mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-15 05:44:58 +00:00
Estimated hours taken: 0.25 compiler/prog_io.m: For existential quantifiers in data declarations, check that the first argument of the quantifier has the correct syntax (a list of variables).
2811 lines
97 KiB
Mathematica
2811 lines
97 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1993-1998 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: prog_io.m.
|
|
% Main author: fjh.
|
|
%
|
|
% This module defines predicates for parsing Mercury programs.
|
|
%
|
|
% In some ways the representation of programs here is considerably
|
|
% more complex than is necessary for the compiler.
|
|
% The basic reason for this is that it was designed to preserve
|
|
% as much information about the source code as possible, so that
|
|
% this representation could also be used for other tools such
|
|
% as Mercury-to-Goedel converters, pretty-printers, etc.
|
|
% Currently the only information that is lost is that comments and
|
|
% whitespace are stripped, any redundant parenthesization
|
|
% are lost, distinctions between different spellings of the same
|
|
% operator (eg "\+" vs "not") are lost, and DCG clauses get expanded.
|
|
% It would be a good idea to preserve all those too (well, maybe not
|
|
% the redundant parentheses), but right now it's not worth the effort.
|
|
%
|
|
% So that means that this phase of compilation is purely parsing.
|
|
% No simplifications are done (other than DCG expansion).
|
|
% The results of this phase specify
|
|
% basically the same information as is contained in the source code,
|
|
% but in a parse tree rather than a flat file.
|
|
% Simplifications are done only by make_hlds.m, which transforms
|
|
% the parse tree which we built here into the HLDS.
|
|
%
|
|
% Some of this code is a rather bad example of cut-and-paste style reuse.
|
|
% It should be cleaned up to eliminate most of the duplication.
|
|
% But that task really needs to wait until we implement higher-order
|
|
% predicates. For the moment, just be careful that any changes
|
|
% you make are reflected correctly in all similar parts of this
|
|
% file.
|
|
%
|
|
% Implication and equivalence implemented by squirrel, who would also
|
|
% like to get her hands on this file and give it a good clean up and
|
|
% put it into good clean "mercury" style!
|
|
|
|
% Wishlist:
|
|
%
|
|
% 1. implement importing/exporting operators with a particular fixity
|
|
% eg. :- import_op prefix(+). % only prefix +, not infix
|
|
% (not important, but should be there for reasons of symmetry.)
|
|
% 2. improve the handling of type and inst parameters
|
|
% 3. improve the error reporting (most of the semidet preds should
|
|
% be det and should return a meaningful indication of where an
|
|
% error occured).
|
|
|
|
:- module prog_io.
|
|
|
|
:- interface.
|
|
|
|
:- import_module prog_data, prog_io_util.
|
|
:- import_module bool, varset, term, list, io.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This module (prog_io) exports the following predicates:
|
|
|
|
% prog_io__read_module(FileName, DefaultModuleName, Search, Error,
|
|
% ActualModuleName, Messages, Program)
|
|
% Reads and parses the module in file `FileName',
|
|
% using the default module name `DefaultModuleName'.
|
|
% If Search is yes, search directories given by the option
|
|
% search_directories.
|
|
% Error is `fatal' if the file coudn't be opened, `yes'
|
|
% if a syntax error was detected, and `no' otherwise.
|
|
% ActualModuleName is the module name specified in the
|
|
% `:- module' declaration, if any, or the DefaultModuleName
|
|
% if there is no `:- module' declaration.
|
|
% Messages is a list of warning/error messages.
|
|
% Program is the parse tree.
|
|
|
|
:- type module_error
|
|
---> no % no errors
|
|
; yes % some syntax errors
|
|
; fatal. % couldn't open the file
|
|
|
|
:- type file_name == string.
|
|
:- type dir_name == string.
|
|
|
|
:- pred prog_io__read_module(file_name, module_name, bool,
|
|
module_error, module_name, message_list, item_list,
|
|
io__state, io__state).
|
|
:- mode prog_io__read_module(in, in, in, out, out, out, out, di, uo) is det.
|
|
|
|
% Same as prog_io__read_module, but use intermod_directories
|
|
% instead of search_directories when searching for the file.
|
|
% Also report an error if the actual module name doesn't match
|
|
% the expected module name.
|
|
:- pred prog_io__read_opt_file(file_name, module_name, bool,
|
|
module_error, message_list, item_list, io__state, io__state).
|
|
:- mode prog_io__read_opt_file(in, in, in, out, out, out, di, uo) is det.
|
|
|
|
% check_module_has_expected_name(FileName, ExpectedName, ActualName):
|
|
% Check that two module names are equal,
|
|
% and report an error if they aren't.
|
|
:- pred check_module_has_expected_name(file_name, module_name, module_name,
|
|
io__state, io__state).
|
|
:- mode check_module_has_expected_name(in, in, in, di, uo) is det.
|
|
|
|
% search_for_file(Dirs, FileName, Found, IO0, IO)
|
|
%
|
|
% Search Dirs for FileName, opening the file if it is found.
|
|
:- pred search_for_file(list(dir_name), file_name, bool, io__state, io__state).
|
|
:- mode search_for_file(in, in, out, di, uo) is det.
|
|
|
|
% parse_item(ModuleName, VarSet, Term, MaybeItem)
|
|
%
|
|
% parse Term. If successful, MaybeItem is bound to the parsed item,
|
|
% otherwise it is bound to an appropriate error message.
|
|
% Qualify appropriate parts of the item, with ModuleName as the
|
|
% module name.
|
|
:- pred parse_item(module_name, varset, term, maybe_item_and_context).
|
|
:- mode parse_item(in, in, in, out) is det.
|
|
|
|
% parse_decl(ModuleName, VarSet, Term, Result)
|
|
%
|
|
% parse Term as a declaration. If successful, Result is bound to the
|
|
% parsed item, otherwise it is bound to an appropriate error message.
|
|
% Qualify appropriate parts of the item, with ModuleName as the module
|
|
% name.
|
|
:- pred parse_decl(module_name, varset, term, maybe_item_and_context).
|
|
:- mode parse_decl(in, in, in, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A QualifiedTerm is one of
|
|
% Name(Args)
|
|
% Module:Name(Args)
|
|
% (or if Args is empty, one of
|
|
% Name
|
|
% Module:Name)
|
|
% where Module is a SymName.
|
|
% For backwards compatibility, we allow `__'
|
|
% as an alternative to `:'.
|
|
|
|
% sym_name_and_args takes a term and returns a sym_name and a list of
|
|
% argument terms.
|
|
% It fals if the input is not valid syntax for a QualifiedTerm.
|
|
:- pred sym_name_and_args(term, sym_name, list(term)).
|
|
:- mode sym_name_and_args(in, out, out) is semidet.
|
|
|
|
% parse_qualified_term/4 takes a term (and also the containing
|
|
% term, and a string describing the context from which it
|
|
% was called [e.g. "clause head"] and the containing term)
|
|
% and returns a sym_name and a list of argument terms.
|
|
% Returns an error on ill-formed input.
|
|
% See also parse_implicitly_qualified_term/5 (below).
|
|
:- pred parse_qualified_term(term, term, string, maybe_functor).
|
|
:- mode parse_qualified_term(in, in, in, out) is det.
|
|
|
|
% parse_implicitly_qualified_term(DefaultModName, Term,
|
|
% ContainingTerm, Msg, Result):
|
|
%
|
|
% parse_implicitly_qualified_term/5 takes a default module name
|
|
% and a term,
|
|
% (and also the containing term, and a string describing
|
|
% the context from which it was called (e.g. "clause head"),
|
|
% and returns a sym_name and a list of argument terms.
|
|
% Returns an error on ill-formed input or a module qualifier that
|
|
% doesn't match the DefaultModName.
|
|
%
|
|
% Note: parse_qualified_term/4 is used for places where a symbol
|
|
% is _used_, in which case no default module name exists, whereas
|
|
% parse_implicitly_qualified_term/5 is used for places where a symbol
|
|
% is _defined_; in that case, there is a default module name (the
|
|
% name of the current module) -- specifying a module qualifier
|
|
% explicitly is redundant, but it is allowed, so long as the
|
|
% module qualifier specified matches the default.
|
|
:- pred parse_implicitly_qualified_term(module_name, term, term, string,
|
|
maybe_functor).
|
|
:- mode parse_implicitly_qualified_term(in, in, in, in, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module prog_io_goal, prog_io_dcg, prog_io_pragma, prog_io_util.
|
|
:- import_module prog_io_typeclass.
|
|
:- import_module hlds_data, hlds_pred, prog_util, prog_out.
|
|
:- import_module globals, options, (inst).
|
|
:- import_module purity.
|
|
|
|
:- import_module int, string, std_util, parser, term_io, dir, require.
|
|
:- import_module assoc_list.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
prog_io__read_module(FileName, DefaultModuleName, Search,
|
|
Error, ModuleName, Messages, Items) -->
|
|
prog_io__read_module_2(FileName, DefaultModuleName, Search,
|
|
search_directories, Error, ModuleName, Messages, Items).
|
|
|
|
prog_io__read_opt_file(FileName, DefaultModuleName, Search,
|
|
Error, Messages, Items) -->
|
|
prog_io__read_module_2(FileName, DefaultModuleName, Search,
|
|
intermod_directories, Error, ModuleName, Messages, Items),
|
|
check_module_has_expected_name(FileName,
|
|
DefaultModuleName, ModuleName).
|
|
|
|
check_module_has_expected_name(FileName, ExpectedName, ActualName) -->
|
|
( { ActualName \= ExpectedName } ->
|
|
{ prog_out__sym_name_to_string(ActualName, ActualString) },
|
|
{ prog_out__sym_name_to_string(ExpectedName, ExpectedString) },
|
|
io__stderr_stream(ErrStream),
|
|
io__write_strings(ErrStream, [
|
|
"Error: file `", FileName,
|
|
"' contains the wrong module.\n",
|
|
"Expected module `", ExpectedString,
|
|
"', found module `", ActualString, "'.\n"
|
|
]),
|
|
io__set_exit_status(1)
|
|
;
|
|
[]
|
|
).
|
|
|
|
|
|
% This implementation uses io__read_term to read in the program
|
|
% term at a time, and then converts those terms into clauses and
|
|
% declarations, checking for errors as it goes.
|
|
% Note that rather than using difference lists, we just
|
|
% build up the lists of items and messages in reverse order
|
|
% and then reverse them afterwards. (Using difference lists would require
|
|
% late-input modes.)
|
|
|
|
:- pred prog_io__read_module_2(file_name, module_name, bool, option,
|
|
module_error, module_name, message_list, item_list,
|
|
io__state, io__state).
|
|
:- mode prog_io__read_module_2(in, in, in, in, out, out, out, out,
|
|
di, uo) is det.
|
|
|
|
prog_io__read_module_2(FileName, DefaultModuleName, Search,
|
|
SearchOpt, Error, ModuleName, Messages, Items) -->
|
|
(
|
|
{ Search = yes }
|
|
->
|
|
globals__io_lookup_accumulating_option(SearchOpt,
|
|
Dirs)
|
|
;
|
|
{ dir__this_directory(CurrentDir) },
|
|
{ Dirs = [CurrentDir] }
|
|
),
|
|
search_for_file(Dirs, FileName, R),
|
|
( { R = yes } ->
|
|
read_all_items(DefaultModuleName, ModuleName,
|
|
Messages, Items, Error),
|
|
io__seen
|
|
;
|
|
io__progname_base("prog_io.m", Progname),
|
|
{
|
|
string__append(Progname, ": can't open file `", Message1),
|
|
string__append(Message1, FileName, Message2),
|
|
string__append(Message2, "'", Message),
|
|
dummy_term(Term),
|
|
Messages = [Message - Term],
|
|
Error = fatal,
|
|
Items = [],
|
|
ModuleName = DefaultModuleName
|
|
}
|
|
).
|
|
|
|
search_for_file([], _, no) --> [].
|
|
search_for_file([Dir | Dirs], FileName, R) -->
|
|
{ dir__this_directory(Dir) ->
|
|
ThisFileName = FileName
|
|
;
|
|
dir__directory_separator(Separator),
|
|
string__first_char(Tmp1, Separator, FileName),
|
|
string__append(Dir, Tmp1, ThisFileName)
|
|
},
|
|
io__see(ThisFileName, R0),
|
|
( { R0 = ok } ->
|
|
{ R = yes }
|
|
;
|
|
search_for_file(Dirs, FileName, R)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% extract the final `:- end_module' declaration if any
|
|
|
|
:- type module_end ---> no ; yes(module_name, term__context).
|
|
|
|
:- pred get_end_module(item_list, item_list, module_end).
|
|
:- mode get_end_module(in, out, out) is det.
|
|
|
|
get_end_module(RevItems0, RevItems, EndModule) :-
|
|
(
|
|
RevItems0 = [
|
|
module_defn(_VarSet, end_module(ModuleName)) - Context
|
|
| RevItems1]
|
|
->
|
|
RevItems = RevItems1,
|
|
EndModule = yes(ModuleName, Context)
|
|
;
|
|
RevItems = RevItems0,
|
|
EndModule = no
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% check that the module starts with a :- module declaration,
|
|
% and that the end_module declaration (if any) is correct,
|
|
% and construct the final parsing result.
|
|
|
|
:- pred check_end_module(module_end, message_list, item_list, module_error,
|
|
message_list, item_list, module_error, io__state, io__state).
|
|
:- mode check_end_module(in, in, in, in, out, out, out, di, uo) is det.
|
|
|
|
check_end_module(EndModule, Messages0, Items0, Error0,
|
|
Messages, Items, Error) -->
|
|
%
|
|
% double-check that the first item is a `:- module ModuleName'
|
|
% declaration, and remove it from the front of the item list
|
|
%
|
|
{
|
|
Items0 = [module_defn(_VarSet, module(ModuleName1)) - _Context1
|
|
| Items1]
|
|
->
|
|
Items = Items1,
|
|
%
|
|
% check that the end module declaration (if any)
|
|
% matches the begin module declaration
|
|
%
|
|
(
|
|
EndModule = yes(ModuleName2, Context2),
|
|
ModuleName1 \= ModuleName2
|
|
->
|
|
dummy_term_with_context(Context2, Term),
|
|
add_error(
|
|
"`:- end_module' declaration doesn't match `:- module' declaration",
|
|
Term, Messages0, Messages),
|
|
Error = yes
|
|
;
|
|
Messages = Messages0,
|
|
Error = Error0
|
|
)
|
|
;
|
|
% if there's no `:- module' declaration at this point, it is
|
|
% an internal error -- read_first_item should have inserted one
|
|
error("check_end_module: no `:- module' declaration")
|
|
}.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Create a dummy term.
|
|
% Used for error messages that are not associated with any
|
|
% particular term or context.
|
|
:- pred dummy_term(term).
|
|
:- mode dummy_term(out) is det.
