomeCode, EndofCode])
;
GoalExpr = scope(_, InnerGoal),
gen_goal(InnerGoal, !ByteInfo, InnerCode),
goal_info_get_determinism(GoalInfo, OuterDetism),
InnerGoal = hlds_goal(_, InnerGoalInfo),
goal_info_get_determinism(InnerGoalInfo, InnerDetism),
determinism_to_code_model(OuterDetism, OuterCodeModel),
determinism_to_code_model(InnerDetism, InnerCodeModel),
( InnerCodeModel = OuterCodeModel ->
Code = InnerCode
;
get_next_temp(Temp, !ByteInfo),
EnterCode = node([byte_enter_commit(Temp)]),
EndofCode = node([byte_endof_commit(Temp)]),
Code = tree_list([EnterCode, InnerCode, EndofCode])
)
;
GoalExpr = conj(plain_conj, GoalList),
gen_conj(GoalList, !ByteInfo, Code)
;
GoalExpr = conj(parallel_conj, _GoalList),
sorry(this_file, "bytecode_gen of parallel conjunction")
;
GoalExpr = disj(GoalList),
(
GoalList = [],
Code = node([byte_fail])
;
GoalList = [_ | _],
get_next_label(EndLabel, !ByteInfo),
gen_disj(GoalList, EndLabel, !ByteInfo, DisjCode),
EnterCode = node([byte_enter_disjunction(EndLabel)]),
EndofCode = node([byte_endof_disjunction, byte_label(EndLabel)]),
Code = tree_list([EnterCode, DisjCode, EndofCode])
)
;
GoalExpr = switch(Var, _, CasesList),
get_next_label(EndLabel, !ByteInfo),
gen_switch(CasesList, Var, EndLabel, !ByteInfo, SwitchCode),
map_var(!.ByteInfo, Var, ByteVar),
EnterCode = node([byte_enter_switch(ByteVar, EndLabel)]),
EndofCode = node([byte_endof_switch, byte_label(EndLabel)]),
Code = tree_list([EnterCode, SwitchCode, EndofCode])
;
GoalExpr = if_then_else(_Vars, Cond, Then, Else),
get_next_label(EndLabel, !ByteInfo),
get_next_label(ElseLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
gen_goal(Cond, !ByteInfo, CondCode),
gen_goal(Then, !ByteInfo, ThenCode),
gen_goal(Else, !ByteInfo, ElseCode),
EnterIfCode = node([byte_enter_if(ElseLabel, EndLabel, FrameTemp)]),
EnterThenCode = node([byte_enter_then(FrameTemp)]),
EndofThenCode = node([byte_endof_then(EndLabel), byte_label(ElseLabel),
byte_enter_else(FrameTemp)]),
EndofIfCode = node([byte_endof_if, byte_label(EndLabel)]),
Code = tree_list([EnterIfCode, CondCode, EnterThenCode, ThenCode,
EndofThenCode, ElseCode, EndofIfCode])
;
GoalExpr = call_foreign_proc(_, _, _, _, _, _, _),
Code = node([byte_not_supported])
;
GoalExpr = shorthand(_),
% these should have been expanded out by now
unexpected(this_file, "goal_expr: unexpected shorthand")
).
%---------------------------------------------------------------------------%
:- pred gen_places(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_places([], _, empty).
gen_places([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_places(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([byte_place_arg(byte_reg_r, Loc, ByteVar)]), OtherCode).
:- pred gen_pickups(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_pickups([], _, empty).
gen_pickups([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_pickups(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([byte_pickup_arg(byte_reg_r, Loc, ByteVar)]), OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for a higher order call.
%
:- pred gen_higher_order_call(prog_var::in, list(prog_var)::in,
list(mer_mode)::in, determinism::in, byte_info::in, byte_tree::out) is det.
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism, ByteInfo, Code) :-
determinism_to_code_model(Detism, CodeModel),
get_module_info(ByteInfo, ModuleInfo),
list.map(get_var_type(ByteInfo), ArgVars, ArgTypes),
make_arg_infos(ArgTypes, ArgModes, CodeModel, ModuleInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
arg_info.partition_args(ArgVarsInfos, InVars, OutVars),
list.length(InVars, NInVars),
list.length(OutVars, NOutVars),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
map_var(ByteInfo, PredVar, BytePredVar),
Call = node([byte_higher_order_call(BytePredVar, NInVars, NOutVars,
Detism)]),
( CodeModel = model_semi ->
Check = node([byte_semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for an ordinary call.
