Files
mercury/compiler/prog_io_goal.m
Zoltan Somogyi b2012c0c0e Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
Estimated hours taken: 8
Branches: main

compiler/*.m:
	Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
	and 'mer_mode'. This is to avoid the need to parenthesize these type
	names in some contexts, and to prepare for the possibility of a parser
	that considers those words to be reserved words.

	Rename some other uses of those names (e.g. as item types in
	recompilation.m).

	Delete some redundant synonyms (prog_type, mercury_type) for mer_type.

	Change some type names (e.g. mlds__type) and predicate names (e.g.
	deforest__goal) to make them unique even without module qualification.

	Rename the function symbols (e.g. pure, &) that need to be renamed
	to avoid the need to parenthesize them. Make their replacement names
	more expressive.

	Convert some more modules to four space indentation.

	Avoid excessively long lines, such as those resulting from the
	automatic substitution of 'mer_type' for 'type'.
2005-10-24 04:14:34 +00:00

437 lines
16 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_goal.m.
% Main author: fjh.
%
% This module defines the predicates that parse goals.
:- module parse_tree__prog_io_goal.
:- interface.
:- import_module parse_tree__prog_data.
:- import_module list.
:- import_module term.
% Convert a single term into a goal.
%
:- pred parse_goal(term::in, goal::out, prog_varset::in, prog_varset::out)
is det.
% Convert a term, possibly starting with `some [Vars]', into
% a list of the quantified variables, a list of quantified
% state variables, and a goal. (If the term doesn't start
% with `some [Vars]', we return empty lists of variables.)
%
:- pred parse_some_vars_goal(term::in, list(prog_var)::out,
list(prog_var)::out, goal::out, prog_varset::in, prog_varset::out)
is det.
% parse_pred_expression/3 converts the first argument to a :-/2
% higher-order pred expression into a list of variables, a list
% of their corresponding modes, and a determinism.
%
:- pred parse_pred_expression(term::in, lambda_eval_method::out,
list(prog_term)::out, list(mer_mode)::out, determinism::out) is semidet.
% parse_dcg_pred_expression/3 converts the first argument to a -->/2
% higher-order DCG pred expression into a list of arguments, a list
% of their corresponding modes and the two DCG argument modes, and a
% determinism.
% This is a variant of the higher-order pred syntax:
% `(pred(Var1::Mode1, ..., VarN::ModeN, DCG0Mode, DCGMode)
% is Det --> Goal)'.
%
:- pred parse_dcg_pred_expression(term::in, lambda_eval_method::out,
list(prog_term)::out, list(mer_mode)::out, determinism::out) is semidet.
% parse_func_expression/3 converts the first argument to a :-/2
% higher-order func expression into a list of arguments, a list
% of their corresponding modes, and a determinism. The syntax
% of a higher-order func expression is
% `(func(Var1::Mode1, ..., VarN::ModeN) = (VarN1::ModeN1) is Det
% :- Goal)'
% or
% `(func(Var1, ..., VarN) = (VarN1) is Det :- Goal)'
% where the modes are assumed to be `in' for the
% function arguments and `out' for the result
% or
% `(func(Var1, ..., VarN) = (VarN1) :- Goal)'
% where the modes are assumed as above, and the
% determinism is assumed to be det
% or
% `(func(Var1, ..., VarN) = (VarN1). '
%
:- pred parse_func_expression(term::in, lambda_eval_method::out,
list(prog_term)::out, list(mer_mode)::out, determinism::out) is semidet.
% parse_lambda_eval_method/3 extracts the `aditi_bottom_up'
% annotation (if any) from a pred expression and returns the
% rest of the term.
%
:- pred parse_lambda_eval_method(term(T)::in, lambda_eval_method::out,
