Files
mercury/compiler/code_util.m
Zoltan Somogyi b000cb322e Provide compiler support for Software Transactional Memory through the new
Estimated hours taken: 80 by zs, and lots more by lmika
Branches: main

Provide compiler support for Software Transactional Memory through the new
atomic goal. This work was done by Leon Mika; I merely brought it up to date,
resolved conflicts, and cleaned up a few things. There are still several
aspects that are as yet incomplete.

library/ops.m:
	Add the operators needed for the syntax of atomic scopes.

library/stm_builtin.m:
	Add the builtin operations needed for the implementation of atomic
	goals.

compiler/hlds_goal.m:
	Add a new HLDS goal type, which represents an atomic goal and its
	possible fallbacks (in case an earlier goal throws an exception).

	Rename the predicate goal_is_atomic as goal_expr_has_subgoals,
	since now its old name would be misleading.

compiler/prog_data.m:
compiler/prog_item.m:
	Add a parse tree representation of the new kind of goal.

compiler/prog_io_goal.m:
	Parse the new kind of goal.

compiler/add_clause.m:
	Translate atomic goals from parse tree form to HLDS.

compiler/typecheck.m:
compiler/typecheck_errors.m:
	Do type checking of atomic goals.

compiler/modes.m:
	Do mode checking of atomic goals, and determine whether they are nested
	or not.

compiler/unique_modes.m:
	Do unique mode checking of atomic goals.

compiler/stm_expand.m:
	New module to expand atomic goals into sequences of simpler goals.

library/stm_builtin.m:
	Add the primitives needed by the transformation.

	Improve the existing debugging support.

mdbcomp/prim_data.m:
	Add utility functions to allow stm_expand.m to refer to modules in the
	library.

mdbcomp/program_representation.m:
	Expand the goal_path type to allow the representation of components of
	atomic goals.

compiler/notes/compiler_design.html:
	Document the new module.

compiler/transform_hlds.m:
	Include the new module in the compiler.

compiler/mercury_compile.m:
	Invoke the STM transformation.

compiler/hlds_module.m:
	Add an auxiliary counter used by the STM transformation.

compiler/hlds_pred.m:
	Add a new predicate origin: the STM transformation.

compiler/modules.m:
	Import the STM builtin module automatically if the module contains any
	atomic goals.

compiler/assertion.m:
compiler/bytecode_gen.m:
compiler/clause_to_proc.m:
compiler/code_gen.m:
compiler/code_info.m:
compiler/code_util.m:
compiler/constraint.m:
compiler/cse_detection.m:
compiler/deep_profiling.m:
compiler/code_util.m:
compiler/delay_construct.m:
compiler/delay_partial_inst.m:
compiler/dep_par_conj.m:
compiler/dependency_graph.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/distance_granularity.m:
compiler/equiv_type_hlds.m:
compiler/erl_code_gen.m:
compiler/exception_analysis.m:
compiler/follow_code.m:
compiler/format_call.m:
compiler/goal_form.m:
compiler/goal_path.m:
compiler/goal_util.m:
compiler/granularity.m:
compiler/hlds_out.m:
compiler/implicit_parallelism.m:
compiler/inlining.m:
compiler/intermod.m:
compiler/lambda.m:
compiler/layout_out.m:
compiler/lco.m:
compiler/lookup_switch.m:
compiler/make_hlds_warn.m:
compiler/mark_static_terms.m:
compiler/mercury_to_mercury.m:
compiler/middle_rec.m:
compiler/ml_code_gen.m:
compiler/mode_constraint_robdd.m:
compiler/mode_constraints.m:
compiler/mode_errors.m:
compiler/mode_info.m:
compiler/mode_util.m:
compiler/ordering_mode_constraints.m:
compiler/pd_cost.m:
compiler/pd_util.m:
compiler/polymorphism.m:
compiler/post_typecheck.m:
compiler/prog_rep.m:
compiler/prog_type.m:
compiler/prop_mode_constraints.m:
compiler/rbmm.actual_region_arguments.m:
compiler/rbmm.add_rbmm_goal_info.m:
compiler/rbmm.condition_renaming.m:
compiler/rbmm.execution_path.m:
compiler/rbmm.points_to_analysis.m:
compiler/rbmm.region_transformation.m:
compiler/saved_vars.m:
compiler/simplify.m:
compiler/size_prog.m:
compiler/smm_common.m:
compiler/structure_reuse.direct.choose_reuse.m:
compiler/structure_reuse.direct.detect_garbage.m:
compiler/structure_reuse.indirect.m:
compiler/structure_reuse.lbu.m:
compiler/structure_reuse.lfu.m:
compiler/structure_reuse.versions.m:
compiler/structure_sharing.analysis.m:
compiler/switch_detection.m:
compiler/unused_imports.m:
compiler/granularity.m:
compiler/granularity.m:
	Conform to the changes above. Mostly this means handling the new
	kind of goal.

compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/build_mode_constraints.m:
compiler/closure_analysis.m:
compiler/dead_proc_elim.m:
compiler/deforest.m:
compiler/follow_vars.m:
compiler/higher_order.m:
compiler/live_vars.m:
compiler/liveness.m:
compiler/loop_inv.m:
compiler/module_qual.m:
compiler/prog_util.m:
compiler/purity.m:
compiler/quantification.m:
compiler/store_alloc.m:
compiler/stratify.m:
compiler/tabling_analysis.m:
compiler/term_constr_build.m:
compiler/term_pass1.m:
compiler/term_traversal.m:
compiler/trailing_analysis.m:
	Conform to the changes above. Mostly this means handling the new
	kind of goal.

	Switch syntax from clauses to disj.

runtime/mercury_stm.[ch]:
	Implement the primitives needed by the STM transformation.

	Add more debugging support to the existing primitives.

library/term.m:
	Generalize get_term_context to work on terms of all kinds.
2008-02-27 07:23:57 +00:00

433 lines
15 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2008 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: code_util.m.
%
% Various utilities routines for code generation and recognition of builtins.
%
%-----------------------------------------------------------------------------%
:- module ll_backend.code_util.
:- interface.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_llds.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_rtti.
:- import_module ll_backend.llds.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module maybe.
:- import_module pair.
%-----------------------------------------------------------------------------%
% Create a code address which holds the address of the specified procedure.
% The `immed' argument should be `no' if the the caller wants the returned
% address to be valid from everywhere in the program. If being valid from
% within the current procedure is enough, this argument should be `yes'
% wrapped around the value of the --procs-per-c-function option and the
% current procedure id. Using an address that is only valid from within
% the current procedure may make jumps more efficient.
%
:- type immed == maybe(pair(int, pred_proc_id)).
:- func make_entry_label(module_info, pred_id, proc_id, immed) = code_addr.
:- func make_entry_label_from_rtti(rtti_proc_label, immed) = code_addr.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation time).
% The fourth argument has the same meaning as for make_entry_label.
%
:- func make_local_entry_label(module_info, pred_id, proc_id, immed) = label.
% Create a label internal to a Mercury procedure.
%
:- func make_internal_label(module_info, pred_id, proc_id, int) = label.
:- func extract_proc_label_from_code_addr(code_addr) = proc_label.
:- pred arg_loc_to_register(arg_loc::in, lval::out) is det.
:- pred max_mentioned_reg(list(lval)::in, int::out) is det.
:- pred max_mentioned_abs_reg(list(abs_locn)::in, int::out) is det.
:- pred goal_may_alloc_temp_frame(hlds_goal::in, bool::out) is det.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
%
:- pred neg_rval(rval::in, rval::out) is det.
:- pred negate_the_test(list(instruction)::in, list(instruction)::out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
%
:- pred lvals_in_rval(rval::in, list(lval)::out) is det.
:- pred lvals_in_lval(lval::in, list(lval)::out) is det.
:- pred lvals_in_lvals(list(lval)::in, list(lval)::out) is det.
% Given a procedure that already has its arg_info field filled in,
