mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-17 23:05:21 +00:00
set.nl: Added set__power_intersect(Sets, Intersection) takes the intersection of all the sets in Sets and puts the result in Intersection.
289 lines
7.7 KiB
Mathematica
289 lines
7.7 KiB
Mathematica
%--------------------------------------------------------------------------%
|
|
%--------------------------------------------------------------------------%
|
|
|
|
% File: set.nl.
|
|
% Main authors: conway, fjh.
|
|
|
|
% This file contains a `set' ADT.
|
|
% Sets are implemented here as unsorted lists, which may contain duplicates.
|
|
|
|
%--------------------------------------------------------------------------%
|
|
|
|
:- module set.
|
|
:- interface.
|
|
:- import_module list, std_util.
|
|
|
|
:- type set(_T).
|
|
|
|
% `set__list_to_set(List, Set)' is true iff `Set' is the set
|
|
% containing only the members of `List'.
|
|
|
|
:- pred set__list_to_set(list(T), set(T)).
|
|
:- mode set__list_to_set(in, out) is det.
|
|
|
|
% `set__sorted_list_to_set(List, Set)' is true iff `Set' is the set
|
|
% containing only the members of `List'. `List' must be sorted.
|
|
|
|
:- pred set__sorted_list_to_set(list(T), set(T)).
|
|
:- mode set__sorted_list_to_set(in, out) is det.
|
|
|
|
% `set__list_to_set(Set, List)' is true iff `List' is the list
|
|
% of all the members of `Set', in sorted order.
|
|
|
|
:- pred set__to_sorted_list(set(T), list(T)).
|
|
:- mode set__to_sorted_list(in, out) is det.
|
|
|
|
% `set__init(Set)' is true iff `Set' is an empty set.
|
|
% `set__init(Set)' is true iff `Set' is an empty set.
|
|
|
|
:- pred set__init(set(_T)).
|
|
:- mode set__init(out) is det.
|
|
|
|
:- pred set__singleton_set(set(T), T).
|
|
:- mode set__singleton_set(in, out) is semidet.
|
|
:- mode set__singleton_set(out, in) is det.
|
|
|
|
% `set__equal(SetA, SetB)' is true iff
|
|
% `SetA' and `SetB' contain the same elements.
|
|
|
|
:- pred set__equal(set(T), set(T)).
|
|
:- mode set__equal(in, in) is semidet.
|
|
|
|
:- pred set__empty(set(_T)).
|
|
:- mode set__empty(in) is semidet.
|
|
|
|
% `set__subset(SetA, SetB)' is true iff `SetA' is a subset of `SetB'.
|
|
|
|
:- pred set__subset(set(T), set(T)).
|
|
:- mode set__subset(in, in) is semidet.
|
|
|
|
% `set__superset(SetA, SetB)' is true iff `SetA' is a
|
|
% superset of `SetB'.
|
|
|
|
:- pred set__superset(set(T), set(T)).
|
|
:- mode set__superset(in, in) is semidet.
|
|
|
|
% `set_member(X, Set)' is true iff `X' is a member of `Set'.
|
|
|
|
:- pred set__member(T, set(T)).
|
|
:- mode set__member(in, in) is semidet.
|
|
:- mode set__member(out, in) is nondet.
|
|
|
|
% `set_member(X, Set, Res)' returns yes iff `X' is a member of `Set'.
|
|
|
|
:- pred set__is_member(T, set(T), bool).
|
|
:- mode set__is_member(in, in, out) is det.
|
|
|
|
% `set__insert(Set0, X, Set)' is true iff `Set' is the union of
|
|
% `Set0' and the set containing only `X'.
|
|
|
|
:- pred set__insert(set(T), T, set(T)).
|
|
:- mode set__insert(in, in, out) is det.
|
|
|
|
% `set__insert_list(Set0, Xs, Set)' is true iff `Set' is the union of
|
|
% `Set0' and the set containing only the members of `Xs'.
|
|
|
|
:- pred set__insert_list(set(T), list(T), set(T)).
