Files
mercury/compiler/cse_detection.m
Zoltan Somogyi b2012c0c0e Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
Estimated hours taken: 8
Branches: main

compiler/*.m:
	Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
	and 'mer_mode'. This is to avoid the need to parenthesize these type
	names in some contexts, and to prepare for the possibility of a parser
	that considers those words to be reserved words.

	Rename some other uses of those names (e.g. as item types in
	recompilation.m).

	Delete some redundant synonyms (prog_type, mercury_type) for mer_type.

	Change some type names (e.g. mlds__type) and predicate names (e.g.
	deforest__goal) to make them unique even without module qualification.

	Rename the function symbols (e.g. pure, &) that need to be renamed
	to avoid the need to parenthesize them. Make their replacement names
	more expressive.

	Convert some more modules to four space indentation.

	Avoid excessively long lines, such as those resulting from the
	automatic substitution of 'mer_type' for 'type'.
2005-10-24 04:14:34 +00:00

850 lines
34 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1995-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Common subexpression detection - hoist common subexpression goals out of
% branched structures. This can enable us to find more indexing opportunities
% and hence can make the code more deterministic.
% This code is switched on/off with the `--common-goal' option.
%
% Main author: zs.
% Much of the code is based on switch_detection.m by fjh.
%
%-----------------------------------------------------------------------------%
:- module check_hlds__cse_detection.
:- interface.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- import_module io.
:- pred detect_cse(module_info::in, module_info::out, io::di, io::uo) is det.
:- pred detect_cse_in_proc(proc_id::in, pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds__det_util.
:- import_module check_hlds__inst_match.
:- import_module check_hlds__mode_util.
:- import_module check_hlds__modes.
:- import_module check_hlds__switch_detection.
:- import_module check_hlds__switch_detection.
:- import_module check_hlds__type_util.
:- import_module hlds__goal_util.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module hlds__hlds_out.
:- import_module hlds__instmap.
:- import_module hlds__quantification.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module parse_tree__error_util.
:- import_module parse_tree__prog_data.
:- import_module parse_tree__prog_type.
:- import_module assoc_list.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module multi_map.
:- import_module require.
:- import_module set.
:- import_module std_util.
:- import_module string.
:- import_module svmap.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
detect_cse(!ModuleInfo, !IO) :-
% Traverse the module structure, calling `detect_cse_in_goal'
% for each procedure body.
module_info_predids(!.ModuleInfo, PredIds),
detect_cse_in_preds(PredIds, !ModuleInfo, !IO).
:- pred detect_cse_in_preds(list(pred_id)::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_preds([], !ModuleInfo, !IO).
detect_cse_in_preds([PredId | PredIds], !ModuleInfo, !IO) :-
module_info_preds(!.ModuleInfo, PredTable),
map__lookup(PredTable, PredId, PredInfo),
detect_cse_in_pred(PredId, PredInfo, !ModuleInfo, !IO),
detect_cse_in_preds(PredIds, !ModuleInfo, !IO).
:- pred detect_cse_in_pred(pred_id::in, pred_info::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_pred(PredId, PredInfo0, !ModuleInfo, !IO) :-
ProcIds = pred_info_non_imported_procids(PredInfo0),
detect_cse_in_procs(ProcIds, PredId, !ModuleInfo, !IO).
:- pred detect_cse_in_procs(list(proc_id)::in, pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_procs([], _PredId, !ModuleInfo, !IO).
detect_cse_in_procs([ProcId | ProcIds], PredId, !ModuleInfo, !IO) :-
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO),
detect_cse_in_procs(ProcIds, PredId, !ModuleInfo, !IO).
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO) :-
detect_cse_in_proc_2(ProcId, PredId, Redo, !ModuleInfo),
(
Redo = no
;
Redo = yes,
globals__io_lookup_bool_option(very_verbose, VeryVerbose, !IO),
(
VeryVerbose = yes,
io__write_string("% Repeating mode check for ", !IO),
hlds_out__write_pred_id(!.ModuleInfo, PredId, !IO),
io__write_string("\n", !IO)
;
VeryVerbose = no
),
modecheck_proc(ProcId, PredId, !ModuleInfo, Errs, _Changed, !IO),
( Errs > 0 ->
unexpected(this_file, "mode check fails when repeated")
;
true
),
(
VeryVerbose = yes,
io__write_string("% Repeating switch detection for ", !IO),
hlds_out__write_pred_id(!.ModuleInfo, PredId, !IO),
io__write_string("\n", !IO)
;
VeryVerbose = no
),
detect_switches_in_proc(ProcId, PredId, !ModuleInfo),
(
VeryVerbose = yes,
io__write_string("% Repeating common " ++
"deconstruction detection for ", !IO),
hlds_out__write_pred_id(!.ModuleInfo, PredId, !IO),
io__write_string("\n", !IO)
;
VeryVerbose = no
),
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO)
).
