Files
mercury/compiler/code_gen.pp
Thomas Conway 56185418db a new module for manipulating rvals and lvals.
exprn_aux.nl:
	a new module for manipulating rvals and lvals.

code_exprn.nl:
	the new bottom level of the new code generator. This replaces
	a large chunk of code_info.

*code* & *gen*:
	various small changes to use the new bottom level of the
	code generator.
1995-03-15 08:07:56 +00:00

1131 lines
36 KiB
ObjectPascal

%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
%
% Code generation - convert from HLDS to LLDS.
% Main author: conway.
%
% Notes:
% code_gen forwards most of the actual construction of intruction
% sequences to code_info, and other modules. The generation of
% calls is done by call_gen, switches by switch_gen, if-then-else
% by ite_gen, unifications by unify_gen, and disjunctions by
% disj_gen.
%
% The general scheme for generating semideterministic code is
% to treat it as deterministic code, and have a fall-through
% point for failure. Semideterministic procedures leave a 'true'
% in register r(1) to indicate success, and 'fail' to indicate
% failure.
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- module code_gen.
:- interface.
:- import_module hlds, llds, code_info, io.
% Translate a HLDS structure into an LLDS
:- pred generate_code(module_info, module_info, c_file, io__state, io__state).
:- mode generate_code(in, out, out, di, uo) is det.
% These predicates generate code for a goal
:- pred code_gen__generate_goal(category, hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_goal(in, in, out, in, out) is det.
:- pred code_gen__generate_det_goal(hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_det_goal(in, out, in, out) is det.
:- pred code_gen__generate_semi_goal(hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_semi_goal(in, out, in, out) is det.
:- pred code_gen__generate_non_goal(hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_non_goal(in, out, in, out) is det.
% These predicates generate code for a goal
% and leave all live values in locations
% determined by the call_info structure.
:- pred code_gen__generate_forced_goal(category, hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_forced_goal(in, in, out, in, out) is det.
:- pred code_gen__generate_forced_det_goal(hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_forced_det_goal(in, out, in, out) is det.
:- pred code_gen__generate_forced_semi_goal(hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_forced_semi_goal(in, out, in, out) is det.
:- pred code_gen__generate_forced_non_goal(hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_forced_non_goal(in, out, in, out) is det.
:- pred code_gen__output_args(assoc_list(var, arg_info), bintree_set(lval)).
:- mode code_gen__output_args(in, out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module char, string, list, varset, term, map, tree, require.
:- import_module type_util, mode_util, std_util, int, set, bintree_set.
:- import_module code_util, call_gen, unify_gen, ite_gen, switch_gen.
:- import_module disj_gen, globals, options, hlds_out.
:- import_module code_aux, middle_rec.
%---------------------------------------------------------------------------%
%
% For a set of high level data structures and associated data, given in
% ModuleInfo, generate a corresponding c_file structure.
%
generate_code(ModuleInfo0, ModuleInfo,
c_file(Name, [c_module(ModName, Procedures)])) -->
{ module_info_name(ModuleInfo0, Name) },
% construct the module-name string
{ string__append(Name, "_module", ModName) },
% get a list of all the predicate ids
% for which we are going to generate code.
{ module_info_predids(ModuleInfo0, PredIDList) },
% now generate the code for each predicate
generate_pred_list_code(ModuleInfo0, ModuleInfo, PredIDList,
Procedures).
%
% Generate a list of c_procedure structures for each mode of each
% predicate given in ModuleInfo
%
:- pred generate_pred_list_code(module_info, module_info, list(pred_id),
list(c_procedure),
io__state, io__state).
:- mode generate_pred_list_code(in, out, in, out, di, uo) is det.
generate_pred_list_code(ModuleInfo, ModuleInfo, [], []) --> [].
generate_pred_list_code(ModuleInfo0, ModuleInfo, [PredId | PredIds],
Predicates) -->
{ module_info_preds(ModuleInfo0, PredInfos) },
% get the pred_info structure for this predicate
{ map__lookup(PredInfos, PredId, PredInfo) },
(
% check to see if this predicate was imported.
{ pred_info_is_imported(PredInfo) }
->
{ Predicates0 = [] },
{ ModuleInfo1 = ModuleInfo0 }
;
% now generate code for this predicate.
generate_pred_code(ModuleInfo0, ModuleInfo1, PredId,
PredInfo, Predicates0)
),
#if NU_PROLOG
{ module_info_shapes(ModuleInfo1, Shape_Table) },
{ putprop(codegen, codegen, Predicates0 - Shape_Table ), fail }.
generate_pred_list_code(ModuleInfo0, ModuleInfo, [PredId | PredIds],
Predicates) -->
{ getprop(codegen, codegen, Predicates0 - Shape_Table, Ref),
erase(Ref) },
globals__io_lookup_bool_option(statistics, Statistics),
maybe_report_stats(Statistics),
{ module_info_set_shapes(ModuleInfo0, Shape_Table, ModuleInfo1) },
#endif
{ list__append(Predicates0, Predicates1, Predicates) },
% and generate the code for the rest of the predicates
generate_pred_list_code(ModuleInfo1, ModuleInfo, PredIds, Predicates1).