term(T)::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module mdbcomp__prim_data.
:- import_module parse_tree__prog_io.
:- import_module parse_tree__prog_io_util.
:- import_module parse_tree__prog_mode.
:- import_module parse_tree__prog_out.
:- import_module int.
:- import_module map.
:- import_module std_util.
:- import_module string.
:- import_module term.
%-----------------------------------------------------------------------------%
parse_goal(Term, Goal, !VarSet) :-
% We could do some error-checking here, but all errors are picked up
% in either the type-checker or parser anyway.
% First, get the goal context.
(
Term = term__functor(_, _, Context)
;
Term = term__variable(_),
term__context_init(Context)
),
% We just check if it matches the appropriate pattern for one of the
% builtins. If it doesn't match any of the builtins, then it's just
% a predicate call.
(
% Check for builtins...
Term = term__functor(term__atom(Name), Args, Context),
parse_goal_2(Name, Args, GoalExpr, !VarSet)
->
Goal = GoalExpr - Context
;
% It's not a builtin.
term__coerce(Term, ArgsTerm),
(
% Check for predicate calls.
sym_name_and_args(ArgsTerm, SymName, Args)
->
Goal = call(SymName, Args, purity_pure) - Context
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/1 - the
% typechecker will catch calls to numbers and strings.
Goal = call(unqualified("call"), [ArgsTerm], purity_pure) - Context
)
).
%-----------------------------------------------------------------------------%
:- pred parse_goal_2(string::in, list(term)::in, goal_expr::out,
prog_varset::in, prog_varset::out) is semidet.
% Since (A -> B) has different semantics in standard Prolog
% (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
% for the moment we'll just disallow it.
% For consistency we also disallow if-then without the else.
parse_goal_2("true", [], true, !V).
parse_goal_2("fail", [], fail, !V).
parse_goal_2("=", [A0, B0], unify(A, B, purity_pure), !V) :-
term__coerce(A0, A),
term__coerce(B0, B).
parse_goal_2(",", [A0, B0], (A, B), !V) :-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2("&", [A0, B0], (A & B), !V) :-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2(";", [A0, B0], R, !V) :-
( A0 = term__functor(term__atom("->"), [X0, Y0], _Context) ->
parse_some_vars_goal(X0, Vars, StateVars, X, !V),
parse_goal(Y0, Y, !V),
parse_goal(B0, B, !V),
R = if_then_else(Vars, StateVars, X, Y, B)
;
parse_goal(A0, A, !V),
parse_goal(B0, B, !V),
R = (A;B)
).
parse_goal_2("else", [IF, C0], if_then_else(Vars, StateVars, A, B, C), !V) :-
IF = term__functor(term__atom("if"),
[term__functor(term__atom("then"), [A0, B0], _)], _),
parse_some_vars_goal(A0, Vars, StateVars, A, !V),
parse_goal(B0, B, !V),
parse_goal(C0, C, !V).
parse_goal_2("not", [A0], not(A), !V) :-
parse_goal(A0, A, !V).
parse_goal_2("\\+", [A0], not(A), !V) :-
parse_goal(A0, A, !V).
parse_goal_2("all", [QVars, A0], GoalExpr, !V):-
% Extract any state variables in the quantifier.
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_goal(A0, A @ (GoalExprA - ContextA), !V),
(
Vars = [], StateVars = [],
GoalExpr = GoalExprA
;
Vars = [], StateVars = [_|_],
GoalExpr = all_state_vars(StateVars, A)
;
Vars = [_|_], StateVars = [],
GoalExpr = all(Vars, A)
;
Vars = [_|_], StateVars = [_|_],
GoalExpr = all(Vars, all_state_vars(StateVars, A) - ContextA)
).
% Handle implication.
parse_goal_2("<=", [A0, B0], implies(B, A), !V):-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2("=>", [A0, B0], implies(A, B), !V):-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
% handle equivalence
parse_goal_2("<=>", [A0, B0], equivalent(A, B), !V):-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2("some", [QVars, A0], GoalExpr, !V):-