|
|
dummy_term(Term) :-
|
|
term__context_init(Context),
|
|
dummy_term_with_context(Context, Term).
|
|
|
|
% Create a dummy term with the specified context.
|
|
% Used for error messages that are associated with some specific
|
|
% context, but for which we don't want to print out the term
|
|
% (or for which the term isn't available to be printed out).
|
|
|
|
:- pred dummy_term_with_context(term__context, term).
|
|
:- mode dummy_term_with_context(in, out) is det.
|
|
dummy_term_with_context(Context, Term) :-
|
|
Term = term__functor(term__atom(""), [], Context).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Read a source file from standard in, first reading in
|
|
% the input term by term and then parsing those terms and producing
|
|
% a high-level representation.
|
|
% Parsing is actually a 3-stage process instead of the
|
|
% normal two-stage process:
|
|
% lexical analysis (chars -> tokens),
|
|
% parsing stage 1 (tokens -> terms),
|
|
% parsing stage 2 (terms -> items).
|
|
% The final stage produces a list of program items, each of
|
|
% which may be a declaration or a clause.
|
|
%
|
|
% We use a continuation-passing style here.
|
|
|
|
:- pred read_all_items(module_name, module_name,
|
|
message_list, item_list, module_error,
|
|
io__state, io__state).
|
|
:- mode read_all_items(in, out, out, out, out, di, uo) is det.
|
|
|
|
read_all_items(DefaultModuleName, ModuleName, Messages, Items, Error) -->
|
|
%
|
|
% read all the items (the first one is handled specially)
|
|
%
|
|
io__input_stream(Stream),
|
|
io__input_stream_name(Stream, SourceFileName),
|
|
read_first_item(DefaultModuleName, SourceFileName, ModuleName,
|
|
RevMessages, RevItems0, Error0),
|
|
|
|
%
|
|
% get the end_module declaration (if any),
|
|
% check that it matches the initial module declaration (if any),
|
|
% and remove both of them from the final item list.
|
|
%
|
|
{ get_end_module(RevItems0, RevItems, EndModule) },
|
|
{ list__reverse(RevMessages, Messages0) },
|
|
{ list__reverse(RevItems, Items0) },
|
|
check_end_module(EndModule,
|
|
Messages0, Items0, Error0,
|
|
Messages, Items, Error).
|
|
|
|
%
|
|
% We need to jump through a few hoops when reading the first item,
|
|
% to allow the initial `:- module' declaration to be optional.
|
|
% The reason is that in order to parse an item, we need to know
|
|
% which module it is defined in (because we do some module
|
|
% qualification and checking of module qualifiers at parse time),
|
|
% but the initial `:- module' declaration and the declaration
|
|
% that follows it occur in different scopes, so we need to know
|
|
% what it is that we're parsing before we can parse it!
|
|
% We solve this dilemma by first parsing it in the root scope,
|
|
% and then if it turns out to not be a `:- module' declaration
|
|
% we reparse it in the default module scope. Blecchh.
|
|
%
|
|
:- pred read_first_item(module_name, file_name, module_name,
|
|
message_list, item_list, module_error, io__state, io__state).
|
|
:- mode read_first_item(in, in, out, out, out, out, di, uo) is det.
|
|
|
|
read_first_item(DefaultModuleName, SourceFileName, ModuleName,
|
|
Messages, Items, Error) -->
|
|
|
|
globals__io_lookup_bool_option(warn_missing_module_name, WarnMissing),
|
|
globals__io_lookup_bool_option(warn_wrong_module_name, WarnWrong),
|
|
|
|
%
|
|
% parse the first term, treating it as occurring
|
|
% within the scope of the special "root" module
|
|
% (so that any `:- module' declaration is taken to
|
|
% be a non-nested module unless explicitly qualified).
|
|
%
|
|
parser__read_term(SourceFileName, MaybeFirstTerm),
|
|
{ root_module_name(RootModuleName) },
|
|
{ process_read_term(RootModuleName, MaybeFirstTerm, MaybeFirstItem) },
|
|
(
|
|
%
|
|
% apply and then skip `pragma source_file' decls,
|
|
% by calling ourselves recursively with the new source
|
|
% file name
|
|
%
|
|
{ MaybeFirstItem = ok(FirstItem, _) },
|
|
{ FirstItem = pragma(source_file(NewSourceFileName)) }
|
|
->
|
|
read_first_item(DefaultModuleName, NewSourceFileName,
|
|
ModuleName, Messages, Items, Error)
|
|
;
|
|
%
|
|
% check if the first term was a `:- module' decl
|
|
%
|
|
{ MaybeFirstItem = ok(FirstItem, FirstContext) },
|
|
{ FirstItem = module_defn(_VarSet, ModuleDefn) },
|
|
{ ModuleDefn = module(StartModuleName) }
|
|
->
|
|
|
|
%
|
|
% if so, then check that it matches the expected
|
|
% module name, and if not, report a warning
|
|
%
|
|
{
|
|
match_sym_name(StartModuleName, DefaultModuleName)
|
|
->
|
|
ModuleName = DefaultModuleName,
|
|
Messages0 = []
|
|
;
|
|
match_sym_name(DefaultModuleName, StartModuleName)
|
|
->
|
|
ModuleName = StartModuleName,
|
|
Messages0 = []
|
|
;
|
|
prog_out__sym_name_to_string(StartModuleName,
|
|
StartModuleNameString),
|
|
string__append_list(["source file `", SourceFileName,
|
|
"' contains module named `", StartModuleNameString,
|
|
"'"], WrongModuleWarning),
|
|
maybe_add_warning(WarnWrong, MaybeFirstTerm, FirstContext,
|
|
WrongModuleWarning, [], Messages0),
|
|
|
|
% Which one should we use here?
|
|
% We used to use the default module name
|
|
% (computed from the filename)
|
|
% but now we use the declared one.
|
|
ModuleName = StartModuleName
|
|
},
|
|
{ make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
|
|
{ Items0 = [FixedFirstItem] },
|
|
{ Error0 = no },
|
|
read_items_loop(ModuleName, SourceFileName,
|
|
Messages0, Items0, Error0,
|
|
Messages, Items, Error)
|
|
;
|
|
%
|
|
% if the first term was not a `:- module' decl,
|
|
% then issue a warning (if warning enabled), and
|
|
% insert an implicit `:- module ModuleName' decl.
|
|
%
|
|
{ MaybeFirstItem = ok(_FirstItem, FirstContext0) ->
|
|
FirstContext = FirstContext0
|
|
;
|
|
term__context_init(SourceFileName, 1, FirstContext)
|
|
},
|
|
{ WarnMissing = yes ->
|
|
dummy_term_with_context(FirstContext, FirstTerm),
|
|
add_warning(
|
|
"module should start with a `:- module' declaration",
|
|
FirstTerm, [], Messages0)
|
|
;
|
|
Messages0 = []
|
|
},
|
|
{ ModuleName = DefaultModuleName },
|
|
{ make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
|
|
|
|
%
|
|
% reparse the first term, this time treating it as
|
|
% occuring within the scope of the implicit
|
|
% `:- module' decl rather than in the root module.
|
|
%
|
|
{ MaybeSecondTerm = MaybeFirstTerm },
|
|
{ process_read_term(ModuleName, MaybeSecondTerm,
|
|
MaybeSecondItem) },
|
|
|
|
{ Items0 = [FixedFirstItem] },
|
|
{ Error0 = no },
|
|
read_items_loop_2(MaybeSecondItem, ModuleName, SourceFileName,
|
|
Messages0, Items0, Error0,
|
|
Messages, Items, Error)
|
|
).
|
|
|
|
:- pred make_module_decl(module_name, term__context, item_and_context).
|
|
:- mode make_module_decl(in, in, out) is det.
|
|
|
|
make_module_decl(ModuleName, Context, Item - Context) :-
|
|
varset__init(EmptyVarSet),
|
|
ModuleDefn = module(ModuleName),
|
|
Item = module_defn(EmptyVarSet, ModuleDefn).
|
|
|
|
:- pred maybe_add_warning(bool, read_term, term__context, string,
|
|
message_list, message_list).
|
|
:- mode maybe_add_warning(in, in, in, in, in, out) is det.
|
|
|
|
maybe_add_warning(DoWarn, MaybeTerm, Context, Warning, Messages0, Messages) :-
|
|
( DoWarn = yes ->
|
|
( MaybeTerm = term(_VarSet, Term) ->
|
|
WarningTerm = Term
|
|
;
|
|
dummy_term_with_context(Context, WarningTerm)
|
|
),
|
|
add_warning(Warning, WarningTerm, Messages0, Messages)
|
|
;
|
|
Messages = Messages0
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% The code below was carefully optimized to run efficiently
|
|
% in NU-Prolog. We used to call read_item(MaybeItem) -
|
|
% which does all the work for a single item -
|
|
% via io__gc_call/1, which called the goal with garbage collection.
|
|
% But optimizing for NU-Prolog is no longer a big priority...
|
|
|
|
:- pred read_items_loop(module_name, file_name,
|
|
message_list, item_list, module_error,
|
|
message_list, item_list, module_error,
|
|
io__state, io__state).
|
|
:- mode read_items_loop(in, in, in, in, in, out, out, out, di, uo) is det.
|
|
|
|
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
|
|
Msgs, Items, Error) -->
|
|
read_item(ModuleName, SourceFileName, MaybeItem),
|
|
read_items_loop_2(MaybeItem, ModuleName, SourceFileName,
|
|
Msgs1, Items1, Error1, Msgs, Items, Error).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred read_items_loop_2(maybe_item_or_eof, module_name, file_name,
|
|
message_list, item_list, module_error,
|
|
message_list, item_list, module_error,
|
|
io__state, io__state).
|
|
:- mode read_items_loop_2(in, in, in, in, in, in, out, out, out, di, uo) is det.
|
|
|
|
% do a switch on the type of the next item
|
|
|
|
read_items_loop_2(eof, _ModuleName, _SourceFileName, Msgs, Items, Error,
|
|
Msgs, Items, Error) --> [].
|
|
% if the next item was end-of-file, then we're done.
|
|
|
|
read_items_loop_2(syntax_error(ErrorMsg, LineNumber), ModuleName,
|
|
SourceFileName, Msgs0, Items0, _Error0, Msgs, Items, Error) -->
|
|
% if the next item was a syntax error, then insert it in
|
|
% the list of messages and continue looping
|
|
{
|
|
term__context_init(SourceFileName, LineNumber, Context),
|
|
dummy_term_with_context(Context, Term),
|
|
ThisError = ErrorMsg - Term,
|
|
Msgs1 = [ThisError | Msgs0],
|
|
Items1 = Items0,
|
|
Error1 = yes
|
|
},
|
|
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
|
|
Msgs, Items, Error).
|
|
|
|
read_items_loop_2(error(M, T), ModuleName, SourceFileName,
|
|
Msgs0, Items0, _Error0, Msgs, Items, Error) -->
|
|
% if the next item was a semantic error, then insert it in
|
|
% the list of messages and continue looping
|
|
{
|
|
add_error(M, T, Msgs0, Msgs1),
|
|
Items1 = Items0,
|
|
Error1 = yes
|
|
},
|
|
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
|
|
Msgs, Items, Error).
|
|
|
|
read_items_loop_2(ok(Item, Context), ModuleName0, SourceFileName0,
|
|
Msgs0, Items0, Error0, Msgs, Items, Error) -->
|
|
% if the next item was a valid item, check whether it was
|
|
% a declaration that affects the current parsing context --
|
|
% i.e. either a `module'/`end_module' declaration or a
|
|
% `pragma source_file' declaration. If so, set the new
|
|
% parsing context according. Next, unless the item is a
|
|
% `pragma source_file' declaration, insert it into the item list.
|
|
% Then continue looping.
|
|
{ Item = pragma(source_file(NewSourceFileName)) ->
|
|
SourceFileName = NewSourceFileName,
|
|
ModuleName = ModuleName0,
|
|
Items1 = Items0
|
|
; Item = module_defn(_VarSet, module(NestedModuleName)) ->
|
|
ModuleName = NestedModuleName,
|
|
SourceFileName = SourceFileName0,
|
|
Items1 = [Item - Context | Items0]
|
|
; Item = module_defn(_VarSet, end_module(NestedModuleName)) ->
|
|
root_module_name(RootModuleName),
|
|
sym_name_get_module_name(NestedModuleName, RootModuleName,
|
|
ParentModuleName),
|
|
ModuleName = ParentModuleName,
|
|
SourceFileName = SourceFileName0,
|
|
Items1 = [Item - Context | Items0]
|
|
;
|
|
SourceFileName = SourceFileName0,
|
|
ModuleName = ModuleName0,
|
|
Items1 = [Item - Context | Items0]
|
|
},
|
|
read_items_loop(ModuleName, SourceFileName, Msgs0, Items1, Error0,
|
|
Msgs, Items, Error).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% read_item/1 reads a single item, and if it is a valid term
|
|
% parses it.
|
|
|
|
:- type maybe_item_or_eof ---> eof
|
|
; syntax_error(file_name, int)
|
|
; error(string, term)
|
|
; ok(item, term__context).
|
|
|
|
:- pred read_item(module_name, file_name, maybe_item_or_eof,
|
|
io__state, io__state).
|
|
:- mode read_item(in, in, out, di, uo) is det.
|
|
|
|
read_item(ModuleName, SourceFileName, MaybeItem) -->
|
|
parser__read_term(SourceFileName, MaybeTerm),
|
|
{ process_read_term(ModuleName, MaybeTerm, MaybeItem) }.
|
|
|
|
:- pred process_read_term(module_name, read_term, maybe_item_or_eof).
|
|
:- mode process_read_term(in, in, out) is det.
|
|
|
|
process_read_term(_ModuleName, eof, eof).
|
|
process_read_term(_ModuleName, error(ErrorMsg, LineNumber),
|
|
syntax_error(ErrorMsg, LineNumber)).
|
|
process_read_term(ModuleName, term(VarSet, Term),
|
|
MaybeItemOrEof) :-
|
|
parse_item(ModuleName, VarSet, Term, MaybeItem),
|
|
convert_item(MaybeItem, MaybeItemOrEof).
|
|
|
|
:- pred convert_item(maybe_item_and_context, maybe_item_or_eof).
|
|
:- mode convert_item(in, out) is det.
|
|
|
|
convert_item(ok(Item, Context), ok(Item, Context)).
|
|
convert_item(error(M, T), error(M, T)).