%
% For the predicate identified by PredId, with the the associated
% data in ModuleInfo, generate a code_tree.
%
:- pred generate_pred_code(module_info, module_info, pred_id, pred_info,
list(c_procedure), io__state, io__state).
:- mode generate_pred_code(in, out, in, in, out, di, uo) is det.
generate_pred_code(ModuleInfo0, ModuleInfo, PredId, PredInfo, Code) -->
% extract a list of all the procedure ids for this predicate
globals__io_lookup_bool_option(very_verbose, VeryVerbose),
( { VeryVerbose = yes } ->
io__write_string("% Generating code for "),
hlds_out__write_pred_id(ModuleInfo0, PredId),
io__write_string("\n"),
globals__io_lookup_bool_option(statistics, Statistics),
( { Statistics = yes } ->
io__report_stats
;
[]
)
;
[]
),
{ pred_info_proc_ids(PredInfo, ProcIds) },
% generate all the procedures for this predicate
generate_proc_list_code(ModuleInfo0, ModuleInfo, PredId,
PredInfo, ProcIds, Code).
%
% For all the modes of predicate PredId, generate the appropriate
% code (deterministic, semideterministic, or nondeterministic).
% Currently this predicate does not use an accumulator. Perhaps it should.
%
:- pred generate_proc_list_code(module_info, module_info, pred_id, pred_info,
list(proc_id), list(c_procedure), io__state, io__state).
:- mode generate_proc_list_code(in, out, in, in, in, out, di, uo) is det.
generate_proc_list_code(ModuleInfo, ModuleInfo, _PredId,
_PredInfo, [], []) --> [].
generate_proc_list_code(ModuleInfo0, ModuleInfo, PredId, PredInfo,
[ProcId | ProcIds], Procedures) -->
{ pred_info_procedures(PredInfo, ProcInfos) },
% locate the proc_info structure for this mode of the predicate
{ map__lookup(ProcInfos, ProcId, ProcInfo) },
% find out if the proc is deterministic/etc
{ proc_info_interface_determinism(ProcInfo, Category) },
% now generate the code for this.
generate_category_code(ModuleInfo0, ModuleInfo1, PredId, ProcId,
ProcInfo, Category, Instr, SUsed),
% turn the code tree into a list
{ tree__flatten(Instr, InstrList) },
% now the code is a list of
% code-fragments(==list(instr)),
% so we need to do a level of
% unwinding to get a flat list.
{ list__condense(InstrList, Instructions0) },
(
{ SUsed = yes(SlotNum) }
->
{ code_gen__add_saved_succip(Instructions0,
SlotNum, Instructions) }
;
{ Instructions = Instructions0 }
),
% get the name and arity of this predicate
{ predicate_name(ModuleInfo1, PredId, Name) },
{ predicate_arity(ModuleInfo1, PredId, Arity) },
% construct a c_procedure structure
% will all the information
{ Procedure = c_procedure(Name, Arity, ProcId, Instructions) },
% and do the same thing for all
% the rest of the procedures
% for this predicate.
generate_proc_list_code(ModuleInfo1, ModuleInfo, PredId,
PredInfo, ProcIds, Procedures0),
{ Procedures = [Procedure | Procedures0] }.
%
% Generate code for the predicate (PredId,Mode).
%
:- pred generate_category_code(module_info, module_info, pred_id, proc_id,
proc_info, category, code_tree, maybe(int), io__state,
io__state).
:- mode generate_category_code(in, out, in, in, in, in, out, out, di, uo) is det.
generate_category_code(ModuleInfo, ModuleInfoNew, PredId, ProcId,
ProcInfo, Determinism, Instrs, SUsed) -->
% get the goal for this procedure
{ proc_info_goal(ProcInfo, Goal) },
% get the information about this procedure that we need.
{ proc_info_variables(ProcInfo, VarInfo) },
{ proc_info_liveness_info(ProcInfo, Liveness) },
{ proc_info_follow_vars(ProcInfo, FollowVars) },
{ proc_info_call_info(ProcInfo, CallInfo) },
{ proc_info_get_initial_instmap(ProcInfo, ModuleInfo, InitialInst) },
globals__io_get_gc_method(GC_Method),
{ GC_Method = accurate ->
SaveSuccip = yes
;
SaveSuccip = no
},
globals__io_get_globals(Globals),
% initialise the code_info structure
{ code_info__init(VarInfo, Liveness, CallInfo, SaveSuccip,
Globals, PredId, ProcId, ProcInfo, Determinism,
InitialInst, FollowVars, ModuleInfo,
CodeInfo0) },
% generate code for the procedure
{ generate_category_code_2(Determinism, Goal, Instrs, SUsed, CodeInfo0,
CodeInfo) },
{ code_info__get_module_info(ModuleInfoNew, CodeInfo, _CodeInfo1) }.