% return a list giving its input variables and their initial locations.
%
:- pred build_input_arg_list(proc_info::in, assoc_list(prog_var, lval)::out)
is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs.builtin_ops.
:- import_module backend_libs.proc_label.
:- import_module backend_libs.rtti.
:- import_module hlds.code_model.
:- import_module libs.compiler_util.
:- import_module int.
:- import_module term.
%---------------------------------------------------------------------------%
make_entry_label(ModuleInfo, PredId, ProcId, Immed) = ProcAddr :-
RttiProcLabel = make_rtti_proc_label(ModuleInfo, PredId, ProcId),
ProcAddr = make_entry_label_from_rtti(RttiProcLabel, Immed).
make_entry_label_from_rtti(RttiProcLabel, Immed) = ProcAddr :-
( RttiProcLabel ^ proc_is_imported = yes ->
ProcLabel = make_proc_label_from_rtti(RttiProcLabel),
ProcAddr = code_imported_proc(ProcLabel)
;
Label = make_local_entry_label_from_rtti(RttiProcLabel, Immed),
ProcAddr = code_label(Label)
).
make_local_entry_label(ModuleInfo, PredId, ProcId, Immed) = Label :-
RttiProcLabel = make_rtti_proc_label(ModuleInfo, PredId, ProcId),
Label = make_local_entry_label_from_rtti(RttiProcLabel, Immed).
:- func make_local_entry_label_from_rtti(rtti_proc_label, immed) = label.
make_local_entry_label_from_rtti(RttiProcLabel, Immed) = Label :-
ProcLabel = make_proc_label_from_rtti(RttiProcLabel),
(
Immed = no,
% If we want to define the label or use it to put it into a data
% structure, a label that is usable only within the current C module
% won't do.
( RttiProcLabel ^ proc_is_exported = yes ->
EntryType = entry_label_exported
;
EntryType = entry_label_local
),
Label = entry_label(EntryType, ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
Label = choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
RttiProcLabel ^ pred_id, RttiProcLabel ^ proc_id, ProcLabel)
).
:- func choose_local_label_type(int, pred_id, proc_id, pred_id, proc_id,
proc_label) = label.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel) = Label :-
(
% If we want to branch to the label now, we prefer a form that is
% usable only within the current C module, since it is likely to be
% faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
EntryType = entry_label_c_local
;
EntryType = entry_label_local
),
Label = entry_label(EntryType, ProcLabel).
%-----------------------------------------------------------------------------%
make_internal_label(ModuleInfo, PredId, ProcId, LabelNum) = Label :-
ProcLabel = make_proc_label(ModuleInfo, PredId, ProcId),
Label = internal_label(LabelNum, ProcLabel).
extract_proc_label_from_code_addr(CodeAddr) = ProcLabel :-
( CodeAddr = code_label(Label) ->
ProcLabel = get_proc_label(Label)
; CodeAddr = code_imported_proc(ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
unexpected(this_file, "extract_label_from_code_addr failed")
).
%-----------------------------------------------------------------------------%
arg_loc_to_register(ArgLoc, reg(reg_r, ArgLoc)).
%-----------------------------------------------------------------------------%
max_mentioned_reg(Lvals, MaxRegNum) :-
max_mentioned_reg_2(Lvals, 0, MaxRegNum).
:- pred max_mentioned_reg_2(list(lval)::in, int::in, int::out) is det.
max_mentioned_reg_2([], !MaxRegNum).
max_mentioned_reg_2([Lval | Lvals], !MaxRegNum) :-
( Lval = reg(reg_r, N) ->
int.max(N, !MaxRegNum)
;
true
),
max_mentioned_reg_2(Lvals, !MaxRegNum).
max_mentioned_abs_reg(Lvals, MaxRegNum) :-