|
|
:- mode set__insert_list(in, in, out) is det.
|
|
|
|
% `set__delete(Set0, X, Set)' is true iff `Set0' contains `X',
|
|
% and `Set' is the relative complement of `Set0' and the set
|
|
% containing only `X', i.e. if `Set' is the set which contains
|
|
% all the elements of `Set0' except `X'.
|
|
|
|
:- pred set__delete(set(T), T, set(T)).
|
|
:- mode set__delete(in, in, out) is semidet.
|
|
:- mode set__delete(in, out, out) is nondet.
|
|
|
|
% `set__delete_list(Set0, Xs, Set)' is true iff Xs does not
|
|
% contain any duplicates, `Set0' contains every member of `Xs',
|
|
% and `Set' is the relative complement of `Set0' and the set
|
|
% containing only the members of `Xs'.
|
|
|
|
:- pred set__delete_list(set(T), list(T), set(T)).
|
|
:- mode set__delete_list(in, in, out) is semidet.
|
|
|
|
% `set__remove(Set0, X, Set)' is true iff `Set' is the relative
|
|
% complement of `Set0' and the set containing only `X', i.e.
|
|
% if `Set' is the set which contains all the elements of `Set0'
|
|
% except `X'.
|
|
|
|
:- pred set__remove(set(T), T, set(T)).
|
|
:- mode set__remove(in, in, out) is det.
|
|
|
|
% `set__remove_list(Set0, Xs, Set)' is true iff `Set' is the relative
|
|
% complement of `Set0' and the set containing only the members of
|
|
% `Xs'.
|
|
|
|
:- pred set__remove_list(set(T), list(T), set(T)).
|
|
:- mode set__remove_list(in, in, out) is det.
|
|
|
|
:- pred set__remove_least(set(T), T, set(T)).
|
|
:- mode set__remove_least(in, out, out) is semidet.
|
|
|
|
% `set_union(SetA, SetB, Set)' is true iff `Set' is the union of
|
|
% `SetA' and `SetB'. If the sets are known to be of different
|
|
% sizes, then for efficiency make `SetA' the larger of the two.
|
|
|
|
:- pred set__union(set(T), set(T), set(T)).
|
|
:- mode set__union(in, in, out) is det.
|
|
|
|
% `set__power_union(A, B)' is true iff `B' is the union of
|
|
% all the sets in `A'
|
|
|
|
:- pred set__power_union(set(set(T)), set(T)).
|
|
:- mode set__power_union(in, out) is det.
|
|
|
|
% `set_intersect(SetA, SetB, Set)' is true iff `Set' is the
|
|
% intersection of `SetA' and `SetB'.
|
|
|
|
:- pred set__intersect(set(T), set(T), set(T)).
|
|
:- mode set__intersect(in, in, out) is det.
|
|
|
|
% `set__power_union(A, B)' is true iff `B' is the union of
|
|
% all the sets in `A'
|
|
|
|
:- pred set__power_intersect(set(set(T)), set(T)).
|
|
:- mode set__power_intersect(in, out) is det.
|
|
|
|
% `set__difference(SetA, SetB, Set)' is true iff `Set' is the
|
|
% set containing all the elements of `SetA' except those that
|
|
% occur in `SetB'
|
|
|
|
:- pred set__difference(set(T), set(T), set(T)).
|
|
:- mode set__difference(in, in, out) is det.
|
|
|
|
%--------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module list, std_util.
|
|
|
|
:- type set(T) == list(T).
|
|
|
|
set__list_to_set(List, List).
|
|
|
|
set__sorted_list_to_set(List, List).
|
|
|
|
set__to_sorted_list(Set, List) :-
|
|
list__sort(Set, List).
|
|
|
|
:- set__insert_list(_, Xs, _) when Xs. % NU-Prolog indexing.
|
|
|
|
set__insert_list(Set0, List, Set) :-
|
|
list__append(List, Set0, Set).
|
|
|
|
set__insert(S0, E, [E|S0]).
|
|
|
|
set__init([]).