:- pred generate_category_code_2(category, hlds__goal, code_tree, maybe(int),
code_info, code_info).
:- mode generate_category_code_2(in, in, out, out, in, out) is det.
generate_category_code_2(deterministic, Goal, Instrs, Used) -->
% generate the code for the body of the clause
(
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, middle_rec, yes) },
middle_rec__match_det(Goal, Switch)
->
middle_rec__gen_det(Switch, Instrs),
{ Used = no }
;
code_gen__generate_det_goal(Goal, Instr1),
code_info__get_instmap(InstMap),
% generate the prolog for the clause, which for deterministic
% procedures creates a label, increments the
% stack pointer to reserve space for local variables and
% the succip, and saves the succip.
code_gen__generate_det_prolog(Instr0, Used),
% generate a procedure epilog
% This needs information based on what variables are
% live at the end of the goal - that is, those that
% are output parameters which are known from goal_info,
% and decrement the stack pointer to free local variables,
% and restore the succip.
(
{ InstMap \= unreachable }
->
code_gen__generate_det_epilog(Instr2)
;
{ Instr2 = empty }
),
% combine the prolog, body and epilog
{ Instrs = tree(Instr0, tree(Instr1,Instr2)) }
).
generate_category_code_2(semideterministic, Goal, Instrs, Used) -->
% Create a label for fall through on failure.
code_info__get_next_label(FallThrough, no),
code_info__push_failure_cont(known(FallThrough)),
% generate the code for the body of the clause
code_gen__generate_semi_goal(Goal, Instr1),
code_gen__generate_semi_prolog(Instr0, Used),
code_gen__generate_semi_epilog(Instr2),
code_info__pop_failure_cont,
% combine the prolog, body and epilog
{ Instrs = tree(Instr0, tree(Instr1,Instr2)) }.
generate_category_code_2(nondeterministic, Goal, Instrs, Used) -->
% Ensure that on failure we do a `fail()'
code_info__push_failure_cont(do_fail),
% generate the code for the body of the clause
code_gen__generate_non_goal(Goal, Instr1),
code_gen__generate_non_prolog(Instr0, Used),
code_gen__generate_non_epilog(Instr2),
code_info__pop_failure_cont, % just for symmetry ;-)
% combine the prolog, body and epilog
{ Instrs = tree(Instr0, tree(Instr1,Instr2)) }.
%---------------------------------------------------------------------------%
code_gen__generate_goal(deterministic, Goal, Code) -->
code_gen__generate_det_goal(Goal, Code).
code_gen__generate_goal(semideterministic, Goal, Code) -->
code_gen__generate_semi_goal(Goal, Code).
code_gen__generate_goal(nondeterministic, Goal, Code) -->
code_gen__generate_non_goal(Goal, Code).
%---------------------------------------------------------------------------%
code_gen__generate_forced_goal(Det, Goal, Code) -->
code_gen__generate_goal(Det, Goal, CodeA),
code_info__generate_forced_saves(CodeB),
{ Code = tree(CodeA, CodeB) },
code_info__remake_with_store_map.
%---------------------------------------------------------------------------%
code_gen__generate_forced_det_goal(Goal, Code) -->
code_gen__generate_forced_goal(deterministic, Goal, Code).
code_gen__generate_forced_semi_goal(Goal, Code) -->
code_gen__generate_forced_goal(semideterministic, Goal, Code).
code_gen__generate_forced_non_goal(Goal, Code) -->
code_gen__generate_forced_goal(nondeterministic, Goal, Code).
%---------------------------------------------------------------------------%
%
% generate a deterministic goal - this predicate really just
% arranges the information a bit more conveniently
%
code_gen__generate_det_goal(Goal - GoalInfo, Instr) -->
% Make any changes to liveness before Goal
code_aux__pre_goal_update(GoalInfo),
code_info__get_instmap(InstMap),
(
{ InstMap \= unreachable }
->
% generate goal
code_gen__generate_det_goal_2(Goal, GoalInfo, Instr0),
% Make live any variables which subsequent goals
% will expect to be live, but were not generated
code_info__set_instmap(InstMap),
code_aux__post_goal_update(GoalInfo),
code_info__get_globals(Options),
(
{ globals__lookup_bool_option(Options, lazy_code, yes) }
->
{ Instr1 = empty }
;
{ error("Eager code unavailable") }
%%% code_info__generate_eager_flush(Instr1)
),
{ Instr = tree(Instr0, Instr1) }
;
{ Instr = empty }
).
:- pred code_gen__generate_det_goal_2(hlds__goal_expr, hlds__goal_info,
code_tree, code_info, code_info).