%
:- pred gen_call(pred_id::in, proc_id::in, list(prog_var)::in,
determinism::in, byte_info::in, byte_tree::out) is det.
gen_call(PredId, ProcId, ArgVars, Detism, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
proc_id_to_int(ProcId, ProcInt),
Call = node([byte_call(ModuleName, PredName, Arity, IsFunc, ProcInt)]),
determinism_to_code_model(Detism, CodeModel),
( CodeModel = model_semi ->
Check = node([byte_semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for a call to a builtin.
%
:- pred gen_builtin(pred_id::in, proc_id::in, list(prog_var)::in,
byte_info::in, byte_tree::out) is det.
gen_builtin(PredId, ProcId, Args, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
ModuleName = predicate_module(ModuleInfo, PredId),
PredName = predicate_name(ModuleInfo, PredId),
(
builtin_ops.translate_builtin(ModuleName, PredName, ProcId,
Args, SimpleCode)
->
(
SimpleCode = test(Test),
map_test(ByteInfo, Test, Code)
;
SimpleCode = assign(Var, Expr),
map_assign(ByteInfo, Var, Expr, Code)
;
SimpleCode = ref_assign(_Var, _Expr),
unexpected(this_file, "ref_assign")
;
SimpleCode = noop(_DefinedVars),
Code = node([])
)
;
string.append("unknown builtin predicate ", PredName, Msg),
unexpected(this_file, Msg)
).
:- pred map_test(byte_info::in, simple_expr(prog_var)::in(simple_test_expr),
byte_tree::out) is det.
map_test(ByteInfo, TestExpr, Code) :-
(
TestExpr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
Code = node([byte_builtin_bintest(Binop, ByteX, ByteY)])
;
TestExpr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
Code = node([byte_builtin_untest(Unop, ByteX)])
).
:- pred map_assign(byte_info::in, prog_var::in,
simple_expr(prog_var)::in(simple_assign_expr), byte_tree::out) is det.
map_assign(ByteInfo, Var, Expr, Code) :-
(
Expr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_builtin_binop(Binop, ByteX, ByteY, ByteVar)])
;
Expr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_builtin_unop(Unop, ByteX, ByteVar)])
;
Expr = leaf(X),
map_var(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_assign(ByteVar, ByteX)])
).
:- pred map_arg(byte_info::in, simple_expr(prog_var)::in(simple_arg_expr),
byte_arg::out) is det.
map_arg(ByteInfo, Expr, ByteArg) :-
(
Expr = leaf(Var),
map_var(ByteInfo, Var, ByteVar),
ByteArg = byte_arg_var(ByteVar)
;
Expr = int_const(IntVal),
ByteArg = byte_arg_int_const(IntVal)
;
Expr = float_const(FloatVal),
ByteArg = byte_arg_float_const(FloatVal)
).
%---------------------------------------------------------------------------%
% Generate bytecode for a unification.
%
:- pred gen_unify(unification::in, prog_var::in, unify_rhs::in,
byte_info::in, byte_tree::out) is det.
gen_unify(construct(Var, ConsId, Args, UniModes, _, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
( ByteConsId = byte_pred_const(_, _, _, _, _) ->
Code = node([byte_construct(ByteVar, ByteConsId, ByteArgs)])
;
% Don't call map_uni_modes until after
% the pred_const test fails, since the arg-modes on
% unifications that create closures aren't like other arg-modes.
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_var) ->
Code = node([byte_construct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([byte_complex_construct(ByteVar, ByteConsId, Pairs)])
)
).
gen_unify(deconstruct(Var, ConsId, Args, UniModes, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_arg) ->
Code = node([byte_deconstruct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([byte_complex_deconstruct(ByteVar, ByteConsId, Pairs)])
).
gen_unify(assign(Target, Source), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Target, ByteTarget),
map_var(ByteInfo, Source, ByteSource),
Code = node([byte_assign(ByteTarget, ByteSource)]).