:- type cse_info
---> cse_info(
varset :: prog_varset,
vartypes :: vartypes,
rtti_varmaps :: rtti_varmaps,
module_info :: module_info
).
:- pred detect_cse_in_proc_2(proc_id::in, pred_id::in, bool::out,
module_info::in, module_info::out) is det.
detect_cse_in_proc_2(ProcId, PredId, Redo, ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
% To process each ProcInfo, we get the goal, initialize the instmap
% based on the modes of the head vars, and pass these to
% `detect_cse_in_goal'.
proc_info_goal(ProcInfo0, Goal0),
proc_info_get_initial_instmap(ProcInfo0, ModuleInfo0, InstMap0),
proc_info_varset(ProcInfo0, Varset0),
proc_info_vartypes(ProcInfo0, VarTypes0),
proc_info_rtti_varmaps(ProcInfo0, RttiVarMaps0),
CseInfo0 = cse_info(Varset0, VarTypes0, RttiVarMaps0, ModuleInfo0),
detect_cse_in_goal(Goal0, InstMap0, CseInfo0, CseInfo, Redo, Goal1),
(
Redo = no,
ModuleInfo = ModuleInfo0
;
Redo = yes,
% ModuleInfo should not be changed by detect_cse_in_goal.
CseInfo = cse_info(VarSet1, VarTypes1, RttiVarMaps, _),
proc_info_headvars(ProcInfo0, HeadVars),
implicitly_quantify_clause_body(HeadVars, _Warnings,
Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes),
proc_info_set_goal(Goal, ProcInfo0, ProcInfo1),
proc_info_set_varset(VarSet, ProcInfo1, ProcInfo2),
proc_info_set_vartypes(VarTypes, ProcInfo2, ProcInfo3),
proc_info_set_rtti_varmaps(RttiVarMaps, ProcInfo3, ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, PredInfo0, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, ModuleInfo0, ModuleInfo)
).
%-----------------------------------------------------------------------------%
% Given a goal, and the instmap on entry to that goal,
% find disjunctions that contain common subexpressions
% and hoist these out of the disjunction. At the moment
% we only look for cses that are deconstruction unifications.
%
:- pred detect_cse_in_goal(hlds_goal::in, instmap::in, cse_info::in,
cse_info::out, bool::out, hlds_goal::out) is det.
detect_cse_in_goal(Goal0, InstMap0, !CseInfo, Redo, Goal) :-
detect_cse_in_goal_1(Goal0, InstMap0, !CseInfo, Redo, Goal, _InstMap).
% This version is the same as the above except that it returns
% the resulting instmap on exit from the goal, which is
% computed by applying the instmap delta specified in the
% goal's goalinfo.
%
:- pred detect_cse_in_goal_1(hlds_goal::in, instmap::in, cse_info::in,
cse_info::out, bool::out, hlds_goal::out, instmap::out) is det.
detect_cse_in_goal_1(Goal0 - GoalInfo, InstMap0, !CseInfo, Redo,
Goal - GoalInfo, InstMap) :-
detect_cse_in_goal_2(Goal0, GoalInfo, InstMap0, !CseInfo, Redo, Goal),
goal_info_get_instmap_delta(GoalInfo, InstMapDelta),
instmap__apply_instmap_delta(InstMap0, InstMapDelta, InstMap).
% Here we process each of the different sorts of goals.