:- mode code_gen__generate_det_goal_2(in, in, out, in, out) is det.
code_gen__generate_det_goal_2(conj(Goals), _GoalInfo, Instr) -->
code_gen__generate_det_goals(Goals, Instr).
code_gen__generate_det_goal_2(some(_Vars, Goal), _GoalInfo, Instr) -->
code_gen__generate_det_goal(Goal, Instr).
code_gen__generate_det_goal_2(disj(_Goals), _GoalInfo, _Instr) -->
{ error("Disjuction cannot occur in deterministic code.") }.
code_gen__generate_det_goal_2(not(_), _GoalInfo, _Instr) -->
{ error("Negation cannot occur in deterministic code.") }.
code_gen__generate_det_goal_2(
call(PredId, ProcId, Args0, Builtin, _, _Follow),
_GoalInfo, Instr) -->
{ term__vars_list(Args0, Args) },
(
{ is_builtin__is_internal(Builtin) }
->
call_gen__generate_det_builtin(PredId, ProcId, Args, Instr)
;
code_info__set_succip_used(yes),
call_gen__generate_det_call(PredId, ProcId, Args, Instr)
).
code_gen__generate_det_goal_2(switch(Var, Det, CaseList), GoalInfo, Instr) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
switch_gen__generate_switch(deterministic,
Var, Det, CaseList, Instr),
code_info__pop_store_map
;
switch_gen__generate_switch(deterministic,
Var, Det, CaseList, Instr)
).
code_gen__generate_det_goal_2(
if_then_else(_Vars, CondGoal, ThenGoal, ElseGoal),
GoalInfo, Instr) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
ite_gen__generate_det_ite(CondGoal, ThenGoal, ElseGoal, Instr),
code_info__pop_store_map
;
ite_gen__generate_det_ite(CondGoal, ThenGoal, ElseGoal, Instr)
).
code_gen__generate_det_goal_2(unify(L, R, _U, Uni, _C), _GoalInfo, Instr) -->
(
{ Uni = assign(Left, Right) }
->
unify_gen__generate_assignment(Left, Right, Instr)
;
{ Uni = construct(Var, ConsId, Args, Modes) }
->
unify_gen__generate_construction(Var, ConsId, Args,
Modes, Instr)
;
{ Uni = deconstruct(Var, ConsId, Args, Modes, _Det) }
->
unify_gen__generate_det_deconstruction(Var, ConsId, Args,
Modes, Instr)
;
{ L = term__variable(Var1) },
{ R = term__variable(Var2) },
{ Uni = complicated_unify(UniMode, Det, _Follow) }
->
call_gen__generate_complicated_unify(Var1, Var2, UniMode, Det,
Instr)
;
{ error("Cannot generate det code for semidet unifications") }
).
%---------------------------------------------------------------------------%
% Generate a conjoined series of goals.
% Note of course, that with a [deterministic] conjunction, state information
% flows directly from one to the next atom.
%
:- pred code_gen__generate_det_goals(hlds__goals, code_tree,
code_info, code_info).
:- mode code_gen__generate_det_goals(in, out, in, out) is det.
% generating a deterministic
% conjunction is straight forward.
code_gen__generate_det_goals([], empty) --> [].
code_gen__generate_det_goals([Goal | Goals], Instr) -->
% generate this goal
code_gen__generate_det_goal(Goal, Instr1),
code_info__get_instmap(InstMap),
(
{ InstMap = unreachable }
->
{ Instr = Instr1 }
;
% generate the rest of the goals
code_gen__generate_det_goals(Goals, Instr2),
{ Instr = tree(Instr1, Instr2) }
).
%---------------------------------------------------------------------------%
:- pred code_gen__generate_det_prolog(code_tree, maybe(int), code_info, code_info).
:- mode code_gen__generate_det_prolog(out, out, in, out) is det.
code_gen__generate_det_prolog(EntryCode, SUsed) -->
code_info__get_call_info(CallInfo),
code_info__get_varset(VarSet),
{ code_aux__explain_call_info(CallInfo, VarSet, CallInfoComment) },
code_info__get_total_stackslot_count(NS0),
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
code_info__get_succip_used(Used),
code_info__get_module_info(ModuleInfo),
{ code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
Entry) },
{ CodeA = node([
label(Entry) - "Procedure entry point",
comment(CallInfoComment) - ""
]) },
(
{ Used = yes }
->
{ NS is NS0 + 1 },
{ CodeC = node([
assign(stackvar(NS), lval(succip)) -
"save the success ip"
]) },
{ SUsed = yes(NS) }
;
{ NS = NS0 },
{ CodeC = empty },
{ SUsed = no }
),
(
{ NS = 0 }
->
{ CodeB = CodeA }
;
{ CodeB = tree(
CodeA,
node([ incr_sp(NS) - "Allocate stack frame" ])
) }
),
{ PStart = node([comment("Start of procedure prologue") - ""]) },
{ PEnd = node([comment("End of procedure prologue") - ""]) },
{ EntryCode = tree(tree(PStart, CodeB), tree(CodeC, PEnd)) }.
%---------------------------------------------------------------------------%
:- pred code_gen__generate_det_epilog(code_tree, code_info, code_info).