% Extract any state variables in the quantifier.
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_goal(A0, A @ (GoalExprA - ContextA), !V),
(
Vars = [], StateVars = [],
GoalExpr = GoalExprA
;
Vars = [], StateVars = [_|_],
GoalExpr = some_state_vars(StateVars, A)
;
Vars = [_|_], StateVars = [],
GoalExpr = some(Vars, A)
;
Vars = [_|_], StateVars = [_|_],
GoalExpr = some(Vars, some_state_vars(StateVars, A) - ContextA)
).
parse_goal_2("promise_equivalent_solutions", [OVars, A0], GoalExpr, !V):-
parse_goal(A0, A, !V),
parse_vars_and_state_vars(OVars, Vars0, DotSVars0, ColonSVars0),
list__map(term__coerce_var, Vars0, Vars),
list__map(term__coerce_var, DotSVars0, DotSVars),
list__map(term__coerce_var, ColonSVars0, ColonSVars),
GoalExpr = promise_equivalent_solutions(Vars, DotSVars, ColonSVars, A).
parse_goal_2("promise_pure", [A0], GoalExpr, !V):-
parse_goal(A0, A, !V),
GoalExpr = promise_purity(dont_make_implicit_promises, purity_pure, A).
parse_goal_2("promise_semipure", [A0], GoalExpr, !V):-
parse_goal(A0, A, !V),
GoalExpr = promise_purity(dont_make_implicit_promises, purity_semipure, A).
parse_goal_2("promise_impure", [A0], GoalExpr, !V):-
parse_goal(A0, A, !V),
GoalExpr = promise_purity(dont_make_implicit_promises, purity_impure, A).
parse_goal_2("promise_pure_implicit", [A0], GoalExpr, !V):-
parse_goal(A0, A, !V),
GoalExpr = promise_purity(make_implicit_promises, purity_pure, A).
parse_goal_2("promise_semipure_implicit", [A0], GoalExpr, !V):-
parse_goal(A0, A, !V),
GoalExpr = promise_purity(make_implicit_promises, purity_semipure, A).
parse_goal_2("promise_impure_implicit", [A0], GoalExpr, !V):-
parse_goal(A0, A, !V),
GoalExpr = promise_purity(make_implicit_promises, purity_impure, A).
% The following is a temporary hack to handle `is' in the parser -
% we ought to handle it in the code generation - but then `is/2' itself
% is a bit of a hack.
parse_goal_2("is", [A0, B0], unify(A, B, purity_pure), !V) :-
term__coerce(A0, A),
term__coerce(B0, B).
parse_goal_2("impure", [A0], A, !V) :-
parse_goal_with_purity(A0, purity_impure, A, !V).
parse_goal_2("semipure", [A0], A, !V) :-
parse_goal_with_purity(A0, purity_semipure, A, !V).
:- pred parse_goal_with_purity(term::in, purity::in, goal_expr::out,
prog_varset::in, prog_varset::out) is det.
parse_goal_with_purity(A0, Purity, A, !V) :-
parse_goal(A0, A1, !V),
( A1 = call(Pred, Args, purity_pure) - _ ->
A = call(Pred, Args, Purity)
; A1 = unify(ProgTerm1, ProgTerm2, purity_pure) - _ ->
A = unify(ProgTerm1, ProgTerm2, Purity)
;
% Inappropriate placement of an impurity marker, so we treat
% it like a predicate call. typecheck.m prints out something
% descriptive for these errors.
purity_name(Purity, PurityString),
term__coerce(A0, A2),
A = call(unqualified(PurityString), [A2], purity_pure)
).
%-----------------------------------------------------------------------------%
parse_some_vars_goal(A0, Vars, StateVars, A, !VarSet) :-
(
A0 = term__functor(term__atom("some"), [QVars, A1], _Context),
parse_quantifier_vars(QVars, StateVars0, Vars0)
->
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_goal(A1, A, !VarSet)
;
Vars = [],
StateVars = [],
parse_goal(A0, A, !VarSet)
).
%-----------------------------------------------------------------------------%
:- pred parse_lambda_arg(term::in, prog_term::out, mer_mode::out) is semidet.
parse_lambda_arg(Term, ArgTerm, Mode) :-
Term = term__functor(term__atom("::"), [ArgTerm0, ModeTerm], _),
term__coerce(ArgTerm0, ArgTerm),
convert_mode(allow_constrained_inst_var, ModeTerm, Mode0),
constrain_inst_vars_in_mode(Mode0, Mode).
%-----------------------------------------------------------------------------%