gen_unify(simple_test(Var1, Var2), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Var1, ByteVar1),
map_var(ByteInfo, Var2, ByteVar2),
get_var_type(ByteInfo, Var1, Var1Type),
get_var_type(ByteInfo, Var2, Var2Type),
(
type_to_ctor_and_args(Var1Type, TypeCtor1, _),
type_to_ctor_and_args(Var2Type, TypeCtor2, _)
->
( TypeCtor2 = TypeCtor1 ->
TypeCtor = TypeCtor1
; unexpected(this_file,
"simple_test between different types")
)
;
unexpected(this_file, "failed lookup of type id")
),
ByteInfo = byte_info(_, _, ModuleInfo, _, _),
TypeCategory = classify_type_ctor(ModuleInfo, TypeCtor),
(
TypeCategory = type_cat_int,
TestId = int_test
;
TypeCategory = type_cat_char,
TestId = char_test
;
TypeCategory = type_cat_string,
TestId = string_test
;
TypeCategory = type_cat_float,
TestId = float_test
;
TypeCategory = type_cat_dummy,
TestId = dummy_test
;
TypeCategory = type_cat_enum,
TestId = enum_test
;
TypeCategory = type_cat_higher_order,
unexpected(this_file, "higher_order_type in simple_test")
;
TypeCategory = type_cat_tuple,
unexpected(this_file, "tuple_type in simple_test")
;
TypeCategory = type_cat_user_ctor,
unexpected(this_file, "user_ctor_type in simple_test")
;
TypeCategory = type_cat_variable,
unexpected(this_file, "variable_type in simple_test")
;
TypeCategory = type_cat_void,
unexpected(this_file, "void_type in simple_test")
;
TypeCategory = type_cat_type_info,
unexpected(this_file, "type_info_type in simple_test")
;
TypeCategory = type_cat_type_ctor_info,
unexpected(this_file, "type_ctor_info_type in simple_test")
;
TypeCategory = type_cat_typeclass_info,
unexpected(this_file, "typeclass_info_type in simple_test")
;
TypeCategory = type_cat_base_typeclass_info,
unexpected(this_file, "base_typeclass_info_type in simple_test")
),
Code = node([byte_test(ByteVar1, ByteVar2, TestId)]).
gen_unify(complicated_unify(_,_,_), _Var, _RHS, _ByteInfo, _Code) :-
unexpected(this_file, "complicated unifications " ++
"should have been handled by polymorphism.m").
:- pred map_uni_modes(list(uni_mode)::in, list(prog_var)::in,
byte_info::in, list(byte_dir)::out) is det.
map_uni_modes([], [], _, []).
map_uni_modes([UniMode | UniModes], [Arg | Args], ByteInfo, [Dir | Dirs]) :-
UniMode = ((VarInitial - ArgInitial) -> (VarFinal - ArgFinal)),
get_module_info(ByteInfo, ModuleInfo),
get_var_type(ByteInfo, Arg, Type),
mode_to_arg_mode(ModuleInfo, (VarInitial -> VarFinal), Type, VarMode),
mode_to_arg_mode(ModuleInfo, (ArgInitial -> ArgFinal), Type, ArgMode),
(
VarMode = top_in,
ArgMode = top_out
->
Dir = to_arg
;
VarMode = top_out,
ArgMode = top_in
->
Dir = to_var
;
VarMode = top_unused,
ArgMode = top_unused
->
Dir = to_none
;
unexpected(this_file,
"invalid mode for (de)construct unification")
),
map_uni_modes(UniModes, Args, ByteInfo, Dirs).
map_uni_modes([], [_|_], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
map_uni_modes([_|_], [], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
:- pred all_dirs_same(list(byte_dir)::in, byte_dir::in)
is semidet.
all_dirs_same([], _).
all_dirs_same([Dir | Dirs], Dir) :-
all_dirs_same(Dirs, Dir).
%---------------------------------------------------------------------------%
% Generate bytecode for a conjunction
%
:- pred gen_conj(list(hlds_goal)::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_conj([], !ByteInfo, empty).
gen_conj([Goal | Goals], !ByteInfo, Code) :-
gen_goal(Goal, !ByteInfo, ThisCode),
gen_conj(Goals, !ByteInfo, OtherCode),
Code = tree(ThisCode, OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for each disjunct of a disjunction.
%
:- pred gen_disj(list(hlds_goal)::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_disj([], _, _, _, _) :-
unexpected(this_file, "empty disjunction in disj").
gen_disj([Disjunct | Disjuncts], EndLabel, !ByteInfo, Code) :-
gen_goal(Disjunct, !ByteInfo, ThisCode),
(
Disjuncts = [],
EnterCode = node([byte_enter_disjunct(-1)]),
EndofCode = node([byte_endof_disjunct(EndLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode])
;
Disjuncts = [_ | _],
gen_disj(Disjuncts, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([byte_enter_disjunct(NextLabel)]),
EndofCode = node([byte_endof_disjunct(EndLabel),
byte_label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode])
).
%---------------------------------------------------------------------------%
% Generate bytecode for each arm of a switch.