|
|
|
|
set__singleton_set([X], X).
|
|
|
|
set__equal(SetA, SetB) :-
|
|
set__subset(SetA, SetB),
|
|
set__subset(SetB, SetA).
|
|
|
|
set__empty([]).
|
|
|
|
set__subset([], _).
|
|
set__subset([E|S0], S1) :-
|
|
set__member(E, S1),
|
|
set__subset(S0, S1).
|
|
|
|
set__superset(S0, S1) :-
|
|
set__subset(S1, S0).
|
|
|
|
set__member(E, S) :-
|
|
list__member(E, S).
|
|
|
|
set__is_member(E, S, R) :-
|
|
( set__member(E, S) ->
|
|
R = yes
|
|
;
|
|
R = no
|
|
).
|
|
|
|
:- set__delete_list(_, Xs, _) when Xs.
|
|
|
|
set__delete_list(S, [], S).
|
|
set__delete_list(S0, [X | Xs], S) :-
|
|
set__delete(S0, X, S1),
|
|
set__delete_list(S1, Xs, S).
|
|
|
|
set__delete(S0, E, S) :-
|
|
list__member(E, S0),
|
|
set__remove(S0, E, S).
|
|
|
|
:- set__remove_list(_, Xs, _) when Xs.
|
|
|
|
set__remove_list(S, [], S).
|
|
set__remove_list(S0, [X | Xs], S) :-
|
|
set__remove(S0, X, S1),
|
|
set__remove_list(S1, Xs, S).
|
|
|
|
set__remove(Set0, Elem, Set) :-
|
|
list__delete_all(Set0, Elem, Set).
|
|
|
|
set__remove_least(Set0, E, Set) :-
|
|
Set0 = [_|_], % fail early on an empty set
|
|
set__to_sorted_list(Set0, [E|Set]).
|
|
|
|
set__union(Set0, Set1, Set) :-
|
|
list__append(Set1, Set0, Set).
|
|
|
|
set__power_union(PS, S) :-
|
|
set__to_sorted_list(PS, SL),
|
|
set__init(S0),
|
|
set__power_union_2(SL, S0, S).
|
|
|
|
:- pred set__power_union_2(list(set(T)), set(T), set(T)).
|
|
:- mode set__power_union_2(in, in, out) is det.
|
|
|
|
set__power_union_2([], S, S).
|
|
set__power_union_2([T|Ts], S0, S) :-
|
|
set__union(T, S0, S1),
|
|
set__power_union_2(Ts, S1, S).
|
|
|
|
set__intersect(S0, S1, S) :-
|
|
set__intersect_2(S0, S1, [], S).
|
|
|
|
:- pred set__intersect_2(set(T), set(T), set(T), set(T)).
|
|
:- mode set__intersect_2(in, in, in, out) is det.
|
|
|
|
set__intersect_2([], _, S, S).
|
|
set__intersect_2([E|S0], S1, S2, S) :-
|
|
(
|
|
list__member(E, S1)
|
|
->
|
|
S3 = [E|S2]
|
|
;
|
|
S3 = S2
|
|
),
|
|
set__intersect_2(S0, S1, S3, S).
|
|
|
|
set__power_intersect([], []).
|
|
set__power_intersect([S0|Ss], S) :-
|
|
(
|
|
Ss = []
|
|
->
|
|
S = S0
|
|
;
|
|
set__power_intersect(Ss, S1),
|
|
set__intersect(S1, S0, S)
|
|
).
|
|
|
|
%--------------------------------------------------------------------------%
|
|
|
|
set__difference(A, B, C) :-
|
|
set__difference_2(B, A, C).
|
|
|
|
:- pred set__difference_2(set(T), set(T), set(T)).
|
|
:- mode set__difference_2(in, in, out) is det.
|
|
|
|
set__difference_2([], C, C).
|
|
set__difference_2([E|Es], A, C) :-
|
|
set__remove(A, E, B),
|
|
set__difference_2(Es, B, C).
|
|
|
|
%--------------------------------------------------------------------------%
|