max_mentioned_abs_reg_2(Lvals, 0, MaxRegNum).
:- pred max_mentioned_abs_reg_2(list(abs_locn)::in, int::in, int::out) is det.
max_mentioned_abs_reg_2([], !MaxRegNum).
max_mentioned_abs_reg_2([Lval | Lvals], !MaxRegNum) :-
( Lval = abs_reg(N) ->
int.max(N, !MaxRegNum)
;
true
),
max_mentioned_abs_reg_2(Lvals, !MaxRegNum).
%-----------------------------------------------------------------------------%
goal_may_alloc_temp_frame(hlds_goal(GoalExpr, _GoalInfo), May) :-
goal_may_alloc_temp_frame_2(GoalExpr, May).
:- pred goal_may_alloc_temp_frame_2(hlds_goal_expr::in, bool::out)
is det.
goal_may_alloc_temp_frame_2(generic_call(_, _, _, _), no).
goal_may_alloc_temp_frame_2(plain_call(_, _, _, _, _, _), no).
goal_may_alloc_temp_frame_2(unify(_, _, _, _, _), no).
% We cannot safely say that a foreign code fragment does not allocate
% temporary nondet frames without knowing all the #defined macros
% that expand to mktempframe and variants thereof. The performance
% impact of being too conservative is probably not too bad.
goal_may_alloc_temp_frame_2(call_foreign_proc(_, _, _, _, _, _, _), yes).
goal_may_alloc_temp_frame_2(scope(_, Goal), May) :-
Goal = hlds_goal(_, GoalInfo),
CodeModel = goal_info_get_code_model(GoalInfo),
(
CodeModel = model_non,
May = yes
;
( CodeModel = model_det
; CodeModel = model_semi
),
goal_may_alloc_temp_frame(Goal, May)
).
goal_may_alloc_temp_frame_2(negation(Goal), May) :-
goal_may_alloc_temp_frame(Goal, May).
goal_may_alloc_temp_frame_2(conj(_ConjType, Goals), May) :-
goal_list_may_alloc_temp_frame(Goals, May).
goal_may_alloc_temp_frame_2(disj(Goals), May) :-
goal_list_may_alloc_temp_frame(Goals, May).
goal_may_alloc_temp_frame_2(switch(_Var, _Det, Cases), May) :-
cases_may_alloc_temp_frame(Cases, May).
goal_may_alloc_temp_frame_2(if_then_else(_Vars, C, T, E), May) :-
( goal_may_alloc_temp_frame(C, yes) ->
May = yes
; goal_may_alloc_temp_frame(T, yes) ->
May = yes
;
goal_may_alloc_temp_frame(E, May)
).
goal_may_alloc_temp_frame_2(shorthand(_), _) :-
% These should have been expanded out by now.
unexpected(this_file, "goal_may_alloc_temp_frame_2: shorthand").
:- pred goal_list_may_alloc_temp_frame(list(hlds_goal)::in, bool::out) is det.
goal_list_may_alloc_temp_frame([], no).
goal_list_may_alloc_temp_frame([Goal | Goals], May) :-
( goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
goal_list_may_alloc_temp_frame(Goals, May)
).
:- pred cases_may_alloc_temp_frame(list(case)::in, bool::out) is det.
cases_may_alloc_temp_frame([], no).
cases_may_alloc_temp_frame([case(_, _, Goal) | Cases], May) :-
( goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
cases_may_alloc_temp_frame(Cases, May)
).
%-----------------------------------------------------------------------------%
neg_rval(Rval, NegRval) :-
( neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(logical_not, Rval)
).
:- pred neg_rval_2(rval::in, rval::out) is semidet.
neg_rval_2(const(Const), const(NegConst)) :-
(
Const = llconst_true,
NegConst = llconst_false
;
Const = llconst_false,
NegConst = llconst_true
).
neg_rval_2(unop(logical_not, Rval), Rval).
neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
neg_op(Op, NegOp).
:- pred neg_op(binary_op::in, binary_op::out) is semidet.
neg_op(eq, ne).
neg_op(ne, eq).
neg_op(int_lt, int_ge).
neg_op(int_le, int_gt).
neg_op(int_gt, int_le).
neg_op(int_ge, int_lt).
neg_op(str_eq, str_ne).
neg_op(str_ne, str_eq).
neg_op(str_lt, str_ge).