|
|
|
|
parse_item(ModuleName, VarSet, Term, Result) :-
|
|
( %%% some [Decl, DeclContext]
|
|
Term = term__functor(term__atom(":-"), [Decl], _DeclContext)
|
|
->
|
|
% It's a declaration
|
|
parse_decl(ModuleName, VarSet, Decl, Result)
|
|
; %%% some [DCG_H, DCG_B, DCG_Context]
|
|
% It's a DCG clause
|
|
Term = term__functor(term__atom("-->"), [DCG_H, DCG_B],
|
|
DCG_Context)
|
|
->
|
|
parse_dcg_clause(ModuleName, VarSet, DCG_H, DCG_B,
|
|
DCG_Context, Result)
|
|
;
|
|
% It's either a fact or a rule
|
|
( %%% some [H, B, TermContext]
|
|
Term = term__functor(term__atom(":-"), [H, B],
|
|
TermContext)
|
|
->
|
|
% it's a rule
|
|
Head = H,
|
|
Body = B,
|
|
TheContext = TermContext
|
|
;
|
|
% it's a fact
|
|
Head = Term,
|
|
(
|
|
Head = term__functor(_Functor, _Args,
|
|
HeadContext)
|
|
->
|
|
TheContext = HeadContext
|
|
;
|
|
% term consists of just a single
|
|
% variable - the context has been lost
|
|
term__context_init(TheContext)
|
|
),
|
|
Body = term__functor(term__atom("true"), [], TheContext)
|
|
),
|
|
parse_goal(Body, VarSet, Body2, VarSet2),
|
|
(
|
|
Head = term__functor(term__atom("="),
|
|
[FuncHead, FuncResult], _)
|
|
->
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
FuncHead, Head, "equation head", R2),
|
|
process_func_clause(R2, FuncResult, VarSet2, Body2, R3)
|
|
;
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
Head, Term, "clause head", R2),
|
|
process_pred_clause(R2, VarSet2, Body2, R3)
|
|
),
|
|
add_context(R3, TheContext, Result)
|
|
).
|
|
|
|
:- pred process_pred_clause(maybe_functor, varset, goal, maybe1(item)).
|
|
:- mode process_pred_clause(in, in, in, out) is det.
|
|
process_pred_clause(ok(Name, Args), VarSet, Body,
|
|
ok(pred_clause(VarSet, Name, Args, Body))).
|
|
process_pred_clause(error(ErrMessage, Term), _, _, error(ErrMessage, Term)).
|
|
|
|
:- pred process_func_clause(maybe_functor, term, varset, goal, maybe1(item)).
|
|
:- mode process_func_clause(in, in, in, in, out) is det.
|
|
process_func_clause(ok(Name, Args), Result, VarSet, Body,
|
|
ok(func_clause(VarSet, Name, Args, Result, Body))).
|
|
process_func_clause(error(ErrMessage, Term), _, _, _, error(ErrMessage, Term)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- type decl_attribute
|
|
---> purity(purity)
|
|
; quantifier(quantifier_type, list(tvar))
|
|
; constraints(quantifier_type, term).
|
|
% the term here is the (not yet parsed) list of constraints
|
|
|
|
:- type quantifier_type
|
|
---> exist
|
|
; univ.
|
|
|
|
:- type decl_attrs == list(pair(decl_attribute, term)).
|
|
% the term associated with each decl_attribute
|
|
% is the term containing both the attribute and
|
|
% the declaration that that attribute modifies;
|
|
% this term is used when printing out error messages
|
|
% for cases when attributes are used on declarations
|
|
% where they are not allowed.
|
|
|
|
parse_decl(ModuleName, VarSet, F, Result) :-
|
|
parse_decl_2(ModuleName, VarSet, F, [], Result).
|
|
|
|
% parse_decl_2(ModuleName, VarSet, Term, Attributes, Result)
|
|
% succeeds if Term is a declaration and binds Result to a
|
|
% representation of that declaration. Attributes is a list
|
|
% of enclosing declaration attributes, in the order innermost to
|
|
% outermost.
|
|
:- pred parse_decl_2(module_name, varset, term, decl_attrs,
|
|
maybe_item_and_context).
|
|
:- mode parse_decl_2(in, in, in, in, out) is det.
|
|
|
|
parse_decl_2(ModuleName, VarSet, F, Attributes, Result) :-
|
|
(
|
|
F = term__functor(term__atom(Atom), Args, Context)
|
|
->
|
|
(
|
|
parse_decl_attribute(Atom, Args, Attribute, SubTerm)
|
|
->
|
|
NewAttributes = [Attribute - F | Attributes],
|
|
parse_decl_2(ModuleName, VarSet, SubTerm,
|
|
NewAttributes, Result)
|
|
;
|
|
process_decl(ModuleName, VarSet, Atom, Args,
|
|
Attributes, R)
|
|
->
|
|
add_context(R, Context, Result)
|
|
;
|
|
Result = error("unrecognized declaration", F)
|
|
)
|
|
;
|
|
Result = error("atom expected after `:-'", F)
|
|
).
|
|
|
|
% process_decl(ModuleName, VarSet, Attributes, Atom, Args, Result)
|
|
% succeeds if Atom(Args) is a declaration and binds Result to a
|
|
% representation of that declaration. Attributes is a list
|
|
% of enclosing declaration attributes, in the order outermost to
|
|
% innermost.
|
|
:- pred process_decl(module_name, varset, string, list(term), decl_attrs,
|
|
maybe1(item)).
|
|
:- mode process_decl(in, in, in, in, in, out) is semidet.
|
|
|
|
process_decl(ModuleName, VarSet, "type", [TypeDecl], Attributes, Result) :-
|
|
parse_type_decl(ModuleName, VarSet, TypeDecl, Result0),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(ModuleName, VarSet, "pred", [PredDecl], Attributes, Result) :-
|
|
parse_type_decl_pred(ModuleName, VarSet, PredDecl, Attributes, Result).
|
|
|
|
process_decl(ModuleName, VarSet, "func", [FuncDecl], Attributes, Result) :-
|
|
parse_type_decl_func(ModuleName, VarSet, FuncDecl, Attributes, Result).
|
|
|
|
process_decl(ModuleName, VarSet, "mode", [ModeDecl], Attributes, Result) :-
|
|
parse_mode_decl(ModuleName, VarSet, ModeDecl, Result0),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(ModuleName, VarSet, "inst", [InstDecl], Attributes, Result) :-
|
|
parse_inst_decl(ModuleName, VarSet, InstDecl, Result0),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_module", [ModuleSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_module_specifier, make_module, make_import,
|
|
ModuleSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_module", [ModuleSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_module_specifier, make_module, make_use,
|
|
ModuleSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_module", [ModuleSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_module_specifier, make_module, make_export,
|
|
ModuleSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_sym", [SymSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_symbol_specifier, make_sym, make_import,
|
|
SymSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_sym", [SymSpec], Attributes, Result) :-
|
|
parse_symlist_decl(parse_symbol_specifier, make_sym, make_use,
|
|
SymSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_sym", [SymSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_symbol_specifier, make_sym, make_export,
|
|
SymSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_pred", [PredSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_predicate_specifier, make_pred, make_import,
|
|
PredSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_pred", [PredSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_predicate_specifier, make_pred, make_use,
|
|
PredSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_pred", [PredSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_predicate_specifier, make_pred, make_export,
|
|
PredSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_func", [FuncSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_function_specifier, make_func, make_import,
|
|
FuncSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_func", [FuncSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_function_specifier, make_func, make_use,
|
|
FuncSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_func", [FuncSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_function_specifier, make_func, make_export,
|
|
FuncSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_cons", [ConsSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_constructor_specifier, make_cons, make_import,
|
|
ConsSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_cons", [ConsSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_constructor_specifier, make_cons, make_use,
|
|
ConsSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_cons", [ConsSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_constructor_specifier, make_cons, make_export,
|
|
ConsSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_type", [TypeSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_type_specifier, make_type, make_import,
|
|
TypeSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_type", [TypeSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_type_specifier, make_type, make_use,
|
|
TypeSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_type", [TypeSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_type_specifier, make_type, make_export,
|
|
TypeSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_adt", [ADT_Spec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_adt_specifier, make_adt, make_import,
|
|
ADT_Spec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_adt", [ADT_Spec], Attributes, Result) :-
|
|
parse_symlist_decl(parse_adt_specifier, make_adt, make_use,
|
|
ADT_Spec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_adt", [ADT_Spec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_adt_specifier, make_adt, make_export,
|
|
ADT_Spec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "import_op", [OpSpec], Attributes,
|
|
Result) :-
|
|
parse_symlist_decl(parse_op_specifier, make_op, make_import,
|
|
OpSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "use_op", [OpSpec], Attributes, Result) :-
|
|
parse_symlist_decl(parse_op_specifier, make_op, make_use,
|
|
OpSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "export_op", [OpSpec], Attributes, Result) :-
|
|
parse_symlist_decl(parse_op_specifier, make_op, make_export,
|
|
OpSpec, Attributes, VarSet, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "interface", [], Attributes, Result) :-
|
|
Result0 = ok(module_defn(VarSet, interface)),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "implementation", [], Attributes, Result) :-
|
|
Result0 = ok(module_defn(VarSet, implementation)),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(_ModuleName, VarSet, "external", [PredSpec], Attributes,
|
|
Result) :-
|
|
parse_symbol_name_specifier(PredSpec, Result0),
|
|
process_maybe1(make_external(VarSet), Result0, Result1),
|
|
check_no_attributes(Result1, Attributes, Result).
|
|
|
|
process_decl(DefaultModuleName, VarSet, "module", [ModuleName], Attributes,
|
|
Result) :-
|
|
parse_module_name(DefaultModuleName, ModuleName, Result0),
|
|
(
|
|
Result0 = ok(ModuleNameSym),
|
|
Result1 = ok(module_defn(VarSet, module(ModuleNameSym)))
|
|
;
|
|
Result0 = error(A, B),
|
|
Result1 = error(A, B)
|
|
),
|
|
check_no_attributes(Result1, Attributes, Result).
|
|
|
|
process_decl(DefaultModuleName, VarSet, "include_module", [ModuleNames],
|
|
Attributes, Result) :-
|
|
parse_list(parse_module_name(DefaultModuleName), ModuleNames, Result0),
|
|
(
|
|
Result0 = ok(ModuleNameSyms),
|
|
Result1 = ok(module_defn(VarSet,
|
|
include_module(ModuleNameSyms)))
|
|
;
|
|
Result0 = error(A, B),
|
|
Result1 = error(A, B)
|
|
),
|
|
check_no_attributes(Result1, Attributes, Result).
|
|
|
|
process_decl(DefaultModuleName, VarSet, "end_module", [ModuleName], Attributes,
|
|
Result) :-
|
|
%
|
|
% The name in an `end_module' declaration not inside the
|
|
% scope of the module being ended, so the default module name
|
|
% here is the parent of the previous default module name.
|
|
%
|
|
root_module_name(RootModuleName),
|
|
sym_name_get_module_name(DefaultModuleName, RootModuleName,
|
|
ParentOfDefaultModuleName),
|
|
parse_module_name(ParentOfDefaultModuleName, ModuleName, Result0),
|
|
(
|
|
Result0 = ok(ModuleNameSym),
|
|
Result1 = ok(module_defn(VarSet, end_module(ModuleNameSym)))
|
|
;
|
|
Result0 = error(A, B),
|
|
Result1 = error(A, B)
|
|
),
|
|
check_no_attributes(Result1, Attributes, Result).
|
|
|
|
% NU-Prolog `when' declarations are silently ignored for
|
|
% backwards compatibility.
|
|
process_decl(_ModuleName, _VarSet, "when", [_Goal, _Cond], Attributes,
|
|
Result) :-
|
|
Result0 = ok(nothing),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(ModuleName, VarSet, "pragma", Pragma, Attributes, Result):-
|
|
parse_pragma(ModuleName, VarSet, Pragma, Result0),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(ModuleName, VarSet, "typeclass", Args, Attributes, Result):-
|
|
parse_typeclass(ModuleName, VarSet, Args, Result0),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
process_decl(ModuleName, VarSet, "instance", Args, Attributes, Result):-
|
|
parse_instance(ModuleName, VarSet, Args, Result0),
|
|
check_no_attributes(Result0, Attributes, Result).
|
|
|
|
:- pred parse_decl_attribute(string, list(term), decl_attribute, term).
|
|
:- mode parse_decl_attribute(in, in, out, out) is semidet.
|
|
|
|
parse_decl_attribute("impure", [Decl], purity(impure), Decl).
|
|
parse_decl_attribute("semipure", [Decl], purity(semipure), Decl).
|
|
parse_decl_attribute("<=", [Decl, Constraints],
|
|
constraints(univ, Constraints), Decl).
|
|
parse_decl_attribute("&", [Decl, Constraints],
|
|
constraints(exist, Constraints), Decl).
|
|
parse_decl_attribute("some", [TVars, Decl],
|
|
quantifier(exist, TVarsList), Decl) :-
|
|
parse_list_of_vars(TVars, TVarsList).
|
|
parse_decl_attribute("all", [TVars, Decl],
|
|
quantifier(univ, TVarsList), Decl) :-
|
|
parse_list_of_vars(TVars, TVarsList).
|
|
|
|
:- pred parse_list_of_vars(term, list(var)).
|
|
:- mode parse_list_of_vars(in, out) is semidet.
|
|
|
|
parse_list_of_vars(term__functor(term__atom("[]"), [], _), []).
|
|
parse_list_of_vars(term__functor(term__atom("."), [Head, Tail], _), [V|Vs]) :-
|
|
Head = term__variable(V),
|
|
parse_list_of_vars(Tail, Vs).
|
|
|
|
:- pred check_no_attributes(maybe1(item), decl_attrs, maybe1(item)).
|
|
:- mode check_no_attributes(in, in, out) is det.
|
|
|
|
check_no_attributes(Result0, Attributes, Result) :-
|
|
(
|
|
Result0 = ok(_),
|
|
Attributes = [Attr - Term | _]
|
|
->
|
|
attribute_description(Attr, AttrDescr),
|
|
string__append(AttrDescr, " not allowed here", Message),
|
|
Result = error(Message, Term)
|
|
;
|
|
Result = Result0
|
|
).
|
|
|
|
:- pred attribute_description(decl_attribute, string).
|
|
:- mode attribute_description(in, out) is det.
|
|
|
|
attribute_description(purity(_), "purity specifier").
|
|
attribute_description(quantifier(univ, _), "universal quantifier (`all')").
|
|
attribute_description(quantifier(exist, _), "existential quantifier (`some')").
|
|
attribute_description(constraints(univ, _), "type class constraint (`<=')").
|
|
attribute_description(constraints(exist, _),
|
|
"existentially quantified type class constraint (`&')").