:- mode code_gen__generate_det_epilog(out, in, out) is det.
code_gen__generate_det_epilog(ExitCode) -->
code_info__get_instmap(Instmap),
code_info__get_arginfo(ArgModes),
code_info__get_headvars(HeadVars),
{ assoc_list__from_corresponding_lists(HeadVars, ArgModes, Args)},
(
{ Instmap = unreachable }
->
{ CodeA = empty }
;
code_info__setup_call(Args, callee, CodeA)
),
code_info__get_succip_used(Used),
code_info__get_total_stackslot_count(NS0),
(
{ Used = yes }
->
{ NS is NS0 + 1 },
{ CodeC = node([
assign(succip, lval(stackvar(NS))) -
"restore the success ip"
]) }
;
{ NS = NS0 },
{ CodeC = empty }
),
{ CodeB1 = node([ goto(succip, succip) -
"Return from procedure call"]) },
(
{ NS = 0 }
->
{ CodeB0 = empty }
;
{ CodeB0 = node([
decr_sp(NS) - "Deallocate stack frame"
]) }
),
{ code_gen__output_args(Args, LiveArgs) },
{ LiveValCode = node([
livevals(LiveArgs) - ""
]) },
{ CodeB = tree(CodeB0, tree(LiveValCode, CodeB1)) },
{ EStart = node([comment("Start of procedure epilogue") - ""]) },
{ EEnd = node([comment("End of procedure epilogue") - ""]) },
{ ExitCode = tree(tree(EStart, CodeA),
tree(CodeC, tree(EEnd, CodeB))) }.
%---------------------------------------------------------------------------%
:- pred code_gen__generate_semi_prolog(code_tree, maybe(int), code_info, code_info).
:- mode code_gen__generate_semi_prolog(out, out, in, out) is det.
code_gen__generate_semi_prolog(EntryCode, SUsed) -->
code_info__get_call_info(CallInfo),
code_info__get_varset(VarSet),
{ code_aux__explain_call_info(CallInfo, VarSet, CallInfoComment) },
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
code_info__get_succip_used(Used),
code_info__get_total_stackslot_count(NS0),
code_info__get_module_info(ModuleInfo),
{ code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
Entry) },
{ CodeA = node([
label(Entry) - "Procedure entry point",
comment(CallInfoComment) - ""
]) },
(
{ Used = yes }
->
{ NS is NS0 + 1 },
{ CodeC = node([
assign(stackvar(NS), lval(succip)) -
"save the success ip"
]) },
{ SUsed = yes(NS) }
;
{ NS = NS0 },
{ CodeC = empty },
{ SUsed = no }
),
(
{ NS = 0 }
->
{ CodeB = CodeA }
;
{ CodeB = tree(
CodeA,
node([ incr_sp(NS) - "Allocate stack frame" ])
) }
),
{ PStart = node([comment("Start of procedure prologue") - ""]) },
{ PEnd = node([comment("End of procedure prologue") - ""]) },
{ EntryCode = tree(tree(PStart, CodeB), tree(CodeC, PEnd)) }.
%---------------------------------------------------------------------------%
:- pred code_gen__generate_semi_epilog(code_tree, code_info, code_info).
:- mode code_gen__generate_semi_epilog(out, in, out) is det.
code_gen__generate_semi_epilog(Instr) -->
code_info__get_instmap(Instmap),
code_info__get_arginfo(ArgModes),
code_info__get_headvars(HeadVars),
{assoc_list__from_corresponding_lists(HeadVars,ArgModes,Args) },
(
{ Instmap = unreachable }
->
{ CodeA = empty }
;
code_info__setup_call(Args, callee, CodeA)
),
code_info__get_succip_used(Used),
code_info__get_total_stackslot_count(NS0),
code_info__failure_cont(FailCont),
{ code_gen__output_args(Args, LiveArgs0) },
{ bintree_set__insert(LiveArgs0, reg(r(1)), LiveArgs) },
{ SLiveValCode = node([
livevals(LiveArgs) - ""
]) },
{ bintree_set__singleton_set(LiveArg, reg(r(1))) },
{ FLiveValCode = node([
livevals(LiveArg) - ""
]) },
{ FailCont = known(FallThrough0) ->
FallThrough = FallThrough0
;
error("semi_epilogue: invalid failure cont")
},
(
{ Used = yes }
->
{ NS is NS0 + 1 },
{ CodeC = node([
assign(succip, lval(stackvar(NS))) -
"restore the success ip"
]) }
;
{ NS = NS0 },
{ CodeC = empty }
),
(
{ NS = 0 }
->
{ UnLink = CodeC }
;
{ UnLink = tree(
CodeC,
node([
decr_sp(NS) - "Deallocate stack frame"
])
) }
),
{ Success = tree(
UnLink,
node([ assign(reg(r(1)), const(true)) - "Succeed" ])
) },
{ Failure = tree(
UnLink,
node([ assign(reg(r(1)), const(false)) - "Fail" ])
) },
{ ExitCode = tree(
tree(
tree(Success, SLiveValCode),
node([ goto(succip, succip)
- "Return from procedure call" ])
),
tree(
node([
label(FallThrough) - "FallThrough"
]),
tree(
tree(Failure, FLiveValCode),
node([ goto(succip, succip) -
"Return from procedure call" ])
)
)
) },
{ EStart = node([comment("Start of procedure epilogue") - ""]) },
{ EEnd = node([comment("End of procedure epilogue") - ""]) },
{ Instr = tree(tree(EStart, CodeA), tree(ExitCode, EEnd)) }.
