Files
mercury/library/queue.m
Julien Fischer e0f5ac47db Make it easier for vi to jump past the initial comments
Estimated hours taken: 0.1
Branches: main

library/*.m:
	Make it easier for vi to jump past the initial comments
	at the head of a module.
2006-04-19 05:18:00 +00:00

271 lines
8.2 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et wm=0 tw=0
%---------------------------------------------------------------------------%
% Copyright (C) 1994-1995, 1997-1999, 2003-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: queue.m.
% Main author: fjh.
% Stability: high.
%
% This file contains a `queue' ADT.
% A queue holds a sequence of values, and provides operations
% to insert values at the end of the queue (queue.put) and remove them from
% the front of the queue (queue.get).
%
% This implementation is in terms of a pair of lists.
% The put and get operations are amortized constant-time.
%
%--------------------------------------------------------------------------%
%--------------------------------------------------------------------------%
:- module queue.
:- interface.
:- import_module list.
%--------------------------------------------------------------------------%
:- type queue(T).
% `queue.init(Queue)' is true iff `Queue' is an empty queue.
%
:- pred queue.init(queue(T)::out) is det.
:- func queue.init = queue(T).
% 'queue_equal(Q1, Q2)' is true iff Q1 and Q2 contain the same
% elements in the same order.
%
:- pred queue.equal(queue(T)::in, queue(T)::in) is semidet.
% `queue.is_empty(Queue)' is true iff `Queue' is an empty queue.
%
:- pred queue.is_empty(queue(T)::in) is semidet.
% `queue.is_full(Queue)' is intended to be true iff `Queue' is a queue
% whose capacity is exhausted. This implementation allows arbitrary-sized
% queues, so queue.is_full always fails.
%
:- pred queue.is_full(queue(T)::in) is semidet.
% `queue.put(Queue0, Elem, Queue)' is true iff `Queue' is the queue
% which results from appending `Elem' onto the end of `Queue0'.
%
:- pred queue.put(queue(T)::in, T::in, queue(T)::out) is det.
:- func queue.put(queue(T), T) = queue(T).
% `queue.put_list(Queue0, Elems, Queue)' is true iff `Queue' is the queue
% which results from inserting the items in the list `Elems' into `Queue0'.
%
:- pred queue.put_list(queue(T)::in, list(T)::in, queue(T)::out) is det.
:- func queue.put_list(queue(T), list(T)) = queue(T).
% `queue.first(Queue, Elem)' is true iff `Queue' is a non-empty queue
% whose first element is `Elem'.
%
:- pred queue.first(queue(T)::in, T::out) is semidet.
% `queue.get(Queue0, Elem, Queue)' is true iff `Queue0' is a non-empty
% queue whose first element is `Elem', and `Queue' the queue which results
% from removing that element from the front of `Queue0'.
%
:- pred queue.get(queue(T)::in, T::out, queue(T)::out) is semidet.
% `queue.length(Queue, Length)' is true iff `Queue' is a queue
% containing `Length' elements.
%
:- pred queue.length(queue(T)::in, int::out) is det.
:- func queue.length(queue(T)) = int.
% `queue.list_to_queue(List, Queue)' is true iff `Queue' is a queue
% containing the elements of List, with the first element of List at
% the head of the queue.
%
:- pred queue.list_to_queue(list(T)::in, queue(T)::out) is det.
:- func queue.list_to_queue(list(T)) = queue(T).
% A synonym for queue.list_to_queue/1.
%
:- func queue.from_list(list(T)) = queue(T).
% `queue.to_list(Queue) = List' is the inverse of queue.from_list/1.
%
:- func queue.to_list(queue(T)) = list(T).
% `queue.delete_all(Queue0, Elem, Queue)' is true iff `Queue' is the same
% queue as `Queue0' with all occurrences of `Elem' removed from it.
%
:- pred queue.delete_all(queue(T)::in, T::in, queue(T)::out) is det.
:- func queue.delete_all(queue(T), T) = queue(T).
% `queue.put_on_front(Queue0, Elem) = Queue' pushes `Elem' on to
% the front of `Queue0', giving `Queue'.
%
:- func queue.put_on_front(queue(T), T) = queue(T).
:- pred queue.put_on_front(queue(T)::in, T::in, queue(T)::out) is det.
% `queue.put_list_on_front(Queue0, Elems) = Queue' pushes `Elems'
% on to the front of `Queue0', giving `Queue' (the Nth member
% of `Elems' becomes the Nth member from the front of `Queue').