%
:- pred detect_cse_in_goal_2(hlds_goal_expr::in, hlds_goal_info::in,
instmap::in, cse_info::in, cse_info::out, bool::out,
hlds_goal_expr::out) is det.
detect_cse_in_goal_2(Goal @ foreign_proc(_, _, _, _, _, _), _, _, !CseInfo,
no, Goal).
detect_cse_in_goal_2(Goal @ generic_call(_, _, _, _), _, _, !CseInfo,
no, Goal).
detect_cse_in_goal_2(Goal @ call(_, _, _, _, _, _), _, _, !CseInfo, no, Goal).
detect_cse_in_goal_2(unify(LHS, RHS0, Mode, Unify, UnifyContext), _, InstMap0,
!CseInfo, Redo, unify(LHS, RHS, Mode,Unify, UnifyContext)) :-
(
RHS0 = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, Det, Goal0)
->
ModuleInfo = !.CseInfo ^ module_info,
instmap__pre_lambda_update(ModuleInfo, Vars, Modes, InstMap0, InstMap),
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo, Goal),
RHS = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, Det, Goal)
;
RHS = RHS0,
Redo = no
).
detect_cse_in_goal_2(not(Goal0), _GoalInfo, InstMap, !CseInfo, Redo,
not(Goal)) :-
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(scope(Reason, Goal0), _GoalInfo, InstMap,
!CseInfo, Redo, scope(Reason, Goal)) :-
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(conj(Goals0), _GoalInfo, InstMap, !CseInfo, Redo,
conj(Goals)) :-
detect_cse_in_conj(Goals0, InstMap, !CseInfo, Redo, Goals).
detect_cse_in_goal_2(par_conj(Goals0), _, InstMap, !CseInfo, Redo,
par_conj(Goals)) :-
detect_cse_in_par_conj(Goals0, InstMap, !CseInfo, Redo, Goals).
detect_cse_in_goal_2(disj(Goals0), GoalInfo, InstMap, !CseInfo, Redo, Goal) :-
( Goals0 = [] ->
Redo = no,
Goal = disj([])
;
goal_info_get_nonlocals(GoalInfo, NonLocals),
set__to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_disj(NonLocalsList, Goals0, GoalInfo,
InstMap, !CseInfo, Redo, Goal)
).
detect_cse_in_goal_2(switch(Var, CanFail, Cases0), GoalInfo, InstMap,
!CseInfo, Redo, Goal) :-
goal_info_get_nonlocals(GoalInfo, NonLocals),
set__to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_cases(NonLocalsList, Var, CanFail, Cases0, GoalInfo,
InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(if_then_else(Vars, Cond0, Then0, Else0), GoalInfo,
InstMap, !CseInfo, Redo, Goal) :-
goal_info_get_nonlocals(GoalInfo, NonLocals),
set__to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_ite(NonLocalsList, Vars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(shorthand(_), _, _, _, _, _, _) :-
% These should have been expanded out by now.
unexpected(this_file, "detect_cse_in_goal_2: unexpected shorthand").
%-----------------------------------------------------------------------------%
:- pred detect_cse_in_conj(list(hlds_goal)::in, instmap::in, cse_info::in,
cse_info::out, bool::out, list(hlds_goal)::out) is det.
detect_cse_in_conj([], _InstMap, !CseInfo, no, []).
detect_cse_in_conj([Goal0 | Goals0], InstMap0, !CseInfo, Redo, Goals) :-
detect_cse_in_goal_1(Goal0, InstMap0, !CseInfo, Redo1, Goal1, InstMap1),
detect_cse_in_conj(Goals0, InstMap1, !CseInfo, Redo2, Goals1),
( Goal1 = conj(ConjGoals) - _ ->
list__append(ConjGoals, Goals1, Goals)
;
Goals = [Goal1 | Goals1]
),
bool__or(Redo1, Redo2, Redo).
%-----------------------------------------------------------------------------%
:- pred detect_cse_in_par_conj(list(hlds_goal)::in, instmap::in, cse_info::in,
cse_info::out, bool::out, list(hlds_goal)::out) is det.
detect_cse_in_par_conj([], _InstMap, !CseInfo, no, []).
detect_cse_in_par_conj([Goal0 | Goals0], InstMap0, !CseInfo, Redo,
[Goal | Goals]) :-
detect_cse_in_goal(Goal0, InstMap0, !CseInfo, Redo1, Goal),
detect_cse_in_par_conj(Goals0, InstMap0, !CseInfo, Redo2, Goals),
bool__or(Redo1, Redo2, Redo).