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred parse_type_decl(module_name, varset, term, maybe1(item)).
|
|
:- mode parse_type_decl(in, in, in, out) is det.
|
|
parse_type_decl(ModuleName, VarSet, TypeDecl, Result) :-
|
|
(
|
|
TypeDecl = term__functor(term__atom(Name), Args, _),
|
|
parse_type_decl_type(ModuleName, Name, Args, Cond, R)
|
|
->
|
|
R1 = R,
|
|
Cond1 = Cond
|
|
;
|
|
process_abstract_type(ModuleName, TypeDecl, R1),
|
|
Cond1 = true
|
|
),
|
|
process_maybe1(make_type_defn(VarSet, Cond1), R1, Result).
|
|
% we should check the condition for errs
|
|
% (don't bother at the moment, since we ignore
|
|
% conditions anyhow :-)
|
|
|
|
:- pred make_type_defn(varset, condition, type_defn, item).
|
|
:- mode make_type_defn(in, in, in, out) is det.
|
|
make_type_defn(VarSet, Cond, TypeDefn, type_defn(VarSet, TypeDefn, Cond)).
|
|
|
|
:- pred make_external(varset, sym_name_specifier, item).
|
|
:- mode make_external(in, in, out) is det.
|
|
make_external(VarSet, SymSpec, module_defn(VarSet, external(SymSpec))).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% add a warning message to the list of messages
|
|
|
|
:- pred add_warning(string, term, message_list, message_list).
|
|
:- mode add_warning(in, in, in, out) is det.
|
|
add_warning(Warning, Term, Msgs, [Msg - Term | Msgs]) :-
|
|
string__append("Warning: ", Warning, Msg).
|
|
|
|
% add an error message to the list of messages
|
|
|
|
:- pred add_error(string, term, message_list, message_list).
|
|
:- mode add_error(in, in, in, out) is det.
|
|
add_error(Error, Term, Msgs, [Msg - Term | Msgs]) :-
|
|
string__append("Error: ", Error, Msg).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
% parse_type_decl_type(Term, Condition, Result) succeeds
|
|
% if Term is a "type" type declaration, and binds Condition
|
|
% to the condition for that declaration (if any), and Result to
|
|
% a representation of the declaration.
|
|
|
|
:- pred parse_type_decl_type(module_name, string, list(term), condition,
|
|
maybe1(type_defn)).
|
|
:- mode parse_type_decl_type(in, in, in, out, out) is semidet.
|
|
|
|
parse_type_decl_type(ModuleName, "--->", [H, B], Condition, R) :-
|
|
/* get_condition(...), */
|
|
Condition = true,
|
|
get_maybe_equality_pred(B, Body, EqualityPred),
|
|
process_du_type(ModuleName, H, Body, EqualityPred, R).
|
|
|
|
parse_type_decl_type(ModuleName, "=", [H, B], Condition, R) :-
|
|
get_condition(B, Body, Condition),
|
|
process_uu_type(ModuleName, H, Body, R).
|
|
|
|
parse_type_decl_type(ModuleName, "==", [H, B], Condition, R) :-
|
|
get_condition(B, Body, Condition),
|
|
process_eqv_type(ModuleName, H, Body, R).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, Result)
|
|
% succeeds if Pred is a predicate type declaration, and binds Result
|
|
% to a representation of the declaration.
|
|
:- pred parse_type_decl_pred(module_name, varset, term, decl_attrs,
|
|
maybe1(item)).
|
|
:- mode parse_type_decl_pred(in, in, in, in, out) is det.
|
|
|
|
parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, R) :-
|
|
get_condition(Pred, Body, Condition),
|
|
get_determinism(Body, Body2, MaybeDeterminism),
|
|
process_type_decl_pred(ModuleName, MaybeDeterminism, VarSet, Body2,
|
|
Condition, Attributes, R).
|
|
|
|
:- pred process_type_decl_pred(module_name, maybe1(maybe(determinism)), varset,
|
|
term, condition, decl_attrs, maybe1(item)).
|
|
:- mode process_type_decl_pred(in, in, in, in, in, in, out) is det.
|
|
|
|
process_type_decl_pred(_MNm, error(Term, Reason), _, _, _, _,
|
|
error(Term, Reason)).
|
|
process_type_decl_pred(ModuleName, ok(MaybeDeterminism), VarSet, Body,
|
|
Condition, Attributes, R) :-
|
|
process_pred(ModuleName, VarSet, Body, Condition, MaybeDeterminism,
|
|
Attributes, R).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% parse_type_decl_func(ModuleName, Varset, Func, Attributes, Result)
|
|
% succeeds if Func is a function type declaration, and binds Result to
|
|
% a representation of the declaration.
|
|
:- pred parse_type_decl_func(module_name, varset, term, decl_attrs,
|
|
maybe1(item)).
|
|
:- mode parse_type_decl_func(in, in, in, in, out) is det.
|
|
|
|
parse_type_decl_func(ModuleName, VarSet, Func, Attributes, R) :-
|
|
get_condition(Func, Body, Condition),
|
|
get_determinism(Body, Body2, MaybeDeterminism),
|
|
process_maybe1_to_t(process_func(ModuleName, VarSet, Body2, Condition,
|
|
Attributes), MaybeDeterminism, R).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% parse_mode_decl_pred(ModuleName, Pred, Condition, Result) succeeds
|
|
% if Pred is a predicate mode declaration, and binds Condition
|
|
% to the condition for that declaration (if any), and Result to
|
|
% a representation of the declaration.
|
|
:- pred parse_mode_decl_pred(module_name, varset, term, maybe1(item)).
|
|
:- mode parse_mode_decl_pred(in, in, in, out) is det.
|
|
|
|
parse_mode_decl_pred(ModuleName, VarSet, Pred, Result) :-
|
|
get_condition(Pred, Body, Condition),
|
|
get_determinism(Body, Body2, MaybeDeterminism),
|
|
process_maybe1_to_t(process_mode(ModuleName, VarSet, Body2, Condition),
|
|
MaybeDeterminism, Result).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% get_maybe_equality_pred(Body0, Body, MaybeEqualPred):
|
|
% Checks if `Body0' is a term of the form
|
|
% `<body> where equality is <symname>'
|
|
% If so, returns the `<body>' in Body and the <symname> in
|
|
% MaybeEqualPred. If not, returns Body = Body0
|
|
% and `no' in MaybeEqualPred.
|
|
|
|
:- pred get_maybe_equality_pred(term, term, maybe1(maybe(sym_name))).
|
|
:- mode get_maybe_equality_pred(in, out, out) is det.
|
|
|
|
get_maybe_equality_pred(B, Body, MaybeEqualityPred) :-
|
|
(
|
|
B = term__functor(term__atom("where"), Args, _Context1),
|
|
Args = [Body1, Equality_Is_PredName]
|
|
->
|
|
Body = Body1,
|
|
(
|
|
Equality_Is_PredName = term__functor(term__atom("is"),
|
|
[Equality, PredName], _),
|
|
Equality = term__functor(term__atom("equality"), [], _)
|
|
->
|
|
parse_symbol_name(PredName, MaybeEqualityPred0),
|
|
process_maybe1(make_yes, MaybeEqualityPred0,
|
|
MaybeEqualityPred)
|
|
;
|
|
MaybeEqualityPred = error("syntax error after `where'",
|
|
Body)
|
|
)
|
|
;
|
|
Body = B,
|
|
MaybeEqualityPred = ok(no)
|
|
).
|
|
|
|
:- pred make_yes(T::in, maybe(T)::out) is det.
|
|
make_yes(T, yes(T)).
|
|
|
|
% get_determinism(Term0, Term, Determinism) binds Determinism
|
|
% to a representation of the determinism condition of Term0, if any,
|
|
% and binds Term to the other part of Term0. If Term0 does not
|
|
% contain a determinism, then Determinism is bound to `unspecified'.
|
|
|
|
:- pred get_determinism(term, term, maybe1(maybe(determinism))).
|
|
:- mode get_determinism(in, out, out) is det.
|
|
|
|
get_determinism(B, Body, Determinism) :-
|
|
(
|
|
B = term__functor(term__atom("is"), Args, _Context1),
|
|
Args = [Body1, Determinism1]
|
|
->
|
|
Body = Body1,
|
|
(
|
|
(
|
|
Determinism1 = term__functor(term__atom(Determinism2),
|
|
[], _Context2),
|
|
standard_det(Determinism2, Determinism3)
|
|
)
|
|
->
|
|
Determinism = ok(yes(Determinism3))
|
|
;
|
|
Determinism = error("invalid category", Determinism1)
|
|
)
|
|
;
|
|
Body = B,
|
|
Determinism = ok(no)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% get_condition(Term0, Term, Condition) binds Condition
|
|
% to a representation of the 'where' condition of Term0, if any,
|
|
% and binds Term to the other part of Term0. If Term0 does not
|
|
% contain a condition, then Condition is bound to true.
|
|
|
|
:- pred get_condition(term, term, condition).
|
|
:- mode get_condition(in, out, out) is det.
|
|
|
|
get_condition(Body, Body, true).
|
|
|
|
/********
|
|
% NU-Prolog supported type declarations of the form
|
|
% :- pred p(T) where p(X) : sorted(X).
|
|
% or
|
|
% :- type sorted_list(T) = list(T) where X : sorted(X).
|
|
% :- pred p(sorted_list(T).
|
|
% There is some code here to support that sort of thing, but
|
|
% probably we would now need to use a different syntax, since
|
|
% Mercury now uses `where' for different purposes (e.g. specifying
|
|
% user-defined equality predicates; also for type classes, eventually...)
|
|
%
|
|
get_condition(B, Body, Condition) :-
|
|
(
|
|
B = term__functor(term__atom("where"), [Body1, Condition1],
|
|
_Context)
|
|
->
|
|
Body = Body1,
|
|
Condition = where(Condition1)
|
|
;
|
|
Body = B,
|
|
Condition = true
|
|
).
|
|
********/
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This is for "Head = Body" (undiscriminated union) definitions.
|
|
:- pred process_uu_type(module_name, term, term, maybe1(type_defn)).
|
|
:- mode process_uu_type(in, in, in, out) is det.
|
|
process_uu_type(ModuleName, Head, Body, Result) :-
|
|
check_for_errors(ModuleName, Head, Body, Result0),
|
|
process_uu_type_2(Result0, Body, Result).
|
|
|
|
:- pred process_uu_type_2(maybe_functor, term, maybe1(type_defn)).
|
|
:- mode process_uu_type_2(in, in, out) is det.
|
|
process_uu_type_2(error(Error, Term), _, error(Error, Term)).
|
|
process_uu_type_2(ok(Name, Args), Body, ok(uu_type(Name, Args, List))) :-
|
|
sum_to_list(Body, List).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This is for "Head == Body" (equivalence) definitions.
|
|
:- pred process_eqv_type(module_name, term, term, maybe1(type_defn)).
|
|
:- mode process_eqv_type(in, in, in, out) is det.
|
|
process_eqv_type(ModuleName, Head, Body, Result) :-
|
|
check_for_errors(ModuleName, Head, Body, Result0),
|
|
process_eqv_type_2(Result0, Body, Result).
|
|
|
|
:- pred process_eqv_type_2(maybe_functor, term, maybe1(type_defn)).
|
|
:- mode process_eqv_type_2(in, in, out) is det.
|
|
process_eqv_type_2(error(Error, Term), _, error(Error, Term)).
|
|
process_eqv_type_2(ok(Name, Args), Body, Result) :-
|
|
% check that all the variables in the body occur in the head
|
|
(
|
|
(
|
|
term__contains_var(Body, Var2),
|
|
\+ term__contains_var_list(Args, Var2)
|
|
)
|
|
->
|
|
Result = error("free type parameter in RHS of type definition",
|
|
Body)
|
|
;
|
|
Result = ok(eqv_type(Name, Args, Body))
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% process_du_type(ModuleName, TypeHead, TypeBody, Result)
|
|
% checks that its arguments are well formed, and if they are,
|
|
% binds Result to a representation of the type information about the
|
|
% TypeHead.
|
|
% This is for "Head ---> Body" (constructor) definitions.
|
|
:- pred process_du_type(module_name, term, term, maybe1(maybe(equality_pred)),
|
|
maybe1(type_defn)).
|
|
:- mode process_du_type(in, in, in, in, out) is det.
|
|
process_du_type(ModuleName, Head, Body, EqualityPred, Result) :-
|
|
check_for_errors(ModuleName, Head, Body, Result0),
|
|
process_du_type_2(ModuleName, Result0, Body, EqualityPred, Result).
|
|
|
|
:- pred process_du_type_2(module_name, maybe_functor, term,
|
|
maybe1(maybe(equality_pred)), maybe1(type_defn)).
|
|
:- mode process_du_type_2(in, in, in, in, out) is det.
|
|
process_du_type_2(_, error(Error, Term), _, _, error(Error, Term)).
|
|
process_du_type_2(ModuleName, ok(Functor, Args), Body, MaybeEqualityPred,
|
|
Result) :-
|
|
% check that body is a disjunction of constructors
|
|
(
|
|
convert_constructors(ModuleName, Body, Constrs)
|
|
->
|
|
% check that all type variables in the body
|
|
% are either explicitly existentally quantified
|
|
% or occur in the head.
|
|
(
|
|
list__member(Ctor, Constrs),
|
|
Ctor = ctor(ExistQVars, _Constraints, _CtorName,
|
|
CtorArgs),
|
|
assoc_list__values(CtorArgs, CtorArgTypes),
|
|
term__contains_var_list(CtorArgTypes, Var),
|
|
\+ list__member(Var, ExistQVars),
|
|
\+ term__contains_var_list(Args, Var)
|
|
->
|
|
Result = error(
|
|
"free type parameter in RHS of type definition",
|
|
Body)
|
|
|
|
% check that all type variables in existential quantifiers
|
|
% do not occur in the head
|
|
% (maybe this should just be a warning, not an error?
|
|
% If we were to allow it, we would need to rename them apart.)
|
|
;
|
|
list__member(Ctor, Constrs),
|
|
Ctor = ctor(ExistQVars, _Constraints, _CtorName,
|
|
CtorArgs),
|
|
list__member(Var, ExistQVars),
|
|
assoc_list__values(CtorArgs, CtorArgTypes),
|
|
\+ term__contains_var_list(CtorArgTypes, Var)
|
|
->
|
|
Result = error( "type variable has overlapping scopes (explicit type quantifier shadows argument type)", Body)
|
|
|
|
% check that all type variables in existential quantifiers
|
|
% occur somewhere in the body
|
|
% (maybe this should just be a warning, not an error?
|
|
% If we were to allow it, we should at this point delete any
|
|
% such unused type variables from the list of quantifiers.)
|
|
;
|
|
list__member(Ctor, Constrs),
|
|
Ctor = ctor(ExistQVars, _Constraints, _CtorName,
|
|
CtorArgs),
|
|
list__member(Var, ExistQVars),
|
|
assoc_list__values(CtorArgs, CtorArgTypes),
|
|
\+ term__contains_var_list(CtorArgTypes, Var)
|
|
->
|
|
Result = error(
|
|
"var occurs only in existential quantifier",
|
|
Body)
|
|
% check that all type variables in existential constraints
|
|
% occur in the existential quantifiers
|
|
% (XXX is this check overly conservative? Perhaps we should
|
|
% allow existential constraints so long as they contain
|
|
% at least one type variable which is existentially quantified,
|
|
% rather than requiring all variables in them to be
|
|
% existentially quantified.)