%
% Code for parsing pred/func expressions
%
parse_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
PredTerm = term__functor(term__atom("is"), [PredEvalArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
parse_pred_expr_args(PredArgsList, Args, Modes),
inst_var_constraints_are_consistent_in_modes(Modes).
parse_dcg_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
PredTerm = term__functor(term__atom("is"), [PredEvalArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
parse_dcg_pred_expr_args(PredArgsList, Args, Modes),
inst_var_constraints_are_consistent_in_modes(Modes).
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
% Parse a func expression with specified modes and determinism.
FuncTerm = term__functor(term__atom("is"), [EqTerm, DetTerm], _),
EqTerm = term__functor(term__atom("="), [FuncEvalArgsTerm, RetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
FuncArgsTerm = term__functor(term__atom("func"), FuncArgsList, _),
( parse_pred_expr_args(FuncArgsList, Args0, Modes0) ->
parse_lambda_arg(RetTerm, RetArg, RetMode),
list__append(Args0, [RetArg], Args),
list__append(Modes0, [RetMode], Modes),
inst_var_constraints_are_consistent_in_modes(Modes)
;
% The argument modes default to `in',
% the return mode defaults to `out'.
in_mode(InMode),
out_mode(OutMode),
list__length(FuncArgsList, NumArgs),
list__duplicate(NumArgs, InMode, Modes0),
RetMode = OutMode,
list__append(Modes0, [RetMode], Modes),
list__append(FuncArgsList, [RetTerm], Args1),
list__map(term__coerce, Args1, Args)
).
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
% Parse a func expression with unspecified modes and determinism.
FuncTerm = term__functor(term__atom("="), [FuncEvalArgsTerm, RetTerm], _),
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
FuncArgsTerm = term__functor(term__atom("func"), Args0, _),
% The argument modes default to `in',
% the return mode defaults to `out',
% and the determinism defaults to `det'.
in_mode(InMode),
out_mode(OutMode),
list__length(Args0, NumArgs),
list__duplicate(NumArgs, InMode, Modes0),
RetMode = OutMode,
Det = det,
list__append(Modes0, [RetMode], Modes),
inst_var_constraints_are_consistent_in_modes(Modes),
list__append(Args0, [RetTerm], Args1),
list__map(term__coerce, Args1, Args).
parse_lambda_eval_method(Term0, EvalMethod, Term) :-
( Term0 = term__functor(term__atom(MethodStr), [Term1], _) ->
( MethodStr = "aditi_bottom_up" ->
EvalMethod = lambda_aditi_bottom_up,
Term = Term1
;
EvalMethod = lambda_normal,
Term = Term0
)
;
EvalMethod = lambda_normal,
Term = Term0
).
:- pred parse_pred_expr_args(list(term)::in, list(prog_term)::out,
list(mer_mode)::out) is semidet.
parse_pred_expr_args([], [], []).
parse_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
parse_lambda_arg(Term, Arg, Mode),
parse_pred_expr_args(Terms, Args, Modes).
% parse_dcg_pred_expr_args is like parse_pred_expr_args except
% that the last two elements of the list are the modes of the
% two DCG arguments.
%
:- pred parse_dcg_pred_expr_args(list(term)::in, list(prog_term)::out,
list(mer_mode)::out) is semidet.
parse_dcg_pred_expr_args([DCGModeTermA, DCGModeTermB], [],
[DCGModeA, DCGModeB]) :-
convert_mode(allow_constrained_inst_var, DCGModeTermA, DCGModeA0),
convert_mode(allow_constrained_inst_var, DCGModeTermB, DCGModeB0),
constrain_inst_vars_in_mode(DCGModeA0, DCGModeA),
constrain_inst_vars_in_mode(DCGModeB0, DCGModeB).
parse_dcg_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
Terms = [_, _ | _],
parse_lambda_arg(Term, Arg, Mode),
parse_dcg_pred_expr_args(Terms, Args, Modes).
%-----------------------------------------------------------------------------%