%-----------------------------------------------------------------------------%
% These are the interesting bits - we've found a non-empty branched
% structure, and we've got a list of the non-local variables of that
% structure. Now for each non-local variable, we check whether each
% branch matches that variable against the same functor.
%
:- pred detect_cse_in_disj(list(prog_var)::in, list(hlds_goal)::in,
hlds_goal_info::in, instmap::in, cse_info::in,
cse_info::out, bool::out, hlds_goal_expr::out) is det.
detect_cse_in_disj([], Goals0, _, InstMap, !CseInfo, Redo, disj(Goals)) :-
detect_cse_in_disj_2(Goals0, InstMap, !CseInfo, Redo, Goals).
detect_cse_in_disj([Var | Vars], Goals0, GoalInfo0, InstMap,
!CseInfo, Redo, Goal) :-
(
instmap__lookup_var(InstMap, Var, VarInst0),
ModuleInfo = !.CseInfo ^ module_info,
% XXX we only need inst_is_bound, but leave this as it is
% until mode analysis can handle aliasing between free
% variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct(Goals0, Var, !CseInfo, Unify,
FirstOldNew, LaterOldNew, Goals)
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
Goal = conj([Unify, disj(Goals) - GoalInfo0]),
Redo = yes
;
detect_cse_in_disj(Vars, Goals0, GoalInfo0, InstMap,
!CseInfo, Redo, Goal)
).
:- pred detect_cse_in_disj_2(list(hlds_goal)::in, instmap::in, cse_info::in,
cse_info::out, bool::out, list(hlds_goal)::out) is det.
detect_cse_in_disj_2([], _InstMap, !CseInfo, no, []).
detect_cse_in_disj_2([Goal0 | Goals0], InstMap0, !CseInfo, Redo,
[Goal | Goals]) :-
detect_cse_in_goal(Goal0, InstMap0, !CseInfo, Redo1, Goal),
detect_cse_in_disj_2(Goals0, InstMap0, !CseInfo, Redo2, Goals),
bool__or(Redo1, Redo2, Redo).
:- pred detect_cse_in_cases(list(prog_var)::in, prog_var::in, can_fail::in,
list(case)::in, hlds_goal_info::in, instmap::in,
cse_info::in, cse_info::out, bool::out, hlds_goal_expr::out) is det.
detect_cse_in_cases([], SwitchVar, CanFail, Cases0, _GoalInfo, InstMap,
!CseInfo, Redo, switch(SwitchVar, CanFail, Cases)) :-
detect_cse_in_cases_2(Cases0, InstMap, !CseInfo, Redo, Cases).
detect_cse_in_cases([Var | Vars], SwitchVar, CanFail, Cases0, GoalInfo,
InstMap, !CseInfo, Redo, Goal) :-
(
Var \= SwitchVar,
instmap__lookup_var(InstMap, Var, VarInst0),
ModuleInfo = !.CseInfo ^ module_info,
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct_cases(Cases0, Var, !CseInfo,
Unify, FirstOldNew, LaterOldNew, Cases)
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
Goal = conj([Unify, switch(SwitchVar, CanFail, Cases) - GoalInfo]),
Redo = yes
;
detect_cse_in_cases(Vars, SwitchVar, CanFail, Cases0, GoalInfo,
InstMap, !CseInfo, Redo, Goal)
).
:- pred detect_cse_in_cases_2(list(case)::in, instmap::in, cse_info::in,
cse_info::out, bool::out, list(case)::out) is det.
detect_cse_in_cases_2([], _, !CseInfo, no, []).
detect_cse_in_cases_2([Case0 | Cases0], InstMap, !CseInfo, Redo,
[Case | Cases]) :-
Case0 = case(Functor, Goal0),
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo1, Goal),
Case = case(Functor, Goal),
detect_cse_in_cases_2(Cases0, InstMap, !CseInfo, Redo2, Cases),
bool__or(Redo1, Redo2, Redo).