%---------------------------------------------------------------------------%
:- pred code_gen__generate_non_prolog(code_tree, maybe(int), code_info, code_info).
:- mode code_gen__generate_non_prolog(out, out, in, out) is det.
code_gen__generate_non_prolog(EntryCode, no) -->
code_info__get_call_info(CallInfo),
code_info__get_varset(VarSet),
{ code_aux__explain_call_info(CallInfo, VarSet, CallInfoComment) },
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
code_info__get_total_stackslot_count(NS),
code_info__get_module_info(ModuleInfo),
{ code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
Entry) },
{ CodeA = node([
label(Entry) - "Procedure entry point",
comment(CallInfoComment) - ""
]) },
% The `name' argument to mkframe() is just for
% debugging purposes. We construct it as "predname/arity".
{ predicate_name(ModuleInfo, PredId, PredName) },
{ predicate_arity(ModuleInfo, PredId, PredArity) },
{ string__int_to_string(PredArity, PredArityString) },
{ string__append(PredName, "/", Tmp) },
{ string__append(Tmp, PredArityString, Name) },
{ CodeB = node([
mkframe(Name, NS, do_fail) - "Nondet stackframe"
]) },
{ PStart = node([comment("Start of procedure prologue") - ""]) },
{ PEnd = node([comment("End of procedure prologue") - ""]) },
{ EntryCode = tree(tree(PStart, CodeA), tree(CodeB, PEnd)) }.
%---------------------------------------------------------------------------%
:- pred code_gen__generate_non_epilog(code_tree, code_info, code_info).
:- mode code_gen__generate_non_epilog(out, in, out) is det.
code_gen__generate_non_epilog(Instr) -->
code_info__get_instmap(Instmap),
code_info__get_arginfo(ArgModes),
code_info__get_headvars(HeadVars),
{assoc_list__from_corresponding_lists(HeadVars,ArgModes,Args) },
(
{ Instmap = unreachable }
->
{ CodeA = empty }
;
code_info__setup_call(Args, callee, CodeA)
),
{ code_gen__output_args(Args, LiveArgs) },
{ LiveValCode = node([
livevals(LiveArgs) - ""
]) },
{ ExitCode = tree(LiveValCode, node([
goto(do_succeed(no), do_succeed(no)) - "Succeed"
])) },
{ EStart = node([comment("Start of procedure epilogue") - ""]) },
{ EEnd = node([comment("End of procedure epilogue") - ""]) },
{ Instr = tree(tree(EStart, CodeA), tree(ExitCode, EEnd)) }.
%---------------------------------------------------------------------------%
code_gen__generate_semi_goal(Goal - GoalInfo, Instr) -->
code_aux__pre_goal_update(GoalInfo),
code_info__get_instmap(InstMap),
(
{ InstMap \= unreachable }
->
{ goal_info_get_internal_determinism(GoalInfo, Category) },
(
{ Category = deterministic }
->
code_gen__generate_det_goal_2(Goal, GoalInfo, Instr0)
;
{ Category = semideterministic }
->
code_gen__generate_semi_goal_2(Goal, GoalInfo, Instr0)
;
code_info__generate_pre_commit(PreCommit, FailLabel),
code_gen__generate_non_goal_2(Goal, GoalInfo, GoalCode),
code_info__generate_commit(FailLabel, Commit),
{ Instr0 = tree(PreCommit, tree(GoalCode, Commit)) }
),
code_info__set_instmap(InstMap),
code_aux__post_goal_update(GoalInfo),
code_info__get_globals(Options),
(
{ globals__lookup_bool_option(Options, lazy_code, yes) }
->
{ Instr1 = empty }
;
{ error("Eager code unavailable") }
%%% code_info__generate_eager_flush(Instr1)
),
{ Instr = tree(Instr0, Instr1) }
;
{ Instr = empty }
).
:- pred code_gen__generate_semi_goal_2(hlds__goal_expr, hlds__goal_info,
code_tree, code_info, code_info).