|
|
;
|
|
list__member(Ctor, Constrs),
|
|
Ctor = ctor(ExistQVars, Constraints, _CtorName,
|
|
_CtorArgs),
|
|
list__member(Constraint, Constraints),
|
|
Constraint = constraint(_Name, Args),
|
|
term__contains_var_list(Args, Var),
|
|
\+ list__member(Var, ExistQVars)
|
|
->
|
|
Result = error("type variables in class constraints introduced with `&' must be explicitly existentially quantified using `some'",
|
|
Body)
|
|
;
|
|
(
|
|
MaybeEqualityPred = ok(EqualityPred),
|
|
Result = ok(du_type(Functor, Args, Constrs,
|
|
EqualityPred))
|
|
;
|
|
MaybeEqualityPred = error(Error, Term),
|
|
Result = error(Error, Term)
|
|
)
|
|
)
|
|
;
|
|
Result = error("invalid RHS of type definition", Body)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% process_abstract_type(ModuleName, TypeHead, Result)
|
|
% checks that its argument is well formed, and if it is,
|
|
% binds Result to a representation of the type information about the
|
|
% TypeHead.
|
|
|
|
:- pred process_abstract_type(module_name, term, maybe1(type_defn)).
|
|
:- mode process_abstract_type(in, in, out) is det.
|
|
process_abstract_type(ModuleName, Head, Result) :-
|
|
dummy_term(Body),
|
|
check_for_errors(ModuleName, Head, Body, Result0),
|
|
process_abstract_type_2(Result0, Result).
|
|
|
|
:- pred process_abstract_type_2(maybe_functor, maybe1(type_defn)).
|
|
:- mode process_abstract_type_2(in, out) is det.
|
|
process_abstract_type_2(error(Error, Term), error(Error, Term)).
|
|
process_abstract_type_2(ok(Functor, Args), ok(abstract_type(Functor, Args))).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% check a type definition for errors
|
|
|
|
:- pred check_for_errors(module_name, term, term, maybe_functor).
|
|
:- mode check_for_errors(in, in, in, out) is det.
|
|
check_for_errors(ModuleName, Head, Body, Result) :-
|
|
( Head = term__variable(_) ->
|
|
%
|
|
% `Head' has no term__context, so we need to get the
|
|
% context from `Body'
|
|
%
|
|
( Body = term__functor(_, _, Context) ->
|
|
dummy_term_with_context(Context, ErrorTerm)
|
|
;
|
|
dummy_term(ErrorTerm)
|
|
),
|
|
Result = error("variable on LHS of type definition", ErrorTerm)
|
|
;
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
Head, Head, "type definition", R),
|
|
check_for_errors_2(R, Body, Head, Result)
|
|
).
|
|
|
|
:- pred check_for_errors_2(maybe_functor, term, term, maybe_functor).
|
|
:- mode check_for_errors_2(in, in, in, out) is det.
|
|
check_for_errors_2(error(Msg, Term), _, _, error(Msg, Term)).
|
|
check_for_errors_2(ok(Name, Args), Body, Head, Result) :-
|
|
check_for_errors_3(Name, Args, Body, Head, Result).
|
|
|
|
:- pred check_for_errors_3(sym_name, list(term), term, term, maybe_functor).
|
|
:- mode check_for_errors_3(in, in, in, in, out) is det.
|
|
check_for_errors_3(Name, Args, _Body, Head, Result) :-
|
|
% check that all the head args are variables
|
|
( %%% some [Arg]
|
|
(
|
|
list__member(Arg, Args),
|
|
Arg \= term__variable(_)
|
|
)
|
|
->
|
|
Result = error("type parameters must be variables", Head)
|
|
;
|
|
% check that all the head arg variables are distinct
|
|
%%% some [Arg2, OtherArgs]
|
|
(
|
|
list__member(Arg2, Args, [Arg2|OtherArgs]),
|
|
list__member(Arg2, OtherArgs)
|
|
)
|
|
->
|
|
Result = error("repeated type parameters in LHS of type defn", Head)
|
|
;
|
|
Result = ok(Name, Args)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Convert a list of terms separated by semi-colons
|
|
% (known as a "disjunction", even thought the terms aren't goals
|
|
% in this case) into a list of constructors
|
|
|
|
:- pred convert_constructors(module_name, term, list(constructor)).
|
|
:- mode convert_constructors(in, in, out) is semidet.
|
|
convert_constructors(ModuleName, Body, Constrs) :-
|
|
disjunction_to_list(Body, List),
|
|
convert_constructors_2(ModuleName, List, Constrs).
|
|
|
|
% true if input argument is a valid list of constructors
|
|
|
|
:- pred convert_constructors_2(module_name, list(term), list(constructor)).
|
|
:- mode convert_constructors_2(in, in, out) is semidet.
|
|
convert_constructors_2(_, [], []).
|
|
convert_constructors_2(ModuleName, [Term | Terms], [Constr | Constrs]) :-
|
|
convert_constructor(ModuleName, Term, Constr),
|
|
convert_constructors_2(ModuleName, Terms, Constrs).
|
|
|
|
% true if input argument is a valid constructor.
|
|
|
|
:- pred convert_constructor(module_name, term, constructor).
|
|
:- mode convert_constructor(in, in, out) is semidet.
|
|
convert_constructor(ModuleName, Term0, Result) :-
|
|
(
|
|
Term0 = term__functor(term__atom("some"), [Vars, Term1], _)
|
|
->
|
|
parse_list_of_vars(Vars, ExistQVars),
|
|
Term2 = Term1
|
|
;
|
|
ExistQVars = [],
|
|
Term2 = Term0
|
|
),
|
|
get_existential_constraints_from_term(ModuleName, Term2, Term3,
|
|
ok(Constraints)),
|
|
(
|
|
% Note that as a special case, one level of
|
|
% curly braces around the constructor are ignored.
|
|
% This is to allow you to define ';'/2 and 'some'/2
|
|
% constructors.
|
|
Term3 = term__functor(term__atom("{}"), [Term4], _Context)
|
|
->
|
|
Term5 = Term4
|
|
;
|
|
Term5 = Term3
|
|
),
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
Term5, Term0, "constructor definition", ok(F, As)),
|
|
convert_constructor_arg_list(As, Args),
|
|
Result = ctor(ExistQVars, Constraints, F, Args).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% parse a `:- pred p(...)' declaration
|
|
|
|
:- pred process_pred(module_name, varset, term, condition, maybe(determinism),
|
|
decl_attrs, maybe1(item)).
|
|
:- mode process_pred(in, in, in, in, in, in, out) is det.
|
|
|
|
process_pred(ModuleName, VarSet, PredType, Cond, MaybeDet, Attributes0,
|
|
Result) :-
|
|
get_class_context(ModuleName, Attributes0, Attributes, MaybeContext),
|
|
(
|
|
MaybeContext = ok(ExistQVars, Constraints),
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
PredType, PredType, "`:- pred' declaration",
|
|
R),
|
|
process_pred_2(R, PredType, VarSet, MaybeDet, Cond,
|
|
ExistQVars, Constraints, Attributes, Result)
|
|
;
|
|
MaybeContext = error(String, Term),
|
|
Result = error(String, Term)
|
|
).
|
|
|
|
:- pred process_pred_2(maybe_functor, term, varset, maybe(determinism),
|
|
condition, existq_tvars, class_constraints, decl_attrs,
|
|
maybe1(item)).
|
|
:- mode process_pred_2(in, in, in, in, in, in, in, in, out) is det.
|
|
|
|
process_pred_2(ok(F, As0), PredType, VarSet, MaybeDet, Cond, ExistQVars,
|
|
ClassContext, Attributes0, Result) :-
|
|
( convert_type_and_mode_list(As0, As) ->
|
|
( verify_type_and_mode_list(As) ->
|
|
get_purity(Attributes0, Purity, Attributes),
|
|
Result0 = ok(pred(VarSet, ExistQVars, F, As, MaybeDet,
|
|
Cond, Purity, ClassContext)),
|
|
check_no_attributes(Result0, Attributes, Result)
|
|
;
|
|
Result = error("some but not all arguments have modes",
|
|
PredType)
|
|
)
|
|
;
|
|
Result = error("syntax error in `:- pred' declaration",
|
|
PredType)
|
|
).
|
|
process_pred_2(error(M, T), _, _, _, _, _, _, _, error(M, T)).
|
|
|
|
:- pred get_purity(decl_attrs, purity, decl_attrs).
|
|
:- mode get_purity(in, out, out) is det.
|
|
|
|
get_purity(Attributes0, Purity, Attributes) :-
|
|
( Attributes0 = [purity(Purity0) - _ | Attributes1] ->
|
|
Purity = Purity0,
|
|
Attributes = Attributes1
|
|
;
|
|
Purity = (pure),
|
|
Attributes = Attributes0
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% We could perhaps get rid of some code duplication between here and
|
|
% prog_io_typeclass.m?
|
|
|
|
% get_class_context(ModuleName, Attributes0, Attributes, MaybeContext):
|
|
% Parse type quantifiers and type class constraints from the
|
|
% declaration attributes in Attributes0.
|
|
% MaybeContext is either bound to the correctly parsed context, or
|
|
% an appropriate error message (if there was a syntax error).
|
|
% Attributes is bound to the remaining attributes.
|
|
|
|
:- pred get_class_context(module_name, decl_attrs, decl_attrs,
|
|
maybe2(existq_tvars, class_constraints)).
|
|
:- mode get_class_context(in, in, out, out) is det.
|
|
|
|
get_class_context(ModuleName, RevAttributes0, RevAttributes, MaybeContext) :-
|
|
%
|
|
% constraints and quantifiers should occur in the following
|
|
% order (outermost to innermost):
|
|
%
|
|
% operator precedence
|
|
% ------- ----------
|
|
% 1. universal quantifiers all 950
|
|
% 2. existential quantifiers some 950
|
|
% 3. universal constraints <= 920
|
|
% 4. existential constraints & 1020 [*]
|
|
% 5. the decl itself pred or func 800
|
|
%
|
|
% When we reach here, Attributes0 contains declaration attributes
|
|
% in the opposite order -- innermost to outermost -- so we reverse
|
|
% them before we start.
|
|
%
|
|
% [*] Note that the precedence of `&' is not quite what we want for
|
|
% this purpose -- the user will have to put in explicit parentheses.
|
|
%
|
|
% In theory it could make sense to allow the order of 2 & 3 to be
|
|
% swapped, or (in the case of multiple constraints & multiple
|
|
% quantifiers) to allow arbitrary interleaving of 2 & 3, but in
|
|
% practice it seems there would be little benefit in allowing that
|
|
% flexibility, so we don't.
|
|
%
|
|
% Universal quantification is the default, so we just ignore
|
|
% universal quantifiers. (XXX It might be a good idea to check
|
|
% that any universally quantified type variables do actually
|
|
% occur somewhere in the type declaration, and are not also
|
|
% existentially quantified, and if not, issue a warning or
|
|
% error message.)
|
|
|
|
list__reverse(RevAttributes0, Attributes0),
|
|
get_quant_tvars(univ, ModuleName, Attributes0, [],
|
|
Attributes1, _UnivQVars),
|
|
get_quant_tvars(exist, ModuleName, Attributes1, [],
|
|
Attributes2, ExistQVars),
|
|
get_constraints(univ, ModuleName, Attributes2,
|
|
Attributes3, MaybeUnivConstraints),
|
|
get_constraints(exist, ModuleName, Attributes3,
|
|
Attributes, MaybeExistConstraints),
|
|
list__reverse(Attributes, RevAttributes),
|
|
|
|
combine_quantifier_results(MaybeUnivConstraints, MaybeExistConstraints,
|
|
ExistQVars, MaybeContext).
|
|
|
|
:- pred combine_quantifier_results(maybe1(list(class_constraint)),
|
|
maybe1(list(class_constraint)), existq_tvars,
|
|
maybe2(existq_tvars, class_constraints)).
|
|
:- mode combine_quantifier_results(in, in, in, out) is det.
|
|
|
|
combine_quantifier_results(error(Msg, Term), _, _, error(Msg, Term)).
|
|
combine_quantifier_results(ok(_), error(Msg, Term), _, error(Msg, Term)).
|
|
combine_quantifier_results(
|
|
ok(UnivConstraints), ok(ExistConstraints), ExistQVars,
|
|
ok(ExistQVars, constraints(UnivConstraints, ExistConstraints))).
|
|
|
|
:- pred get_quant_tvars(quantifier_type, module_name, decl_attrs, list(tvar),
|
|
decl_attrs, list(tvar)).
|
|
:- mode get_quant_tvars(in, in, in, in, out, out) is det.
|
|
|
|
get_quant_tvars(QuantType, ModuleName, Attributes0, TVars0,
|
|
Attributes, TVars) :-
|
|
(
|
|
Attributes0 = [quantifier(QuantType, TVars1) - _ | Attributes1]
|
|
->
|
|
list__append(TVars0, TVars1, TVars2),
|
|
get_quant_tvars(QuantType, ModuleName, Attributes1, TVars2,
|
|
Attributes, TVars)
|
|
;
|
|
Attributes = Attributes0,
|
|
TVars = TVars0
|
|
).
|
|
|
|
:- pred get_constraints(quantifier_type, module_name, decl_attrs, decl_attrs,
|
|
maybe1(list(class_constraint))).
|
|
:- mode get_constraints(in, in, in, out, out) is det.
|
|
|
|
get_constraints(QuantType, ModuleName, Attributes0, Attributes,
|
|
MaybeConstraints) :-
|
|
(
|
|
Attributes0 = [constraints(QuantType, ConstraintsTerm) - _Term
|
|
| Attributes1]
|
|
->
|
|
parse_class_constraints(ModuleName, ConstraintsTerm,
|
|
MaybeConstraints0),
|
|
% there may be more constraints of the same type --
|
|
% collect them all and combine them
|
|
get_constraints(QuantType, ModuleName, Attributes1,
|
|
Attributes, MaybeConstraints1),
|
|
combine_constraint_list_results(MaybeConstraints1,
|
|
MaybeConstraints0, MaybeConstraints)
|
|
;
|
|
Attributes = Attributes0,
|
|
MaybeConstraints = ok([])
|
|
).
|
|
|
|
:- pred combine_constraint_list_results(maybe1(list(class_constraint)),
|
|
maybe1(list(class_constraint)), maybe1(list(class_constraint))).
|
|
:- mode combine_constraint_list_results(in, in, out) is det.
|
|
|
|
combine_constraint_list_results(error(Msg, Term), _, error(Msg, Term)).
|
|
combine_constraint_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
|
|
combine_constraint_list_results(ok(Constraints0), ok(Constraints1),
|
|
ok(Constraints)) :-
|
|
list__append(Constraints0, Constraints1, Constraints).
|
|
|
|
:- pred get_existential_constraints_from_term(module_name, term, term,
|
|
maybe1(list(class_constraint))).
|
|
:- mode get_existential_constraints_from_term(in, in, out, out) is det.