:- pred detect_cse_in_ite(list(prog_var)::in, list(prog_var)::in,
hlds_goal::in, hlds_goal::in, hlds_goal::in, hlds_goal_info::in,
instmap::in, cse_info::in, cse_info::out, bool::out,
hlds_goal_expr::out) is det.
detect_cse_in_ite([], IfVars, Cond0, Then0, Else0, _, InstMap, !CseInfo,
Redo, if_then_else(IfVars, Cond, Then, Else)) :-
detect_cse_in_ite_2(Cond0, Then0, Else0, InstMap, !CseInfo, Redo,
Cond, Then, Else).
detect_cse_in_ite([Var | Vars], IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, Goal) :-
(
ModuleInfo = !.CseInfo ^ module_info,
instmap__lookup_var(InstMap, Var, VarInst0),
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct([Then0, Else0], Var, !CseInfo,
Unify, FirstOldNew, LaterOldNew, Goals),
Goals = [Then, Else]
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
Goal = conj([Unify, if_then_else(IfVars, Cond0, Then, Else)
- GoalInfo]),
Redo = yes
;
detect_cse_in_ite(Vars, IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, Goal)
).
:- pred detect_cse_in_ite_2(hlds_goal::in, hlds_goal::in, hlds_goal::in,
instmap::in, cse_info::in, cse_info::out, bool::out,
hlds_goal::out, hlds_goal::out, hlds_goal::out) is det.
detect_cse_in_ite_2(Cond0, Then0, Else0, InstMap0, !CseInfo, Redo,
Cond, Then, Else) :-
detect_cse_in_goal_1(Cond0, InstMap0, !CseInfo, Redo1, Cond, InstMap1),
detect_cse_in_goal(Then0, InstMap1, !CseInfo, Redo2, Then),
detect_cse_in_goal(Else0, InstMap0, !CseInfo, Redo3, Else),
bool__or(Redo1, Redo2, Redo12),
bool__or(Redo12, Redo3, Redo).
%-----------------------------------------------------------------------------%
% common_deconstruct(Goals0, Var, !CseInfo, Unify, Goals):
% input vars:
% Goals0 is a list of parallel goals in a branched structure
% (disjunction, if-then-else, or switch).
% Var is the variable we are looking for a common deconstruction on.
% !.CseInfo contains the original varset and type map.
% output vars:
% !:CseInfo has a varset and a type map reflecting the new variables
% we have introduced.
% Goals is the modified version of Goals0 after the common deconstruction
% has been hoisted out, with the new variables as the functor arguments.
% Unify is the unification that was hoisted out.
%
:- pred common_deconstruct(list(hlds_goal)::in, prog_var::in, cse_info::in,
cse_info::out, hlds_goal::out, assoc_list(prog_var)::out,
list(assoc_list(prog_var))::out, list(hlds_goal)::out) is semidet.
common_deconstruct(Goals0, Var, !CseInfo, Unify, FirstOldNew, LaterOldNew,
Goals) :-
common_deconstruct_2(Goals0, Var, before_candidate,
have_candidate(Unify, FirstOldNew, LaterOldNew), !CseInfo, Goals),
LaterOldNew = [_ | _].
:- pred common_deconstruct_2(list(hlds_goal)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(hlds_goal)::out) is semidet.
common_deconstruct_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_2([Goal0 | Goals0], Var, !CseState, !CseInfo,
[Goal | Goals]) :-
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct, Goal0, Goal,
!CseState, !CseInfo, yes),
!.CseState = have_candidate(_, _, _),
common_deconstruct_2(Goals0, Var, !CseState, !CseInfo, Goals).
%-----------------------------------------------------------------------------%
:- pred common_deconstruct_cases(list(case)::in, prog_var::in,
cse_info::in, cse_info::out, hlds_goal::out, assoc_list(prog_var)::out,
list(assoc_list(prog_var))::out, list(case)::out) is semidet.
common_deconstruct_cases(Cases0, Var, !CseInfo, Unify,
FirstOldNew, LaterOldNew, Cases) :-
common_deconstruct_cases_2(Cases0, Var, before_candidate,
have_candidate(Unify, FirstOldNew, LaterOldNew), !CseInfo, Cases),
LaterOldNew = [_ | _].
:- pred common_deconstruct_cases_2(list(case)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(case)::out) is semidet.
common_deconstruct_cases_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_cases_2([case(ConsId, Goal0) | Cases0], Var,
!CseState, !CseInfo, [case(ConsId, Goal) | Cases]) :-
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct, Goal0, Goal,
!CseState, !CseInfo, yes),
!.CseState = have_candidate(_, _, _),
common_deconstruct_cases_2(Cases0, Var, !CseState, !CseInfo, Cases).