:- mode code_gen__generate_semi_goal_2(in, in, out, in, out) is det.
code_gen__generate_semi_goal_2(conj(Goals), _GoalInfo, Code) -->
code_gen__generate_semi_goals(Goals, Code).
code_gen__generate_semi_goal_2(some(_Vars, Goal), _GoalInfo, Code) -->
code_gen__generate_semi_goal(Goal, Code).
code_gen__generate_semi_goal_2(disj(Goals), GoalInfo, Code) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
disj_gen__generate_semi_disj(Goals, Code),
code_info__pop_store_map
;
disj_gen__generate_semi_disj(Goals, Code)
).
code_gen__generate_semi_goal_2(not(Goal), _GoalInfo, Code) -->
code_gen__generate_negation(Goal, Code).
code_gen__generate_semi_goal_2(
call(PredId, ProcId, Args0, Builtin, _, _Follow),
_GoalInfo, Code) -->
{ term__vars_list(Args0, Args) },
(
{ is_builtin__is_internal(Builtin) }
->
call_gen__generate_semidet_builtin(PredId, ProcId, Args, Code)
;
code_info__set_succip_used(yes),
call_gen__generate_semidet_call(PredId, ProcId, Args, Code)
).
code_gen__generate_semi_goal_2(switch(Var, Det, CaseList), GoalInfo, Instr) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
switch_gen__generate_switch(semideterministic,
Var, Det, CaseList, Instr),
code_info__pop_store_map
;
switch_gen__generate_switch(semideterministic,
Var, Det, CaseList, Instr)
).
code_gen__generate_semi_goal_2(
if_then_else(_Vars, CondGoal, ThenGoal, ElseGoal),
GoalInfo, Instr) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
ite_gen__generate_semidet_ite(CondGoal, ThenGoal, ElseGoal, Instr),
code_info__pop_store_map
;
ite_gen__generate_semidet_ite(CondGoal, ThenGoal, ElseGoal, Instr)
).
code_gen__generate_semi_goal_2(unify(L, R, _U, Uni, _C),
_GoalInfo, Code) -->
(
{ Uni = assign(Left, Right) }
->
unify_gen__generate_assignment(Left, Right, Code)
;
{ Uni = construct(Var, ConsId, Args, Modes) }
->
unify_gen__generate_construction(Var, ConsId, Args,
Modes, Code)
;
{ Uni = deconstruct(Var, ConsId, Args, Modes, _Det) }
->
unify_gen__generate_semi_deconstruction(Var, ConsId, Args,
Modes, Code)
;
{ Uni = simple_test(Var1, Var2) }
->
unify_gen__generate_test(Var1, Var2, Code)
;
{ L = term__variable(Var1) },
{ R = term__variable(Var2) },
{ Uni = complicated_unify(UniMode, Det, _Follow) }
->
call_gen__generate_complicated_unify(Var1, Var2, UniMode, Det,
Code)
;
{ error("code_gen__generate_semi_goal_2: unify") }
).
%---------------------------------------------------------------------------%
:- pred code_gen__generate_semi_goals(hlds__goals, code_tree,
code_info, code_info).
:- mode code_gen__generate_semi_goals(in, out, in, out) is det.
% generating a deterministic
% conjunction is straight forward.
code_gen__generate_semi_goals([], empty) --> [].
code_gen__generate_semi_goals([Goal | Goals], Instr) -->
% generate this goal
code_gen__generate_semi_goal(Goal, Instr1),
% generate the rest of the goals
code_info__get_instmap(InstMap),
(
{ InstMap = unreachable }
->
{ Instr = Instr1 }
;
% generate the rest of the goals
code_gen__generate_semi_goals(Goals, Instr2),
{ Instr = tree(Instr1, Instr2) }
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- pred code_gen__generate_negation(hlds__goal, code_tree,
code_info, code_info).
:- mode code_gen__generate_negation(in, out, in, out) is det.
code_gen__generate_negation(Goal, Code) -->
code_info__get_globals(Globals),
{
globals__lookup_bool_option(Globals,
reclaim_heap_on_semidet_failure, yes),
code_util__goal_may_allocate_heap(Goal)
->
Reclaim = yes
;
Reclaim = no
},
code_info__get_next_label(SuccLab, no),
code_info__push_failure_cont(known(SuccLab)),
code_info__maybe_save_hp(Reclaim, SaveHeapCode),
code_info__generate_nondet_saves(SaveCode),
% The contained goal cannot be nondet, because if it's
% mode-correct, it won't have any output vars, and so
% it will be semi-det.
code_gen__generate_semi_goal(Goal, GoalCode),
code_info__remake_with_call_info,
code_info__maybe_restore_hp(Reclaim, RestoreHeapCode),
code_info__pop_failure_cont,
code_info__generate_failure(FailCode),
{ SuccessCode = node([
label(SuccLab) - "negated goal failed, so proceed"
]) },
{ Code = tree(tree(tree(SaveHeapCode, SaveCode), GoalCode),
tree(FailCode, tree(SuccessCode, RestoreHeapCode))) }.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
code_gen__generate_non_goal(Goal - GoalInfo, Instr) -->
code_aux__pre_goal_update(GoalInfo),
code_info__get_instmap(InstMap),
(
{ InstMap \= unreachable }
->
{ goal_info_determinism(GoalInfo, Category) },
(
{ Category = deterministic }
->
code_gen__generate_det_goal_2(Goal, GoalInfo, Instr0)
;
{ Category = semideterministic }
->
code_gen__generate_semi_goal_2(Goal, GoalInfo, Instr0)
;
code_gen__generate_non_goal_2(Goal, GoalInfo, Instr0)
),
code_info__set_instmap(InstMap),
code_aux__post_goal_update(GoalInfo),
code_info__get_globals(Options),
(
{ globals__lookup_bool_option(Options, lazy_code, yes) }
->
{ Instr1 = empty }
;
{ error("Eager code unavailable") }
%%% code_info__generate_eager_flush(Instr1)
),
{ Instr = tree(Instr0, Instr1) }
;
{ Instr = empty }
).
