Files
mercury/compiler/tupling.m
Zoltan Somogyi 2c21dcc4c0 Avoid an ambiguity.
compiler/hlds_goal.m:
    Change the names of the fields of the hlds_goal structure to avoid
    conflicts with the names of the hlds_goal_expr and hlds_goal_info types.

compiler/coverage_profiling.m:
compiler/deep_profiling.m:
compiler/dep_par_conj.m:
compiler/goal_util.m:
compiler/higher_order.m:
compiler/introduce_parallelism.m:
compiler/middle_rec.m:
compiler/mode_ordering.m:
compiler/modecheck_conj.m:
compiler/modecheck_goal.m:
compiler/ordering_mode_constraints.m:
compiler/par_conj_gen.m:
compiler/par_loop_control.m:
compiler/prog_rep.m:
compiler/stm_expand.m:
compiler/term_constr_build.m:
compiler/tupling.m:
compiler/untupling.m:
    Conform to the change above.
2018-01-16 17:19:04 +11:00

2048 lines
83 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2005-2012 The University of Melbourne.
% Copyright (C) 2017 The Mercury Team.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: tupling.m.
% Author: wangp.
%
% This module takes the HLDS and performs a tupling transformation on the
% locally-defined procedures. That is, instead of passing all of the
% procedure's arguments separately, it will try to bundle some of them up and
% pass them together as a tuple.
%
% The idea is that some arguments passed to a procedure may not be needed
% immediately: between the start of the procedure and the first use of a
% given argument there may be a flush point, such as a call to another
% procedure. At these points, all values residing in registers that will be
% needed later in the procedure will need to be flushed to the stack, to be
% restored later. In some cases, it may be beneficial to refer to some
% arguments indirectly through a cell variable. Flushing the (address of the)
% cell variable to the stack is enough to save all the field variables
% of the cell. The downside is that accessing a field variable requires
% going through a cell variable (the cost of which may be amortised if
% multiple field variables are needed in the same interval).
%
% Another potentially good reason to pass arguments in a tuple is if many
% procedures will be passing the same arguments to each other, e.g. as is
% often the case in mutually-recursive procedures.
%
% This implementation works as follows:
%
% 1. We divide the module into its constituent SCCs. We work our way
% through each SCC, starting from the bottommost SCC in the call graph.
%
% 2. For each SCC, we take guesses at a good tupling scheme for the
% procedures in the SCC, and count the average number of loads and stores
% between the registers and the stack for each given scheme.
%
% 3. If the best tupling scheme gives us an average number of loads/stores
% that compares favourably against the original (untupled) scheme, we go ahead
% and make the transformed versions of the procedures in the SCC and
% add them to the HLDS.
%
% 4. After all the SCCs have been processed, we update all calls to the
% original procedures to call their transformed versions instead.
%
% Step 2 in more detail:
%
% This implementation uses the names of input formal parameters to guess
% which values are common between the procedures in an SCC (for SCCs with
% more than one procedure). This means that if a variable name occurs as
% an input argument to more than one procedure in the SCC, those variables
% corresponding that name are candidates for tupling. In the interest of
% speeding up compilation times, the implementation only tries to tuple
% contiguous runs of the candidate variables. For example, if the candidates
% are [A,B,C,D], these combinations would be tested in turn, assuming a
% minimum run length of 3: {A,B,C,D}, {A,B,C}, and {B,C,D}.
%
% To count the average number of loads and stores in a procedure, we traverse
% the procedure's body, remembering which values are available in registers
% and the stack. When we reach a branch point, we use the relative frequencies
% that each branch was taken in a sample run to weight the costs incurred
% in each branch. The relative frequency data is gathered from the trace count
% summary file that must be provided by the user.
%
% Ideas for further work:
%
% - Smarter / more aggressive choosing of arguments to tuple
% - Inter-SCC analysis
% - Inter-module optimisation
% - Proper weighting of calls to procedures from within and without the SCC
%
% This transformation is similar in spirit to the transformation in
% stack_opt.m. It also shares much code with it.
%
% XXX We need to check that mprof can demangle the names of the transformed
% procedures correctly.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.tupling.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module io.
:- pred tuple_arguments(module_info::in, module_info::out, io::di, io::uo)
is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs.
:- import_module backend_libs.interval.
:- import_module check_hlds.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.arg_info.
:- import_module hlds.goal_path.
:- import_module hlds.hlds_dependency_graph.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_llds.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_out.hlds_out_util.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_rtti.
:- import_module hlds.make_goal.
:- import_module hlds.quantification.
:- import_module hlds.vartypes.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module libs.dependency_graph.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module ll_backend.
:- import_module ll_backend.call_gen.
:- import_module ll_backend.live_vars.
:- import_module ll_backend.liveness.
:- import_module mdbcomp.
:- import_module mdbcomp.goal_path.
:- import_module mdbcomp.prim_data.
:- import_module mdbcomp.sym_name.
:- import_module mdbcomp.trace_counts.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_mode.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.prog_util.