%-----------------------------------------------------------------------------%
% This data structure represents the state of the search for
% deconstructions in all the branches of a branched control structure
% that deconstruct a given variable with the same functor.
% Initially, we don't know what unification we will hoist out, so the
% state is before_candidate. When we find a unification we want to
% hoist out, this fixes the functor, and the state is have_candidate.
% If we find that some branches unify that variable with some other
% functor, we have multiple_candidates, which means that we don't hoist
% out any of them. (Although our caller may try again with another
% variable.)
%
% The goal field contains the unification we are proposing to put
% before the branched control structure. The first_old_new field
% gives the mapping from argument variables in the old unification
% in the first branch to the freshly created variables in the goal
% being hoisted before the branched control structure. The
% later_old_new field contains the same information for the second
% and later branches.
:- type cse_state
---> before_candidate
; have_candidate(
goal :: hlds_goal,
first_old_new :: assoc_list(prog_var),
later_old_new :: list(assoc_list(prog_var))
)
; multiple_candidates.
:- pred find_bind_var_for_cse_in_deconstruct(prog_var::in, hlds_goal::in,
list(hlds_goal)::out, cse_state::in, cse_state::out,
cse_info::in, cse_info::out) is det.
find_bind_var_for_cse_in_deconstruct(Var, Goal0, Goals,
!CseState, !CseInfo) :-
(
!.CseState = before_candidate,
construct_common_unify(Var, Goal0, !CseInfo, OldNewVars,
HoistedGoal, Goals),
!:CseState = have_candidate(HoistedGoal, OldNewVars, [])
;
!.CseState = have_candidate(HoistedGoal,
FirstOldNewVars, LaterOldNewVars0),
Goal0 = _ - GoalInfo,
goal_info_get_context(GoalInfo, Context),
(
find_similar_deconstruct(HoistedGoal,
Goal0, Context, OldNewVars, Goals0)
->
Goals = Goals0,
LaterOldNewVars = [OldNewVars | LaterOldNewVars0],
!:CseState = have_candidate(HoistedGoal,
FirstOldNewVars, LaterOldNewVars)
;
Goals = [Goal0],
!:CseState = multiple_candidates
)
;
!.CseState = multiple_candidates,
Goals = [Goal0],
!:CseState = multiple_candidates
).
:- pred construct_common_unify(prog_var::in, hlds_goal::in,
cse_info::in, cse_info::out, assoc_list(prog_var)::out,
hlds_goal::out, list(hlds_goal)::out) is det.
construct_common_unify(Var, GoalExpr0 - GoalInfo, !CseInfo, OldNewVars,
HoistedGoal, Replacements) :-
(
GoalExpr0 = unify(_, Term, Umode, Unif0, Ucontext),
Unif0 = deconstruct(_, Consid, Args, Submodes, CanFail, CanCGC)
->
Unif = deconstruct(Var, Consid, Args, Submodes, CanFail, CanCGC),
( Term = functor(_, _, _) ->
GoalExpr1 = unify(Var, Term, Umode, Unif, Ucontext)
;
unexpected(this_file,
"non-functor unify in construct_common_unify")
),
goal_info_get_context(GoalInfo, Context),
create_parallel_subterms(Args, Context, Ucontext,
!CseInfo, OldNewVars, Replacements),
map__from_assoc_list(OldNewVars, Sub),
goal_util__rename_vars_in_goal(Sub,
GoalExpr1 - GoalInfo, HoistedGoal)
;
unexpected(this_file, "non-unify goal in construct_common_unify")
).
:- pred create_parallel_subterms(list(prog_var)::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::out, list(hlds_goal)::out) is det.
create_parallel_subterms([], _, _, !CseInfo, [], []).
create_parallel_subterms([OFV | OFV0], Context, UnifyContext, !CseInfo,
OldNewVars, Replacements) :-
create_parallel_subterms(OFV0, Context, UnifyContext, !CseInfo,
OldNewVars1, Replacements1),
create_parallel_subterm(OFV, Context, UnifyContext, !CseInfo,
OldNewVars1, OldNewVars, Goal),
Replacements = [Goal | Replacements1].