|
|
|
|
get_existential_constraints_from_term(ModuleName, PredType0, PredType,
|
|
MaybeExistentialConstraints) :-
|
|
(
|
|
PredType0 = term__functor(term__atom("&"),
|
|
[PredType1, ExistentialConstraints], _)
|
|
->
|
|
PredType = PredType1,
|
|
parse_class_constraints(ModuleName, ExistentialConstraints,
|
|
MaybeExistentialConstraints)
|
|
;
|
|
PredType = PredType0,
|
|
MaybeExistentialConstraints = ok([])
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Verify that among the arguments of a :- pred declaration,
|
|
% either all arguments specify a mode or none of them do.
|
|
|
|
:- pred verify_type_and_mode_list(list(type_and_mode)).
|
|
:- mode verify_type_and_mode_list(in) is semidet.
|
|
|
|
verify_type_and_mode_list([]).
|
|
verify_type_and_mode_list([First | Rest]) :-
|
|
verify_type_and_mode_list_2(Rest, First).
|
|
|
|
:- pred verify_type_and_mode_list_2(list(type_and_mode), type_and_mode).
|
|
:- mode verify_type_and_mode_list_2(in, in) is semidet.
|
|
|
|
verify_type_and_mode_list_2([], _).
|
|
verify_type_and_mode_list_2([Head | Tail], First) :-
|
|
(
|
|
Head = type_only(_),
|
|
First = type_only(_)
|
|
;
|
|
Head = type_and_mode(_, _),
|
|
First = type_and_mode(_, _)
|
|
),
|
|
verify_type_and_mode_list_2(Tail, First).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% parse a `:- func p(...)' declaration
|
|
|
|
:- pred process_func(module_name, varset, term, condition, decl_attrs,
|
|
maybe(determinism), maybe1(item)).
|
|
:- mode process_func(in, in, in, in, in, in, out) is det.
|
|
|
|
process_func(ModuleName, VarSet, Term, Cond, Attributes0, MaybeDet, Result) :-
|
|
get_class_context(ModuleName, Attributes0, Attributes, MaybeContext),
|
|
(
|
|
MaybeContext = ok(ExistQVars, Constraints),
|
|
process_func_2(ModuleName, VarSet, Term,
|
|
Cond, MaybeDet, ExistQVars, Constraints, Attributes,
|
|
Result)
|
|
;
|
|
MaybeContext = error(String, ErrorTerm),
|
|
Result = error(String, ErrorTerm)
|
|
).
|
|
|
|
:- pred process_func_2(module_name, varset, term, condition,
|
|
maybe(determinism), existq_tvars, class_constraints, decl_attrs,
|
|
maybe1(item)).
|
|
:- mode process_func_2(in, in, in, in, in, in, in, in, out) is det.
|
|
|
|
process_func_2(ModuleName, VarSet, Term, Cond, MaybeDet,
|
|
ExistQVars, Constraints, Attributes, Result) :-
|
|
(
|
|
Term = term__functor(term__atom("="),
|
|
[FuncTerm, ReturnTypeTerm], _Context)
|
|
->
|
|
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
|
|
"`:- func' declaration", R),
|
|
process_func_3(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
|
|
Cond, ExistQVars, Constraints, Attributes,
|
|
Result)
|
|
;
|
|
Result = error("`=' expected in `:- func' declaration", Term)
|
|
).
|
|
|
|
|
|
:- pred process_func_3(maybe_functor, term, term, varset, maybe(determinism),
|
|
condition, existq_tvars, class_constraints, decl_attrs,
|
|
maybe1(item)).
|
|
:- mode process_func_3(in, in, in, in, in, in, in, in, in, out) is det.
|
|
|
|
process_func_3(ok(F, As0), FuncTerm, ReturnTypeTerm, VarSet, MaybeDet, Cond,
|
|
ExistQVars, ClassContext, Attributes, Result) :-
|
|
( convert_type_and_mode_list(As0, As) ->
|
|
( \+ verify_type_and_mode_list(As) ->
|
|
Result = error("some but not all arguments have modes",
|
|
FuncTerm)
|
|
; convert_type_and_mode(ReturnTypeTerm, ReturnType) ->
|
|
(
|
|
As = [type_and_mode(_, _) | _],
|
|
ReturnType = type_only(_)
|
|
->
|
|
Result = error(
|
|
"function arguments have modes, but function result doesn't",
|
|
FuncTerm)
|
|
;
|
|
As = [type_only(_) | _],
|
|
ReturnType = type_and_mode(_, _)
|
|
->
|
|
Result = error(
|
|
"function result has mode, but function arguments don't",
|
|
FuncTerm)
|
|
;
|
|
ReturnType = type_only(_),
|
|
MaybeDet = yes(_)
|
|
->
|
|
Result = error(
|
|
"function declaration specifies a determinism but does not specify the mode",
|
|
FuncTerm)
|
|
;
|
|
% note: impure or semipure functions are not
|
|
% allowed
|
|
Purity = (pure),
|
|
Result0 = ok(func(VarSet, ExistQVars, F, As,
|
|
ReturnType, MaybeDet, Cond, Purity,
|
|
ClassContext)),
|
|
check_no_attributes(Result0, Attributes,
|
|
Result)
|
|
)
|
|
;
|
|
Result = error(
|
|
"syntax error in return type of `:- func' declaration",
|
|
ReturnTypeTerm)
|
|
)
|
|
;
|
|
Result = error(
|
|
"syntax error in arguments of `:- func' declaration",
|
|
FuncTerm)
|
|
).
|
|
process_func_3(error(M, T), _, _, _, _, _, _, _, _, error(M, T)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% parse a `:- mode p(...)' declaration
|
|
|
|
:- pred process_mode(module_name, varset, term, condition, maybe(determinism),
|
|
maybe1(item)).
|
|
:- mode process_mode(in, in, in, in, in, out) is det.
|
|
|
|
process_mode(ModuleName, VarSet, Term, Cond, MaybeDet, Result) :-
|
|
(
|
|
Term = term__functor(term__atom("="),
|
|
[FuncTerm, ReturnTypeTerm], _Context)
|
|
->
|
|
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
|
|
"function `:- mode' declaration", R),
|
|
process_func_mode(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
|
|
Cond, Result)
|
|
;
|
|
parse_implicitly_qualified_term(ModuleName, Term, Term,
|
|
"predicate `:- mode' declaration", R),
|
|
process_pred_mode(R, Term, VarSet, MaybeDet, Cond, Result)
|
|
).
|
|
|
|
:- pred process_pred_mode(maybe_functor, term, varset, maybe(determinism),
|
|
condition, maybe1(item)).
|
|
:- mode process_pred_mode(in, in, in, in, in, out) is det.
|
|
|
|
process_pred_mode(ok(F, As0), PredMode, VarSet, MaybeDet, Cond, Result) :-
|
|
(
|
|
convert_mode_list(As0, As)
|
|
->
|
|
Result = ok(pred_mode(VarSet, F, As, MaybeDet, Cond))
|
|
;
|
|
Result = error("syntax error in predicate mode declaration",
|
|
PredMode)
|
|
).
|
|
process_pred_mode(error(M, T), _, _, _, _, error(M, T)).
|
|
|
|
:- pred process_func_mode(maybe_functor, term, term, varset, maybe(determinism),
|
|
condition, maybe1(item)).
|
|
:- mode process_func_mode(in, in, in, in, in, in, out) is det.
|
|
|
|
process_func_mode(ok(F, As0), FuncMode, RetMode0, VarSet, MaybeDet, Cond,
|
|
Result) :-
|
|
(
|
|
convert_mode_list(As0, As)
|
|
->
|
|
( convert_mode(RetMode0, RetMode) ->
|
|
Result = ok(func_mode(VarSet, F, As, RetMode, MaybeDet,
|
|
Cond))
|
|
;
|
|
Result = error(
|
|
"syntax error in return mode of function mode declaration",
|
|
RetMode0)
|
|
)
|
|
;
|
|
Result = error(
|
|
"syntax error in arguments of function mode declaration",
|
|
FuncMode)
|
|
).
|
|
process_func_mode(error(M, T), _, _, _, _, _, error(M, T)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Parse a `:- inst <InstDefn>.' declaration.
|
|
%
|
|
:- pred parse_inst_decl(module_name, varset, term, maybe1(item)).
|
|
:- mode parse_inst_decl(in, in, in, out) is det.
|
|
parse_inst_decl(ModuleName, VarSet, InstDefn, Result) :-
|
|
(
|
|
InstDefn = term__functor(term__atom(Op), [H, B], _Context),
|
|
( Op = "=" ; Op = "==" )
|
|
->
|
|
get_condition(B, Body, Condition),
|
|
convert_inst_defn(ModuleName, H, Body, R),
|
|
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
|
|
;
|
|
% XXX this is for `abstract inst' declarations,
|
|
% which are not really supported
|
|
InstDefn = term__functor(term__atom("is"), [
|
|
Head,
|
|
term__functor(term__atom("private"), [], _)
|
|
], _)
|
|
->
|
|
Condition = true,
|
|
convert_abstract_inst_defn(ModuleName, Head, R),
|
|
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
|
|
;
|
|
InstDefn = term__functor(term__atom("--->"), [H, B], Context)
|
|
->
|
|
get_condition(B, Body, Condition),
|
|
Body1 = term__functor(term__atom("bound"), [Body], Context),
|
|
convert_inst_defn(ModuleName, H, Body1, R),
|
|
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
|
|
;
|
|
Result = error("`=' expected in `:- inst' definition", InstDefn)
|
|
).
|
|
% we should check the condition for errs
|
|
% (don't bother at the moment, since we ignore
|
|
% conditions anyhow :-)
|
|
|
|
% Parse a `:- inst <Head> ---> <Body>.' definition.
|
|
%
|
|
:- pred convert_inst_defn(module_name, term, term, maybe1(inst_defn)).
|
|
:- mode convert_inst_defn(in, in, in, out) is det.
|
|
convert_inst_defn(ModuleName, Head, Body, Result) :-
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
Head, Body, "inst definition", R),
|
|
convert_inst_defn_2(R, Head, Body, Result).
|
|
|
|
:- pred convert_inst_defn_2(maybe_functor, term, term, maybe1(inst_defn)).
|
|
:- mode convert_inst_defn_2(in, in, in, out) is det.
|
|
|
|
convert_inst_defn_2(error(M, T), _, _, error(M, T)).
|
|
convert_inst_defn_2(ok(Name, Args), Head, Body, Result) :-
|
|
% check that all the head args are variables
|
|
( %%% some [Arg]
|
|
(
|
|
list__member(Arg, Args),
|
|
Arg \= term__variable(_)
|
|
)
|
|
->
|
|
Result = error("inst parameters must be variables", Head)
|
|
;
|
|
% check that all the head arg variables are distinct
|
|
%%% some [Arg2, OtherArgs]
|
|
(
|
|
list__member(Arg2, Args, [Arg2|OtherArgs]),
|
|
list__member(Arg2, OtherArgs)
|
|
)
|
|
->
|
|
Result = error("repeated inst parameters in LHS of inst defn",
|
|
Head)
|
|
;
|
|
% check that all the variables in the body occur in the head
|
|
%%% some [Var2]
|
|
(
|
|
term__contains_var(Body, Var2),
|
|
\+ term__contains_var_list(Args, Var2)
|
|
)
|
|
->
|
|
Result = error("free inst parameter in RHS of inst definition",
|
|
Body)
|
|
;
|
|
% check that the inst is a valid user-defined inst, i.e. that
|
|
% it does not have the form of one of the builtin insts
|
|
\+ (
|
|
convert_inst(Head, UserInst),
|
|
UserInst = defined_inst(user_inst(_, _))
|
|
)
|
|
->
|
|
Result = error("attempt to redefine builtin inst", Head)
|
|
;
|
|
% should improve the error message here
|
|
|
|
( %%% some [ConvertedBody]
|
|
convert_inst(Body, ConvertedBody)
|
|
->
|
|
Result = ok(eqv_inst(Name, Args, ConvertedBody))
|
|
;
|
|
Result = error("syntax error in inst body", Body)
|
|
)
|
|
).
|
|
|
|
:- pred convert_abstract_inst_defn(module_name, term, maybe1(inst_defn)).
|
|
:- mode convert_abstract_inst_defn(in, in, out) is det.
|
|
convert_abstract_inst_defn(ModuleName, Head, Result) :-
|
|
parse_implicitly_qualified_term(ModuleName, Head, Head,
|
|
"inst definition", R),
|
|
convert_abstract_inst_defn_2(R, Head, Result).
|
|
|
|
:- pred convert_abstract_inst_defn_2(maybe_functor, term, maybe1(inst_defn)).
|
|
:- mode convert_abstract_inst_defn_2(in, in, out) is det.
|
|
convert_abstract_inst_defn_2(error(M, T), _, error(M, T)).
|
|
convert_abstract_inst_defn_2(ok(Name, Args), Head, Result) :-
|
|
% check that all the head args are variables
|
|
( %%% some [Arg]
|
|
(
|
|
list__member(Arg, Args),
|
|
Arg \= term__variable(_)
|
|
)
|
|
->
|
|
Result = error("inst parameters must be variables", Head)
|
|
;
|
|
% check that all the head arg variables are distinct
|
|
%%% some [Arg2, OtherArgs]
|
|
(
|
|
list__member(Arg2, Args, [Arg2|OtherArgs]),
|
|
list__member(Arg2, OtherArgs)
|
|
)
|
|
->
|
|
Result = error(
|
|
"repeated inst parameters in abstract inst definition",
|
|
Head)
|
|
;
|
|
Result = ok(abstract_inst(Name, Args))
|
|
).
|
|
|
|
:- pred make_inst_defn(varset, condition, inst_defn, item).
|
|
:- mode make_inst_defn(in, in, in, out) is det.
|
|
make_inst_defn(VarSet, Cond, InstDefn, inst_defn(VarSet, InstDefn, Cond)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% parse a `:- mode foo :: ...' or `:- mode foo = ...' definition.
|
|
|
|
:- pred parse_mode_decl(module_name, varset, term, maybe1(item)).
|
|
:- mode parse_mode_decl(in, in, in, out) is det.
|
|
parse_mode_decl(ModuleName, VarSet, ModeDefn, Result) :-
|
|
( %%% some [H, B]
|
|
mode_op(ModeDefn, H, B)
|
|
->
|
|
get_condition(B, Body, Condition),
|
|
convert_mode_defn(ModuleName, H, Body, R),
|
|
process_maybe1(make_mode_defn(VarSet, Condition), R, Result)
|
|
;
|
|
parse_mode_decl_pred(ModuleName, VarSet, ModeDefn, Result)
|
|
).
|
|
|
|
% People never seem to remember what the right operator to use in a
|
|
% `:- mode' declaration is, so the syntax is forgiving. We allow
|
|
% `::', the standard one which has the right precedence, but we
|
|
% also allow `==' just to be nice.