%
:- pred gen_switch(list(case)::in, prog_var::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_switch([], _, _, !ByteInfo, empty).
gen_switch([case(ConsId, Goal) | Cases], Var, EndLabel,
!ByteInfo, Code) :-
map_cons_id(!.ByteInfo, Var, ConsId, ByteConsId),
gen_goal(Goal, !ByteInfo, ThisCode),
gen_switch(Cases, Var, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([byte_enter_switch_arm(ByteConsId, NextLabel)]),
EndofCode = node([byte_endof_switch_arm(EndLabel), byte_label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode]).
%---------------------------------------------------------------------------%
:- pred map_cons_id(byte_info::in, prog_var::in, cons_id::in,
byte_cons_id::out) is det.
map_cons_id(ByteInfo, Var, ConsId, ByteConsId) :-
get_module_info(ByteInfo, ModuleInfo),
(
ConsId = cons(Functor, Arity),
get_var_type(ByteInfo, Var, Type),
(
% Everything other than characters and tuples should
% be module qualified.
Functor = unqualified(FunctorName),
\+ type_is_tuple(Type, _)
->
string.to_char_list(FunctorName, FunctorList),
( FunctorList = [Char] ->
ByteConsId = byte_char_const(Char)
;
unexpected(this_file, "map_cons_id: " ++
"unqualified cons_id is not a char_const")
)
;
(
Functor = unqualified(FunctorName),
ModuleName = unqualified("builtin")
;
Functor = qualified(ModuleName, FunctorName)
),
ConsTag = cons_id_to_tag(ConsId, Type, ModuleInfo),
map_cons_tag(ConsTag, ByteConsTag),
ByteConsId = byte_cons(ModuleName, FunctorName, Arity, ByteConsTag)
)
;
ConsId = int_const(IntVal),
ByteConsId = byte_int_const(IntVal)
;
ConsId = string_const(StringVal),
ByteConsId = byte_string_const(StringVal)
;
ConsId = float_const(FloatVal),
ByteConsId = byte_float_const(FloatVal)
;
ConsId = pred_const(ShroudedPredProcId, _EvalMethod),
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
proc_id_to_int(ProcId, ProcInt),
ByteConsId = byte_pred_const(ModuleName, PredName, Arity, IsFunc,
ProcInt)
;
ConsId = type_ctor_info_const(ModuleName, TypeName, TypeArity),
ByteConsId = byte_type_ctor_info_const(ModuleName, TypeName, TypeArity)
;
ConsId = base_typeclass_info_const(ModuleName, ClassId, _, Instance),
ByteConsId = byte_base_typeclass_info_const(ModuleName, ClassId,
Instance)
;
ConsId = type_info_cell_constructor(_),
ByteConsId = byte_type_info_cell_constructor
;
ConsId = typeclass_info_cell_constructor,
ByteConsId = byte_typeclass_info_cell_constructor
;
ConsId = tabling_info_const(_),
sorry(this_file, "bytecode cannot implement tabling")
;
ConsId = table_io_decl(_),
sorry(this_file, "bytecode cannot implement table io decl")
;
ConsId = deep_profiling_proc_layout(_),
sorry(this_file, "bytecode cannot implement deep profiling")
).
:- pred map_cons_tag(cons_tag::in, byte_cons_tag::out) is det.
map_cons_tag(no_tag, byte_no_tag).
% `single_functor' is just an optimized version of `unshared_tag(0)'
% this optimization is not important for the bytecode
map_cons_tag(single_functor_tag, byte_unshared_tag(0)).
map_cons_tag(unshared_tag(Primary), byte_unshared_tag(Primary)).
map_cons_tag(shared_remote_tag(Primary, Secondary),
byte_shared_remote_tag(Primary, Secondary)).
map_cons_tag(shared_local_tag(Primary, Secondary),
byte_shared_local_tag(Primary, Secondary)).
map_cons_tag(string_tag(_), _) :-
unexpected(this_file, "string_tag cons tag " ++
"for non-string_constant cons id").
map_cons_tag(int_tag(IntVal), byte_enum_tag(IntVal)).
map_cons_tag(float_tag(_), _) :-
unexpected(this_file, "float_tag cons tag " ++
"for non-float_constant cons id").
map_cons_tag(pred_closure_tag(_, _, _), _) :-
unexpected(this_file, "pred_closure_tag cons tag " ++
"for non-pred_const cons id").
map_cons_tag(type_ctor_info_tag(_, _, _), _) :-
unexpected(this_file, "type_ctor_info_tag cons tag " ++
"for non-type_ctor_info_constant cons id").