:- pred create_parallel_subterm(prog_var::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::in, assoc_list(prog_var)::out,
hlds_goal::out) is det.
create_parallel_subterm(OFV, Context, UnifyContext, !CseInfo, !OldNewVar,
Goal) :-
VarSet0 = !.CseInfo ^ varset,
VarTypes0 = !.CseInfo ^ vartypes,
varset__new_var(VarSet0, NFV, VarSet),
map__lookup(VarTypes0, OFV, Type),
map__det_insert(VarTypes0, NFV, Type, VarTypes),
!:OldNewVar = [OFV - NFV | !.OldNewVar],
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require keeping
% track of the inst of OFV.
create_atomic_complicated_unification(OFV, var(NFV),
Context, MainCtxt, SubCtxt, Goal),
!:CseInfo = !.CseInfo ^ varset := VarSet,
!:CseInfo = !.CseInfo ^ vartypes := VarTypes.
%-----------------------------------------------------------------------------%
:- pred find_similar_deconstruct(hlds_goal::in, hlds_goal::in,
prog_context::in, assoc_list(prog_var)::out, list(hlds_goal)::out)
is semidet.
find_similar_deconstruct(HoistedUnifyGoal, OldUnifyGoal, Context,
OldHoistedVars, Replacements) :-
(
HoistedUnifyGoal = unify(_, _, _, HoistedUnifyInfo, OC) - _,
HoistedUnifyInfo = deconstruct(_, HoistedFunctor,
HoistedVars, _, _, _),
OldUnifyGoal = unify(_, _, _, OldUnifyInfo, _NC) - _,
OldUnifyInfo = deconstruct(_, OldFunctor, OldVars, _, _, _)
->
HoistedFunctor = OldFunctor,
list__length(HoistedVars, HoistedVarsCount),
list__length(OldVars, OldVarsCount),
HoistedVarsCount = OldVarsCount,
assoc_list__from_corresponding_lists(OldVars, HoistedVars,
OldHoistedVars),
pair_subterms(OldHoistedVars, Context, OC, Replacements)
;
unexpected(this_file,
"find_similar_deconstruct: non-deconstruct unify")
).
:- pred pair_subterms(assoc_list(prog_var)::in, prog_context::in,
unify_context::in, list(hlds_goal)::out) is det.
pair_subterms([], _Context, _UnifyContext, []).
pair_subterms([OldVar - HoistedVar | OldHoistedVars], Context, UnifyContext,
Replacements) :-
pair_subterms(OldHoistedVars, Context, UnifyContext, Replacements1),
( OldVar = HoistedVar ->
Replacements = Replacements1
;
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require
% keeping track of the inst of OldVar.
create_atomic_complicated_unification(HoistedVar, var(OldVar),
Context, MainCtxt, SubCtxt, Goal),
Replacements = [Goal | Replacements1]
).
%-----------------------------------------------------------------------------%
% This section handles the case where the functor involved in the
% common subexpression contains existentially typed arguments,
% whether or not they are constrained to belong to a typeclass.
% In such cases, what the compiler used to consider several distinct
% types (the types of say the first the existentially typed argument
% in the deconstructions in the different branches) become one (in this
% case, the type of the first existentially typed argument in the
% hoisted out deconstruction). The prog_vars describing the types
% of the existentially typed arguments (i.e. containing their
% typeinfos) change as well, from being some of the variables in
% in the original deconstructions to being the corresponding variables
% in the hoisted out deconstruction.
%
% As an example, consider a disjunction such as
%
% (
% HeadVar__2_2 = x:u(TypeClassInfo_for_v_8, V_4),
% ...
% ;
% HeadVar__2_2 = x:u(TypeClassInfo_for_v_14, V_6)
% ...
% )
%
% The main part of cse_detection will replace this with
%
% HeadVar__2_2 = x:u(V_17, V_16)
% (
% TypeClassInfo_for_v_8 = V_17,
% V_4 = V_16,
% ...
% ;
% TypeClassInfo_for_v_14 = V_17,
% V_6 = V_16,
% ...
% )
%
% However, this is not enough. Since TypeClassInfo_for_v_8 and
% TypeClassInfo_for_v_14 may (and probably will) be eliminated later,
% it is imperative that the data structures in the proc_info that refer
% to them be updated to eliminate references to those variables.