%
:- func queue.put_list_on_front(queue(T), list(T)) = queue(T).
:- pred queue.put_list_on_front(queue(T)::in, list(T)::in, queue(T)::out)
is det.
% `queue.get_from_back(Queue0, Elem, Queue)' removes `Elem' from
% the back of `Queue0', giving `Queue'.
%
:- pred queue.get_from_back(queue(T)::in, T::out, queue(T)::out) is semidet.
%--------------------------------------------------------------------------%
%--------------------------------------------------------------------------%
:- implementation.
:- import_module int.
:- import_module pair.
%--------------------------------------------------------------------------%
% This implementation is in terms of a pair of lists. We impose the
% extra constraint that the `off' list is empty if and only if the queue
% is empty.
:- type queue(T) == pair(list(T)).
queue.init([] - []).
queue.equal(On0 - Off0, On1 - Off1) :-
list.reverse(On0, On0R),
list.append(Off0, On0R, Q0),
list.reverse(On1, On1R),
list.append(Off1, On1R, Q1),
Q0 = Q1.
queue.is_empty(_ - []).
queue.is_full(_) :-
semidet_fail.
queue.put(On0 - Off0, Elem, On - Off) :-
(
Off0 = [],
On = On0,
Off = [Elem]
;
Off0 = [_ | _],
On = [Elem | On0],
Off = Off0
).
queue.put_list(On0 - Off0, Xs, On - Off) :-
(
Off0 = [],
On = On0,
Off = Xs
;
Off0 = [_ | _],
Off = Off0,
queue.put_list_2(Xs, On0, On)
).
:- pred queue.put_list_2(list(T)::in, list(T)::in, list(T)::out) is det.
queue.put_list_2([], On, On).
queue.put_list_2([X | Xs], On0, On) :-
queue.put_list_2(Xs, [X | On0], On).
queue.first(_ - [Elem | _], Elem).
queue.get(On0 - [Elem | Off0], Elem, On - Off) :-
(
Off0 = [],
list.reverse(On0, Off),
On = []
;
Off0 = [_ | _],
On = On0,
Off = Off0
).
queue.length(On - Off, Length) :-
list.length(On, LengthOn),
list.length(Off, LengthOff),
Length = LengthOn + LengthOff.
queue.list_to_queue(List, [] - List).
queue.from_list(List) = [] - List.
queue.to_list(On - Off) = Off ++ list.reverse(On).
queue.delete_all(On0 - Off0, Elem, On - Off) :-
list.delete_all(On0, Elem, On1),
list.delete_all(Off0, Elem, Off1),
(
Off1 = [],
list.reverse(On1, Off),
On = []
;
Off1 = [_ | _],
On = On1,
Off = Off1
).
queue.put_on_front(On - Off, Elem, On - [Elem | Off]).
queue.put_on_front(Queue0, Elem) = Queue :-
queue.put_on_front(Queue0, Elem, Queue).
queue.put_list_on_front(On - Off, Elems, On - (Elems ++ Off)).
queue.put_list_on_front(Queue0, Elems) = Queue :-
queue.put_list_on_front(Queue0, Elems, Queue).
queue.get_from_back(On0 - Off0, Elem, On - Off) :-
(
% The On list is non-empty and the last element in the queue
% is the head of the On list.
On0 = [Elem | On],
Off = Off0
;
% The On list is empty.
On0 = [],
(
% The Off list contains a single element.
Off0 = [Elem],
On = [],
Off = []
;
% The Off list contains two or more elements. We split it in two
% and take the head of the new On list as Elem.
Off0 = [_, _ | _],
N = list.length(Off0),
list.split_list(N / 2, Off0, Off, RevOn),
[Elem | On] = list.reverse(RevOn)
)
).
%--------------------------------------------------------------------------%
%--------------------------------------------------------------------------%
% Ralph Becket <rwab1@cl.cam.ac.uk> 29/04/99
% Function forms added.
queue.init = Q :-
queue.init(Q).
queue.put(Q1, T) = Q2 :-
queue.put(Q1, T, Q2).
queue.put_list(Q1, Xs) = Q2 :-
queue.put_list(Q1, Xs, Q2).
queue.length(Q) = N :-
queue.length(Q, N).
queue.list_to_queue(Xs) = Q :-
queue.list_to_queue(Xs, Q).
queue.delete_all(Q1, T) = Q2 :-
queue.delete_all(Q1, T, Q2).