:- pred code_gen__generate_non_goal_2(hlds__goal_expr, hlds__goal_info,
code_tree, code_info, code_info).
:- mode code_gen__generate_non_goal_2(in, in, out, in, out) is det.
code_gen__generate_non_goal_2(conj(Goals), _GoalInfo, Code) -->
code_gen__generate_non_goals(Goals, Code).
code_gen__generate_non_goal_2(some(_Vars, Goal), _GoalInfo, Code) -->
code_gen__generate_non_goal(Goal, Code).
code_gen__generate_non_goal_2(disj(Goals), GoalInfo, Code) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
disj_gen__generate_non_disj(Goals, Code),
code_info__pop_store_map
;
disj_gen__generate_non_disj(Goals, Code)
).
code_gen__generate_non_goal_2(not(_Goal), _GoalInfo, _Code) -->
{ error("Cannot have a nondet negation.") }.
code_gen__generate_non_goal_2(
call(PredId, ProcId, Args0, Builtin, _, _Follow),
_GoalInfo, Code) -->
{ term__vars_list(Args0, Args) },
(
{ is_builtin__is_internal(Builtin) }
->
call_gen__generate_nondet_builtin(PredId, ProcId, Args, Code)
;
code_info__set_succip_used(yes),
call_gen__generate_nondet_call(PredId, ProcId, Args, Code)
).
code_gen__generate_non_goal_2(switch(Var, Det, CaseList), GoalInfo, Instr) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
switch_gen__generate_switch(nondeterministic,
Var, Det, CaseList, Instr),
code_info__pop_store_map
;
switch_gen__generate_switch(nondeterministic,
Var, Det, CaseList, Instr)
).
code_gen__generate_non_goal_2(
if_then_else(_Vars, CondGoal, ThenGoal, ElseGoal),
GoalInfo, Instr) -->
{ goal_info_store_map(GoalInfo, StoreMap0) },
(
{ StoreMap0 = yes(StoreMap) }
->
code_info__push_store_map(StoreMap),
ite_gen__generate_nondet_ite(CondGoal, ThenGoal, ElseGoal, Instr),
code_info__pop_store_map
;
ite_gen__generate_nondet_ite(CondGoal, ThenGoal, ElseGoal, Instr)
).
code_gen__generate_non_goal_2(unify(_L, _R, _U, _Uni, _C),
_GoalInfo, _Code) -->
{ error("Cannot have a nondet unification.") }.
%---------------------------------------------------------------------------%
:- pred code_gen__generate_non_goals(hlds__goals, code_tree,
code_info, code_info).
:- mode code_gen__generate_non_goals(in, out, in, out) is det.
% generating a deterministic
% conjunction is straight forward.
code_gen__generate_non_goals([], empty) --> [].
code_gen__generate_non_goals([Goal | Goals], Instr) -->
% generate this goal
code_gen__generate_non_goal(Goal, Instr1),
% generate the rest of the goals
code_info__get_instmap(InstMap),
(
{ InstMap = unreachable }
->
{ Instr = Instr1 }
;
% generate the rest of the goals
code_gen__generate_non_goals(Goals, Instr2),
{ Instr = tree(Instr1, Instr2) }
).
%---------------------------------------------------------------------------%
code_gen__output_args([], LiveVals) :-
bintree_set__init(LiveVals).
code_gen__output_args([_V - arg_info(Loc, Mode)|Args], Vs) :-
code_gen__output_args(Args, Vs0),
(
Mode = top_out
->
code_util__arg_loc_to_register(Loc, Reg),
bintree_set__insert(Vs0, reg(Reg), Vs)
;
Vs = Vs0
).
%---------------------------------------------------------------------------%
:- pred code_gen__add_saved_succip(list(instruction), int, list(instruction)).
:- mode code_gen__add_saved_succip(in, in, out) is det.
code_gen__add_saved_succip([], _N, []).
code_gen__add_saved_succip([I0-S|Is0], N, [I-S|Is]) :-
(
I0 = livevals(L0),
Is0 \= [goto(succip, succip) - _|_]
% XXX we should also test for tailcalls
% once we start generating them directly
->
bintree_set__insert(L0, stackvar(N), L1),
I = livevals(L1)
;
I0 = call(T, R, C, LV0)
->
I = call(T, R, C, [live_lvalue(stackvar(N), -1)|LV0])
;
I = I0
),
code_gen__add_saved_succip(Is0, N, Is).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%