% Those data structures may originally contain something like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(TypeClassInfo_for_v_8, 1)
% T_3 (number 3) -> typeclass_info(TypeClassInfo_for_v_14, 1)
% typeclass_info varmap:
% x:v(T_1) -> TypeClassInfo_for_v_8
% x:v(T_3) -> TypeClassInfo_for_v_14
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_3
%
% They must be updated like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(V_17, 1)
% typeclass_info varmap:
% x:v(T_1) -> V_17
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_1
:- pred maybe_update_existential_data_structures(hlds_goal::in,
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
maybe_update_existential_data_structures(Unify, FirstOldNew, LaterOldNew,
!CseInfo) :-
(
Unify = unify(_, _, _, UnifyInfo, _) - _,
UnifyInfo = deconstruct(Var, ConsId, _, _, _, _),
ModuleInfo = !.CseInfo ^ module_info,
VarTypes = !.CseInfo ^ vartypes,
map__lookup(VarTypes, Var, Type),
type_util__is_existq_cons(ModuleInfo, Type, ConsId)
->
update_existential_data_structures(FirstOldNew, LaterOldNew, !CseInfo)
;
true
).
:- pred update_existential_data_structures(
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
update_existential_data_structures(FirstOldNew, LaterOldNews, !CseInfo) :-
list__condense(LaterOldNews, LaterOldNew),
map__from_assoc_list(FirstOldNew, FirstOldNewMap),
map__from_assoc_list(LaterOldNew, LaterOldNewMap),
RttiVarMaps0 = !.CseInfo ^ rtti_varmaps,
VarTypes0 = !.CseInfo ^ vartypes,
% Build a map for all locations in the rtti_varmaps that are changed
% by the application of FirstOldNewMap. The keys of this map are the
% new locations, and the values are the tvars (from the first branch)
% that have had their locations moved.
%
rtti_varmaps_tvars(RttiVarMaps0, TvarsList),
list__foldl(find_type_info_locn_tvar_map(RttiVarMaps0, FirstOldNewMap),
TvarsList, map__init, NewTvarMap),
% Traverse TVarsList again, this time looking for locations in later
% branches that merge with locations in the first branch. When we find one,
% add a type substitution which represents the type variables that were
% merged.
%
list__foldl(find_merged_tvars(RttiVarMaps0, LaterOldNewMap, NewTvarMap),
TvarsList, map__init, Renaming),
% Apply the full old->new map and the type substitution to the
% rtti_varmaps, and apply the type substitution to the vartypes.
%
list__append(FirstOldNew, LaterOldNew, OldNew),
map__from_assoc_list(OldNew, OldNewMap),
apply_substitutions_to_rtti_varmaps(Renaming, map__init, OldNewMap,
RttiVarMaps0, RttiVarMaps),
map__map_values(apply_tvar_rename(Renaming), VarTypes0, VarTypes),
!:CseInfo = !.CseInfo ^ rtti_varmaps := RttiVarMaps,
!:CseInfo = !.CseInfo ^ vartypes := VarTypes.
:- pred apply_tvar_rename(tvar_renaming::in, prog_var::in,
mer_type::in, mer_type::out) is det.
apply_tvar_rename(Renaming, _Var, Type0, Type) :-
apply_variable_renaming_to_type(Renaming, Type0, Type).
:- pred find_type_info_locn_tvar_map(rtti_varmaps::in,
map(prog_var, prog_var)::in, tvar::in,
map(type_info_locn, tvar)::in, map(type_info_locn, tvar)::out) is det.
find_type_info_locn_tvar_map(RttiVarMaps, FirstOldNewMap, Tvar, !NewTvarMap) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( map__search(FirstOldNewMap, Old, New) ->
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
svmap__det_insert(TypeInfoLocn, Tvar, !NewTvarMap)
;
true
).
:- pred find_merged_tvars(rtti_varmaps::in, map(prog_var, prog_var)::in,
map(type_info_locn, tvar)::in, tvar::in,
tvar_renaming::in, tvar_renaming::out) is det.
find_merged_tvars(RttiVarMaps, LaterOldNewMap, NewTvarMap, Tvar, !Renaming) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( map__search(LaterOldNewMap, Old, New) ->
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
map__lookup(NewTvarMap, TypeInfoLocn, NewTvar),
( NewTvar = Tvar ->
true
;
svmap__det_insert(Tvar, NewTvar, !Renaming)
)
;
true
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "cse_detection.m".
%-----------------------------------------------------------------------------%