|
|
:- pred mode_op(term, term, term).
|
|
:- mode mode_op(in, out, out) is semidet.
|
|
mode_op(term__functor(term__atom(Op), [H, B], _), H, B) :-
|
|
( Op = "::" ; Op = "==" ).
|
|
|
|
:- pred convert_mode_defn(module_name, term, term, maybe1(mode_defn)).
|
|
:- mode convert_mode_defn(in, in, in, out) is det.
|
|
convert_mode_defn(ModuleName, Head, Body, Result) :-
|
|
parse_implicitly_qualified_term(ModuleName, Head, Head,
|
|
"mode definition", R),
|
|
convert_mode_defn_2(R, Head, Body, Result).
|
|
|
|
:- pred convert_mode_defn_2(maybe_functor, term, term, maybe1(mode_defn)).
|
|
:- mode convert_mode_defn_2(in, in, in, out) is det.
|
|
convert_mode_defn_2(error(M, T), _, _, error(M, T)).
|
|
convert_mode_defn_2(ok(Name, Args), Head, Body, Result) :-
|
|
% check that all the head args are variables
|
|
( %%% some [Arg]
|
|
(
|
|
list__member(Arg, Args),
|
|
Arg \= term__variable(_)
|
|
)
|
|
->
|
|
Result = error("mode parameters must be variables", Head)
|
|
;
|
|
% check that all the head arg variables are distinct
|
|
%%% some [Arg2, OtherArgs]
|
|
(
|
|
list__member(Arg2, Args, [Arg2|OtherArgs]),
|
|
list__member(Arg2, OtherArgs)
|
|
)
|
|
->
|
|
Result = error("repeated parameters in LHS of mode defn",
|
|
Head)
|
|
% check that all the variables in the body occur in the head
|
|
; %%% some [Var2]
|
|
(
|
|
term__contains_var(Body, Var2),
|
|
\+ term__contains_var_list(Args, Var2)
|
|
)
|
|
->
|
|
Result = error("free inst parameter in RHS of mode definition",
|
|
Body)
|
|
;
|
|
% should improve the error message here
|
|
|
|
( %%% some [ConvertedBody]
|
|
convert_mode(Body, ConvertedBody)
|
|
->
|
|
Result = ok(eqv_mode(Name, Args, ConvertedBody))
|
|
;
|
|
% catch-all error message - we should do
|
|
% better than this
|
|
Result = error("syntax error in mode definition body",
|
|
Body)
|
|
)
|
|
).
|
|
|
|
:- pred convert_type_and_mode_list(list(term), list(type_and_mode)).
|
|
:- mode convert_type_and_mode_list(in, out) is semidet.
|
|
convert_type_and_mode_list([], []).
|
|
convert_type_and_mode_list([H0|T0], [H|T]) :-
|
|
convert_type_and_mode(H0, H),
|
|
convert_type_and_mode_list(T0, T).
|
|
|
|
:- pred convert_type_and_mode(term, type_and_mode).
|
|
:- mode convert_type_and_mode(in, out) is semidet.
|
|
convert_type_and_mode(Term, Result) :-
|
|
(
|
|
Term = term__functor(term__atom("::"), [TypeTerm, ModeTerm],
|
|
_Context)
|
|
->
|
|
convert_type(TypeTerm, Type),
|
|
convert_mode(ModeTerm, Mode),
|
|
Result = type_and_mode(Type, Mode)
|
|
;
|
|
convert_type(Term, Type),
|
|
Result = type_only(Type)
|
|
).
|
|
|
|
:- pred make_mode_defn(varset, condition, mode_defn, item).
|
|
:- mode make_mode_defn(in, in, in, out) is det.
|
|
make_mode_defn(VarSet, Cond, ModeDefn, mode_defn(VarSet, ModeDefn, Cond)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- type parser(T) == pred(term, maybe1(T)).
|
|
:- mode parser :: pred(in, out) is det.
|
|
|
|
:- type maker(T1, T2) == pred(T1, T2).
|
|
:- mode maker :: pred(in, out) is det.
|
|
|
|
:- pred parse_symlist_decl(parser(T), maker(list(T), sym_list),
|
|
maker(sym_list, module_defn),
|
|
term, decl_attrs, varset, maybe1(item)).
|
|
:- mode parse_symlist_decl(parser, maker, maker, in, in, in, out) is det.
|
|
|
|
parse_symlist_decl(ParserPred, MakeSymListPred, MakeModuleDefnPred,
|
|
Term, Attributes, VarSet, Result) :-
|
|
parse_list(ParserPred, Term, Result0),
|
|
process_maybe1(make_module_defn(MakeSymListPred, MakeModuleDefnPred,
|
|
VarSet), Result0, Result1),
|
|
check_no_attributes(Result1, Attributes, Result).
|
|
|
|
:- pred make_module_defn(maker(T, sym_list), maker(sym_list, module_defn),
|
|
varset, T, item).
|
|
:- mode make_module_defn(maker, maker, in, in, out) is det.
|
|
make_module_defn(MakeSymListPred, MakeModuleDefnPred, VarSet, T,
|
|
module_defn(VarSet, ModuleDefn)) :-
|
|
call(MakeSymListPred, T, SymList),
|
|
call(MakeModuleDefnPred, SymList, ModuleDefn).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Parse a comma-separated list (misleading described as
|
|
% a "conjunction") of things.
|
|
|
|
:- pred parse_list(parser(T), term, maybe1(list(T))).
|
|
:- mode parse_list(parser, in, out) is det.
|
|
parse_list(Parser, Term, Result) :-
|
|
conjunction_to_list(Term, List),
|
|
parse_list_2(List, Parser, Result).
|
|
|
|
:- pred parse_list_2(list(term), parser(T), maybe1(list(T))).
|
|
:- mode parse_list_2(in, parser, out) is det.
|
|
parse_list_2([], _, ok([])).
|
|
parse_list_2([X|Xs], Parser, Result) :-
|
|
call(Parser, X, X_Result),
|
|
parse_list_2(Xs, Parser, Xs_Result),
|
|
combine_list_results(X_Result, Xs_Result, Result).
|
|
|
|
% If a list of things contains multiple errors, then we only
|
|
% report the first one.
|
|
|
|
:- pred combine_list_results(maybe1(T), maybe1(list(T)), maybe1(list(T))).
|
|
:- mode combine_list_results(in, in, out) is det.
|
|
combine_list_results(error(Msg, Term), _, error(Msg, Term)).
|
|
combine_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
|
|
combine_list_results(ok(X), ok(Xs), ok([X|Xs])).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred process_maybe1(maker(T1, T2), maybe1(T1), maybe1(T2)).
|
|
:- mode process_maybe1(maker, in, out) is det.
|
|
process_maybe1(Maker, ok(X), ok(Y)) :- !, call(Maker, X, Y).
|
|
process_maybe1(_, error(M, T), error(M, T)).
|
|
|
|
:- pred process_maybe1_to_t(maker(T1, maybe1(T2)), maybe1(T1), maybe1(T2)).
|
|
:- mode process_maybe1_to_t(maker, in, out) is det.
|
|
process_maybe1_to_t(Maker, ok(X), Y) :- !, call(Maker, X, Y).
|
|
process_maybe1_to_t(_, error(M, T), error(M, T)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred make_module(list(module_specifier)::in, sym_list::out) is det.
|
|
make_module(X, module(X)).
|
|
|
|
:- pred make_sym(list(sym_specifier)::in, sym_list::out) is det.
|
|
make_sym(X, sym(X)).
|
|
|
|
:- pred make_pred(list(pred_specifier)::in, sym_list::out) is det.
|
|
make_pred(X, pred(X)).
|
|
|
|
:- pred make_func(list(func_specifier)::in, sym_list::out) is det.
|
|
make_func(X, func(X)).
|
|
|
|
:- pred make_cons(list(cons_specifier)::in, sym_list::out) is det.
|
|
make_cons(X, cons(X)).
|
|
|
|
:- pred make_type(list(type_specifier)::in, sym_list::out) is det.
|
|
make_type(X, type(X)).
|
|
|
|
:- pred make_adt(list(adt_specifier)::in, sym_list::out) is det.
|
|
make_adt(X, adt(X)).
|
|
|
|
:- pred make_op(list(op_specifier)::in, sym_list::out) is det.
|
|
make_op(X, op(X)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% A symbol specifier is one of
|
|
%
|
|
% SymbolNameSpecifier
|
|
% Matches any symbol matched by the SymbolNameSpecifier.
|
|
% TypedConstructorSpecifier
|
|
% Matches any constructors matched by the
|
|
% TypedConstructorSpecifier.
|
|
% cons(ConstructorSpecifier)
|
|
% Matches only constructors.
|
|
% pred(PredSpecifier)
|
|
% Matches only predicates, ie. constructors of type
|
|
% `pred'.
|
|
% adt(SymbolNameSpecifier)
|
|
% Matches only type names.
|
|
% type(SymbolNameSpecifier)
|
|
% Matches type names matched by the SymbolNameSpecifier,
|
|
% and also matches any constructors for the matched type
|
|
% names.
|
|
% op(SymbolNameSpecifier)
|
|
% Matches only operators.
|
|
% module(ModuleSpecifier)
|
|
% Matches all symbols in the specified module.
|
|
|
|
:- pred parse_symbol_specifier(term, maybe1(sym_specifier)).
|
|
:- mode parse_symbol_specifier(in, out) is det.
|
|
|
|
parse_symbol_specifier(MainTerm, Result) :-
|
|
( MainTerm = term__functor(term__atom(Functor), [Term], _Context) ->
|
|
( Functor = "cons" ->
|
|
parse_constructor_specifier(Term, Result0),
|
|
process_maybe1(make_cons_symbol_specifier, Result0,
|
|
Result)
|
|
; Functor = "pred" ->
|
|
parse_predicate_specifier(Term, Result0),
|
|
process_maybe1(make_pred_symbol_specifier, Result0,
|
|
Result)
|
|
; Functor = "func" ->
|
|
parse_function_specifier(Term, Result0),
|
|
process_maybe1(make_func_symbol_specifier, Result0,
|
|
Result)
|
|
; Functor = "type" ->
|
|
parse_type_specifier(Term, Result0),
|
|
process_maybe1(make_type_symbol_specifier, Result0,
|
|
Result)
|
|
; Functor = "adt" ->
|
|
parse_adt_specifier(Term, Result0),
|
|
process_maybe1(make_adt_symbol_specifier, Result0,
|
|
Result)
|
|
; Functor = "op" ->
|
|
parse_op_specifier(Term, Result0),
|
|
process_maybe1(make_op_symbol_specifier, Result0,
|
|
Result)
|
|
; Functor = "module" ->
|
|
parse_module_specifier(Term, Result0),
|
|
process_maybe1(make_module_symbol_specifier, Result0,
|
|
Result)
|
|
;
|
|
parse_constructor_specifier(MainTerm, Result0),
|
|
process_maybe1(make_cons_symbol_specifier, Result0,
|
|
Result)
|
|
)
|
|
;
|
|
parse_constructor_specifier(MainTerm, Result0),
|
|
process_maybe1(make_cons_symbol_specifier, Result0, Result)
|
|
).
|
|
|
|
% Once we've parsed the appropriate type of symbol specifier, we
|
|
% need to convert it to a sym_specifier.
|
|
|
|
:- pred make_pred_symbol_specifier(pred_specifier::in, sym_specifier::out)
|
|
is det.
|
|
make_pred_symbol_specifier(PredSpec, pred(PredSpec)).
|
|
|
|
:- pred make_func_symbol_specifier(func_specifier::in, sym_specifier::out)
|
|
is det.
|
|
make_func_symbol_specifier(FuncSpec, func(FuncSpec)).
|
|
|
|
:- pred make_cons_symbol_specifier(cons_specifier::in, sym_specifier::out)
|
|
is det.
|
|
make_cons_symbol_specifier(ConsSpec, cons(ConsSpec)).
|
|
|
|
:- pred make_type_symbol_specifier(type_specifier::in, sym_specifier::out)
|
|
is det.
|
|
make_type_symbol_specifier(TypeSpec, type(TypeSpec)).
|
|
|
|
:- pred make_adt_symbol_specifier(adt_specifier::in, sym_specifier::out) is det.
|
|
make_adt_symbol_specifier(ADT_Spec, adt(ADT_Spec)).
|
|
|
|
:- pred make_op_symbol_specifier(op_specifier::in, sym_specifier::out) is det.
|
|
make_op_symbol_specifier(OpSpec, op(OpSpec)).
|
|
|
|
:- pred make_module_symbol_specifier(module_specifier::in, sym_specifier::out)
|
|
is det.
|
|
make_module_symbol_specifier(ModuleSpec, module(ModuleSpec)).
|
|
|
|
:- pred cons_specifier_to_sym_specifier(cons_specifier, sym_specifier).
|
|
:- mode cons_specifier_to_sym_specifier(in, out) is det.
|
|
|
|
cons_specifier_to_sym_specifier(sym(SymSpec), sym(SymSpec)).
|
|
cons_specifier_to_sym_specifier(typed(SymSpec), typed_sym(SymSpec)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A ModuleSpecifier is just an sym_name.
|
|
|
|
:- pred parse_module_specifier(term, maybe1(module_specifier)).
|
|
:- mode parse_module_specifier(in, out) is det.
|
|
parse_module_specifier(Term, Result) :-
|
|
parse_symbol_name(Term, Result).
|
|
|
|
% A ModuleName is an implicitly-quantified sym_name.
|
|
%
|
|
% We check for module names starting with capital letters
|
|
% as a special case, so that we can report a better error
|
|
% message for that case.
|
|
|
|
:- pred parse_module_name(module_name, term, maybe1(module_name)).
|
|
:- mode parse_module_name(in, in, out) is det.
|
|
parse_module_name(DefaultModuleName, Term, Result) :-
|
|
(
|
|
Term = term__variable(_)
|
|
->
|
|
dummy_term(ErrorContext),
|
|
Result = error("module names starting with capital letters must be quoted using single quotes (e.g. "":- module 'Foo'."")", ErrorContext)
|
|
;
|
|
parse_implicitly_qualified_symbol_name(DefaultModuleName,
|
|
Term, Result)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A ConstructorSpecifier is one of
|
|
% SymbolNameSpecifier
|
|
% TypedConstructorSpecifier
|
|
%
|
|
% A TypedConstructorSpecifier is one of
|
|
% SymbolNameSpecifier::Type
|
|
% Matches only constructors with the specified result
|
|
% type.
|
|
% SymbolName(ArgType1, ..., ArgTypeN)
|
|
% Matches only constructors with the specified argument
|
|
% types.
|
|
% SymbolName(ArgType1, ..., ArgTypeN)::Type
|
|
% Matches only constructors with the specified argument
|
|
% and result types.
|
|
|
|
:- pred parse_constructor_specifier(term, maybe1(cons_specifier)).
|
|
:- mode parse_constructor_specifier(in, out) is det.