map_cons_tag(base_typeclass_info_tag(_, _, _), _) :-
unexpected(this_file, "base_typeclass_info_tag cons tag " ++
"for non-base_typeclass_info_constant cons id").
map_cons_tag(tabling_info_tag(_, _), _) :-
unexpected(this_file, "tabling_info_tag cons tag " ++
"for non-tabling_info_constant cons id").
map_cons_tag(deep_profiling_proc_layout_tag(_, _), _) :-
unexpected(this_file, "deep_profiling_proc_layout_tag cons tag " ++
"for non-deep_profiling_proc_static cons id").
map_cons_tag(table_io_decl_tag(_, _), _) :-
unexpected(this_file, "table_io_decl_tag cons tag " ++
"for non-table_io_decl cons id").
map_cons_tag(reserved_address_tag(_), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
map_cons_tag(shared_with_reserved_addresses_tag(_, _), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
%---------------------------------------------------------------------------%
:- pred create_varmap(list(prog_var)::in, prog_varset::in,
vartypes::in, int::in, map(prog_var, byte_var)::in,
map(prog_var, byte_var)::out, list(byte_var_info)::out) is det.
create_varmap([], _, _, _, !VarMap, []).
create_varmap([Var | VarList], VarSet, VarTypes, N0, !VarMap, VarInfos) :-
map.det_insert(!.VarMap, Var, N0, !:VarMap),
N1 = N0 + 1,
varset.lookup_name(VarSet, Var, VarName),
map.lookup(VarTypes, Var, VarType),
create_varmap(VarList, VarSet, VarTypes, N1, !VarMap, VarInfosTail),
VarInfos = [var_info(VarName, VarType) | VarInfosTail].
%---------------------------------------------------------------------------%(
:- type byte_info
---> byte_info(
byteinfo_varmap :: map(prog_var, byte_var),
byteinfo_vartypes :: vartypes,
byteinfo_moduleinfo :: module_info,
byteinfo_label_counter :: counter,
byteinfo_temp_counter :: counter
).
:- pred init_byte_info(module_info::in, map(prog_var, byte_var)::in,
vartypes::in, byte_info::out) is det.
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo) :-
ByteInfo = byte_info(VarMap, VarTypes, ModuleInfo,
counter.init(0), counter.init(0)).
:- pred get_module_info(byte_info::in, module_info::out) is det.
get_module_info(ByteInfo, ByteInfo ^ byteinfo_moduleinfo).
:- pred map_vars(byte_info::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars(ByteInfo, Vars, ByteVars) :-
map_vars_2(ByteInfo ^ byteinfo_varmap, Vars, ByteVars).
:- pred map_vars_2(map(prog_var, byte_var)::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars_2(_VarMap, [], []).
map_vars_2(VarMap, [Var | Vars], [ByteVar | ByteVars]) :-
map.lookup(VarMap, Var, ByteVar),
map_vars_2(VarMap, Vars, ByteVars).
:- pred map_var(byte_info::in, prog_var::in,
byte_var::out) is det.
map_var(ByteInfo, Var, ByteVar) :-
map.lookup(ByteInfo ^ byteinfo_varmap, Var, ByteVar).
:- pred get_var_type(byte_info::in, prog_var::in,
mer_type::out) is det.
get_var_type(ByteInfo, Var, Type) :-
map.lookup(ByteInfo ^ byteinfo_vartypes, Var, Type).
:- pred get_next_label(int::out, byte_info::in, byte_info::out)
is det.
get_next_label(Label, !ByteInfo) :-
LabelCounter0 = !.ByteInfo ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, LabelCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_label_counter := LabelCounter.
:- pred get_next_temp(int::out, byte_info::in, byte_info::out)
is det.
get_next_temp(Temp, !ByteInfo) :-
TempCounter0 = !.ByteInfo ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, TempCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_temp_counter := TempCounter.
:- pred get_counts(byte_info::in, int::out, int::out) is det.
get_counts(ByteInfo0, Label, Temp) :-
LabelCounter0 = ByteInfo0 ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, _LabelCounter),
TempCounter0 = ByteInfo0 ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, _TempCounter).
%---------------------------------------------------------------------------%
:- pred get_is_func(pred_info::in, byte_is_func::out) is det.
get_is_func(PredInfo, IsFunc) :-
( pred_info_is_pred_or_func(PredInfo) = predicate ->
IsFunc = 0
;
IsFunc = 1
).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "bytecode_gen.m".
%---------------------------------------------------------------------------%
:- end_module bytecode_gen.
%---------------------------------------------------------------------------%