neg_op(str_le, str_gt).
neg_op(str_gt, str_le).
neg_op(str_ge, str_lt).
neg_op(float_eq, float_ne).
neg_op(float_ne, float_eq).
neg_op(float_lt, float_ge).
neg_op(float_le, float_gt).
neg_op(float_gt, float_le).
neg_op(float_ge, float_lt).
negate_the_test([], _) :-
unexpected(this_file, "negate_the_test on empty list").
negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = llds_instr(if_val(Test, Target), Comment) ->
neg_rval(Test, NewTest),
Instrs = [llds_instr(if_val(NewTest, Target), Comment)]
;
negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
lvals_in_lvals([], []).
lvals_in_lvals([First | Rest], FirstLvals ++ RestLvals) :-
lvals_in_lval(First, FirstLvals),
lvals_in_lvals(Rest, RestLvals).
lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
lvals_in_lval(Lval, Lvals).
lvals_in_rval(var(_), []).
lvals_in_rval(mkword(_, Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_rval(const(_), []).
lvals_in_rval(unop(_, Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_rval(binop(_, Rval1, Rval2), Lvals1 ++ Lvals2) :-
lvals_in_rval(Rval1, Lvals1),
lvals_in_rval(Rval2, Lvals2).
lvals_in_rval(mem_addr(MemRef), Lvals) :-
lvals_in_mem_ref(MemRef, Lvals).
lvals_in_lval(reg(_, _), []).
lvals_in_lval(stackvar(_), []).
lvals_in_lval(parent_stackvar(_), []).
lvals_in_lval(framevar(_), []).
lvals_in_lval(succip, []).
lvals_in_lval(maxfr, []).
lvals_in_lval(curfr, []).
lvals_in_lval(succip_slot(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_lval(redofr_slot(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_lval(redoip_slot(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_lval(succfr_slot(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_lval(prevfr_slot(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_lval(hp, []).
lvals_in_lval(sp, []).
lvals_in_lval(parent_sp, []).
lvals_in_lval(field(_, Rval1, Rval2), Lvals1 ++ Lvals2) :-
lvals_in_rval(Rval1, Lvals1),
lvals_in_rval(Rval2, Lvals2).
lvals_in_lval(lvar(_), []).
lvals_in_lval(temp(_, _), []).
lvals_in_lval(mem_ref(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_lval(global_var_ref(_), []).
:- pred lvals_in_mem_ref(mem_ref::in, list(lval)::out) is det.
lvals_in_mem_ref(stackvar_ref(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_mem_ref(framevar_ref(Rval), Lvals) :-
lvals_in_rval(Rval, Lvals).
lvals_in_mem_ref(heap_ref(Rval1, _, Rval2), Lvals1 ++ Lvals2) :-
lvals_in_rval(Rval1, Lvals1),
lvals_in_rval(Rval2, Lvals2).
%-----------------------------------------------------------------------------%
build_input_arg_list(ProcInfo, VarLvals) :-
proc_info_get_headvars(ProcInfo, HeadVars),
proc_info_arg_info(ProcInfo, ArgInfos),
assoc_list.from_corresponding_lists(HeadVars, ArgInfos, VarArgInfos),
build_input_arg_list_2(VarArgInfos, VarLvals).
:- pred build_input_arg_list_2(assoc_list(prog_var, arg_info)::in,
assoc_list(prog_var, lval)::out) is det.
build_input_arg_list_2([], []).
build_input_arg_list_2([V - Arg | Rest0], VarArgs) :-
Arg = arg_info(Loc, Mode),
(
Mode = top_in,
arg_loc_to_register(Loc, Reg),
VarArgs = [V - Reg | VarArgs0]
;
( Mode = top_out
; Mode = top_unused
),
VarArgs = VarArgs0
),
build_input_arg_list_2(Rest0, VarArgs0).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "code_util.m".
%-----------------------------------------------------------------------------%
:- end_module code_util.
%-----------------------------------------------------------------------------%