|
|
parse_constructor_specifier(Term, Result) :-
|
|
(
|
|
Term = term__functor(term__atom("::"), [NameArgsTerm, TypeTerm],
|
|
_Context)
|
|
->
|
|
parse_arg_types_specifier(NameArgsTerm, NameArgsResult),
|
|
parse_type(TypeTerm, TypeResult),
|
|
process_typed_constructor_specifier(NameArgsResult, TypeResult, Result)
|
|
;
|
|
parse_arg_types_specifier(Term, TermResult),
|
|
process_maybe1(make_untyped_cons_spec, TermResult, Result)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A PredicateSpecifier is one of
|
|
% SymbolName(ArgType1, ..., ArgTypeN)
|
|
% Matches only predicates with the specified argument
|
|
% types.
|
|
% SymbolNameSpecifier
|
|
|
|
:- pred parse_predicate_specifier(term, maybe1(pred_specifier)).
|
|
:- mode parse_predicate_specifier(in, out) is det.
|
|
parse_predicate_specifier(Term, Result) :-
|
|
(
|
|
Term = term__functor(term__atom("/"), [_,_], _Context)
|
|
->
|
|
parse_symbol_name_specifier(Term, NameResult),
|
|
process_maybe1(make_arity_predicate_specifier, NameResult, Result)
|
|
;
|
|
parse_qualified_term(Term, Term, "predicate specifier", TermResult),
|
|
process_typed_predicate_specifier(TermResult, Result)
|
|
).
|
|
|
|
:- pred process_typed_predicate_specifier(maybe_functor, maybe1(pred_specifier)).
|
|
:- mode process_typed_predicate_specifier(in, out) is det.
|
|
process_typed_predicate_specifier(ok(Name, Args), ok(Result)) :-
|
|
( Args = [] ->
|
|
Result = sym(name(Name))
|
|
;
|
|
Result = name_args(Name, Args)
|
|
).
|
|
process_typed_predicate_specifier(error(Msg, Term), error(Msg, Term)).
|
|
|
|
:- pred make_arity_predicate_specifier(sym_name_specifier, pred_specifier).
|
|
:- mode make_arity_predicate_specifier(in, out) is det.
|
|
make_arity_predicate_specifier(Result, sym(Result)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Parsing the name & argument types of a constructor specifier is
|
|
% exactly the same as parsing a predicate specifier...
|
|
|
|
:- pred parse_arg_types_specifier(term, maybe1(pred_specifier)).
|
|
:- mode parse_arg_types_specifier(in, out) is det.
|
|
parse_arg_types_specifier(Term, Result) :-
|
|
(
|
|
Term = term__functor(term__atom("/"), [_,_], _Context)
|
|
->
|
|
parse_symbol_name_specifier(Term, NameResult),
|
|
process_maybe1(make_arity_predicate_specifier, NameResult, Result)
|
|
;
|
|
parse_qualified_term(Term, Term, "constructor specifier", TermResult),
|
|
process_typed_predicate_specifier(TermResult, Result)
|
|
).
|
|
|
|
% ... but we have to convert the result back into the appropriate
|
|
% format.
|
|
|
|
:- pred process_typed_constructor_specifier(maybe1(pred_specifier),
|
|
maybe1(type), maybe1(cons_specifier)).
|
|
:- mode process_typed_constructor_specifier(in, in, out) is det.
|
|
process_typed_constructor_specifier(error(Msg, Term), _, error(Msg, Term)).
|
|
process_typed_constructor_specifier(ok(_), error(Msg, Term), error(Msg, Term)).
|
|
process_typed_constructor_specifier(ok(NameArgs), ok(ResType), ok(Result)) :-
|
|
process_typed_cons_spec_2(NameArgs, ResType, Result).
|
|
|
|
:- pred process_typed_cons_spec_2(pred_specifier, type, cons_specifier).
|
|
:- mode process_typed_cons_spec_2(in, in, out) is det.
|
|
process_typed_cons_spec_2(sym(Name), Res, typed(name_res(Name, Res))).
|
|
process_typed_cons_spec_2(name_args(Name, Args), Res,
|
|
typed(name_args_res(Name, Args, Res))).
|
|
|
|
:- pred make_untyped_cons_spec(pred_specifier::in, cons_specifier::out) is det.
|
|
make_untyped_cons_spec(sym(Name), sym(Name)).
|
|
make_untyped_cons_spec(name_args(Name, Args), typed(name_args(Name, Args))).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A SymbolNameSpecifier is one of
|
|
% SymbolName
|
|
% SymbolName/Arity
|
|
% Matches only symbols of the specified arity.
|
|
%
|
|
|
|
:- pred parse_symbol_name_specifier(term, maybe1(sym_name_specifier)).
|
|
:- mode parse_symbol_name_specifier(in, out) is det.
|
|
parse_symbol_name_specifier(Term, Result) :-
|
|
( %%% some [NameTerm, ArityTerm, Context]
|
|
Term = term__functor(term__atom("/"), [NameTerm, ArityTerm], _Context)
|
|
->
|
|
( %%% some [Arity, Context2]
|
|
ArityTerm = term__functor(term__integer(Arity), [], _Context2)
|
|
->
|
|
( Arity >= 0 ->
|
|
parse_symbol_name(NameTerm, NameResult),
|
|
process_maybe1(make_name_arity_specifier(Arity), NameResult,
|
|
Result)
|
|
;
|
|
Result = error("arity in symbol name specifier must be a non-negative integer", Term)
|
|
)
|
|
;
|
|
Result = error("arity in symbol name specifier must be an integer", Term)
|
|
)
|
|
;
|
|
parse_symbol_name(Term, SymbolNameResult),
|
|
process_maybe1(make_name_specifier, SymbolNameResult, Result)
|
|
).
|
|
|
|
:- pred make_name_arity_specifier(arity, sym_name, sym_name_specifier).
|
|
:- mode make_name_arity_specifier(in, in, out) is det.
|
|
make_name_arity_specifier(Arity, Name, name_arity(Name, Arity)).
|
|
|
|
:- pred make_name_specifier(sym_name::in, sym_name_specifier::out) is det.
|
|
make_name_specifier(Name, name(Name)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A SymbolName is one of
|
|
% Name
|
|
% Matches symbols with the specified name in the
|
|
% current namespace.
|
|
% Module:Name
|
|
% Matches symbols with the specified name exported
|
|
% by the specified module (where Module is itself
|
|
% a SymbolName).
|
|
%
|
|
% We also allow the syntax `Module__Name'
|
|
% as an alternative for `Module:Name'.
|
|
|
|
:- pred parse_symbol_name(term, maybe1(sym_name)).
|
|
:- mode parse_symbol_name(in, out) is det.
|
|
parse_symbol_name(Term, Result) :-
|
|
(
|
|
Term = term__functor(term__atom(":"), [ModuleTerm, NameTerm], _Context)
|
|
->
|
|
(
|
|
NameTerm = term__functor(term__atom(Name), [], _Context1)
|
|
->
|
|
parse_symbol_name(ModuleTerm, ModuleResult),
|
|
(
|
|
ModuleResult = ok(Module),
|
|
Result = ok(qualified(Module, Name))
|
|
;
|
|
ModuleResult = error(_, _),
|
|
Result = error("module name identifier expected before ':' in qualified symbol name", Term)
|
|
)
|
|
;
|
|
Result = error("identifier expected after ':' in qualified symbol name", Term)
|
|
)
|
|
;
|
|
(
|
|
Term = term__functor(term__atom(Name), [], _Context3)
|
|
->
|
|
string_to_sym_name(Name, "__", SymName),
|
|
Result = ok(SymName)
|
|
;
|
|
Result = error("symbol name expected", Term)
|
|
)
|
|
).
|
|
|
|
:- pred parse_implicitly_qualified_symbol_name(module_name, term,
|
|
maybe1(sym_name)).
|
|
:- mode parse_implicitly_qualified_symbol_name(in, in, out) is det.
|
|
|
|
parse_implicitly_qualified_symbol_name(DefaultModName, Term, Result) :-
|
|
parse_symbol_name(Term, Result0),
|
|
( Result0 = ok(SymName) ->
|
|
(
|
|
root_module_name(DefaultModName)
|
|
->
|
|
Result = Result0
|
|
;
|
|
SymName = qualified(ModName, _),
|
|
\+ match_sym_name(ModName, DefaultModName)
|
|
->
|
|
Result = error("module qualifier in definition does not match preceding `:- module' declaration", Term)
|
|
;
|
|
unqualify_name(SymName, UnqualName),
|
|
Result = ok(qualified(DefaultModName, UnqualName))
|
|
)
|
|
;
|
|
Result = Result0
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A QualifiedTerm is one of
|
|
% Name(Args)
|
|
% Module:Name(Args)
|
|
% (or if Args is empty, one of
|
|
% Name
|
|
% Module:Name)
|
|
% where Module is a SymName.
|
|
% For backwards compatibility, we allow `__'
|
|
% as an alternative to `:'.
|
|
|
|
sym_name_and_args(Term, SymName, Args) :-
|
|
parse_qualified_term(Term, Term, "", ok(SymName, Args)).
|
|
|
|
parse_implicitly_qualified_term(DefaultModName, Term, ContainingTerm, Msg,
|
|
Result) :-
|
|
parse_qualified_term(Term, ContainingTerm, Msg, Result0),
|
|
( Result0 = ok(SymName, Args) ->
|
|
(
|
|
root_module_name(DefaultModName)
|
|
->
|
|
Result = Result0
|
|
;
|
|
SymName = qualified(ModName, _),
|
|
\+ match_sym_name(ModName, DefaultModName)
|
|
->
|
|
Result = error("module qualifier in definition does not match preceding `:- module' declaration", Term)
|
|
;
|
|
unqualify_name(SymName, UnqualName),
|
|
Result = ok(qualified(DefaultModName, UnqualName), Args)
|
|
)
|
|
;
|
|
Result = Result0
|
|
).
|
|
|
|
parse_qualified_term(Term, ContainingTerm, Msg, Result) :-
|
|
(
|
|
Term = term__functor(term__atom(":"), [ModuleTerm, NameArgsTerm],
|
|
_Context)
|
|
->
|
|
(
|
|
NameArgsTerm = term__functor(term__atom(Name), Args, _Context2)
|
|
->
|
|
parse_symbol_name(ModuleTerm, ModuleResult),
|
|
(
|
|
ModuleResult = ok(Module),
|
|
Result = ok(qualified(Module, Name), Args)
|
|
;
|
|
ModuleResult = error(_, _),
|
|
Result = error("module name identifier expected before ':' in qualified symbol name", Term)
|
|
)
|
|
;
|
|
Result = error("identifier expected after ':' in qualified symbol name", Term)
|
|
)
|
|
;
|
|
(
|
|
Term = term__functor(term__atom(Name), Args, _Context4)
|
|
->
|
|
string_to_sym_name(Name, "__", SymName),
|
|
Result = ok(SymName, Args)
|
|
;
|
|
string__append("atom expected in ", Msg, ErrorMsg),
|
|
%
|
|
% since variables don't have any term__context,
|
|
% if Term is a variable, we use ContainingTerm instead
|
|
% (hopefully that _will_ have a term__context).
|
|
%
|
|
( Term = term__variable(_) ->
|
|
ErrorTerm = ContainingTerm
|
|
;
|
|
ErrorTerm = Term
|
|
),
|
|
Result = error(ErrorMsg, ErrorTerm)
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% predicates used to convert a sym_list to a program item
|
|
|
|
:- pred make_use(sym_list::in, module_defn::out) is det.
|
|
make_use(Syms, use(Syms)).
|
|
|
|
:- pred make_import(sym_list::in, module_defn::out) is det.
|
|
make_import(Syms, import(Syms)).
|
|
|
|
:- pred make_export(sym_list::in, module_defn::out) is det.
|
|
make_export(Syms, export(Syms)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% A FuncSpecifier is just a constructur name specifier.
|
|
|
|
:- pred parse_function_specifier(term, maybe1(func_specifier)).
|
|
:- mode parse_function_specifier(in, out) is det.
|
|
parse_function_specifier(Term, Result) :-
|
|
parse_constructor_specifier(Term, Result).
|
|
|
|
% A TypeSpecifier is just a symbol name specifier.
|
|
|
|
:- pred parse_type_specifier(term, maybe1(sym_name_specifier)).
|
|
:- mode parse_type_specifier(in, out) is det.
|
|
parse_type_specifier(Term, Result) :-
|
|
parse_symbol_name_specifier(Term, Result).
|
|
|
|
% An ADT_Specifier is just a symbol name specifier.
|
|
|
|
:- pred parse_adt_specifier(term, maybe1(sym_name_specifier)).
|
|
:- mode parse_adt_specifier(in, out) is det.
|
|
parse_adt_specifier(Term, Result) :-
|
|
parse_symbol_name_specifier(Term, Result).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% For the moment, an OpSpecifier is just a symbol name specifier.
|
|
% XXX We should allow specifying the fixity of an operator
|
|
|
|
:- pred parse_op_specifier(term, maybe1(op_specifier)).
|
|
:- mode parse_op_specifier(in, out) is det.
|
|
parse_op_specifier(Term, Result) :-
|
|
parse_symbol_name_specifier(Term, R),
|
|
process_maybe1(make_op_specifier, R, Result).
|
|
|
|
:- pred make_op_specifier(sym_name_specifier::in, op_specifier::out) is det.
|
|
make_op_specifier(X, sym(X)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% types are represented just as ordinary terms
|
|
|
|
:- pred parse_type(term, maybe1(type)).
|
|
:- mode parse_type(in, out) is det.
|
|
parse_type(T, ok(T)).
|
|
|
|
:- pred convert_constructor_arg_list(list(term), list(constructor_arg)).
|
|
:- mode convert_constructor_arg_list(in, out) is det.
|
|
|
|
convert_constructor_arg_list([], []).
|
|
convert_constructor_arg_list([Term | Terms], [Arg | Args]) :-
|
|
(
|
|
Term = term__functor(term__atom("::"), [NameTerm, TypeTerm], _),
|
|
NameTerm = term__functor(term__atom(Name), [], _)
|
|
->
|
|
convert_type(TypeTerm, Type),
|
|
Arg = Name - Type
|
|
;
|
|
convert_type(Term, Type),
|
|
Arg = "" - Type
|
|
),
|
|
convert_constructor_arg_list(Terms, Args).
|
|
|
|
:- pred convert_type(term, type).
|
|
:- mode convert_type(in, out) is det.
|
|
convert_type(T, T).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% We use the empty module name ('') as the "root" module name; when adding
|
|
% default module qualifiers in parse_implicitly_qualified_{term,symbol},
|
|
% if the default module is the root module then we don't add any qualifier.
|
|
|
|
:- pred root_module_name(module_name::out) is det.
|
|
root_module_name(unqualified("")).
|
|
|
|
%-----------------------------------------------------------------------------%
|