:- import_module parse_tree.set_of_var.
:- import_module array.
:- import_module assoc_list.
:- import_module bool.
:- import_module counter.
:- import_module digraph.
:- import_module float.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module multi_map.
:- import_module pair.
:- import_module require.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module unit.
:- import_module varset.
%-----------------------------------------------------------------------------%
%
% The top level.
%
tuple_arguments(!ModuleInfo, !IO) :-
% XXX We should add a mechanism that would allow us to check whether
% we have already read in this file, and if we have, then avoid reading
% it in again.
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_string_option(Globals, tuple_trace_counts_file,
TraceCountsFile),
( if TraceCountsFile = "" then
report_warning(Globals, "Warning: --tuple requires " ++
"--tuple-trace-counts-file to work.\n", !IO)
else
read_trace_counts_source(TraceCountsFile, Result, !IO),
(
Result = list_ok(_, TraceCounts),
tuple_arguments_with_trace_counts(!ModuleInfo, TraceCounts)
;
Result = list_error_message(Message),
warn_trace_counts_error(Globals, TraceCountsFile, Message, !IO)
)
).
:- pred warn_trace_counts_error(globals::in, string::in, string::in,
io::di, io::uo) is det.
warn_trace_counts_error(Globals, TraceCountsFile, Reason, !IO) :-
string.format(
"Warning: unable to read trace count summary from %s (%s)\n",
[s(TraceCountsFile), s(Reason)], Message),
report_warning(Globals, Message, !IO).
:- pred tuple_arguments_with_trace_counts(module_info::in, module_info::out,
trace_counts::in) is det.
tuple_arguments_with_trace_counts(!ModuleInfo, TraceCounts0) :-
module_info_get_globals(!.ModuleInfo, Globals),
% We use the same cost options as for the stack optimisation.
globals.lookup_int_option(Globals,
optimize_saved_vars_cell_cv_load_cost, CellVarLoadCost),
globals.lookup_int_option(Globals,
optimize_saved_vars_cell_cv_store_cost, CellVarStoreCost),
globals.lookup_int_option(Globals,
optimize_saved_vars_cell_fv_load_cost, FieldVarLoadCost),
globals.lookup_int_option(Globals,
optimize_saved_vars_cell_fv_store_cost, FieldVarStoreCost),
globals.lookup_int_option(Globals, tuple_costs_ratio, CostsRatio),
globals.lookup_int_option(Globals, tuple_min_args, MinArgsToTuple),
% These are the costs for untupled variables. We just assume it is
% the lesser of the cell and field variable costs (usually the field
% variable costs should be smaller).
NormalVarStoreCost = min(CellVarStoreCost, FieldVarStoreCost),
NormalVarLoadCost = min(CellVarLoadCost, FieldVarLoadCost),
TuningParams = tuning_params(
NormalVarLoadCost, NormalVarStoreCost,
CellVarLoadCost, CellVarStoreCost,
FieldVarLoadCost, FieldVarStoreCost,
CostsRatio, MinArgsToTuple),
module_info_get_name(!.ModuleInfo, ModuleName),
restrict_trace_counts_to_module(ModuleName, TraceCounts0, TraceCounts),
module_info_ensure_dependency_info(!ModuleInfo, DepInfo),
DepGraph = dependency_info_get_graph(DepInfo),
SCCs = dependency_info_get_bottom_up_sccs(DepInfo),
% Add transformed versions of procedures that we think would be
% beneficial.
list.foldl3(maybe_tuple_scc(TraceCounts, TuningParams, DepGraph),
SCCs, !ModuleInfo, counter.init(0), _, map.init, TransformMap),
% Update the callers of the original procedures to call their
% transformed versions instead. Do the same for the transformed
% procedures themselves.
list.foldl(fix_calls_in_procs(TransformMap), SCCs, !ModuleInfo),
fix_calls_in_transformed_procs(TransformMap, !ModuleInfo).
%-----------------------------------------------------------------------------%
% This predicate can be used in place of maybe_tuple_scc to evaluate
% and transform each procedure of an SCC individually. This is to mimic
% the behaviour from an earlier version of this file. It is currently
% unused, but might be useful for debugging.
%
:- pred maybe_tuple_scc_individual_procs(trace_counts::in, tuning_params::in,
hlds_dependency_graph::in, list(pred_proc_id)::in,
module_info::in, module_info::out, counter::in, counter::out,
transform_map::in, transform_map::out) is det.
:- pragma consider_used(maybe_tuple_scc_individual_procs/10).
maybe_tuple_scc_individual_procs(_TraceCounts, _TuningParams, _DepGraph,
[], !ModuleInfo, !Counter, !TransformMap).
maybe_tuple_scc_individual_procs(TraceCounts, TuningParams, DepGraph,
[Proc | Procs], !ModuleInfo, !Counter, !TransformMap) :-
maybe_tuple_scc(TraceCounts, TuningParams, DepGraph,
set.make_singleton_set(Proc), !ModuleInfo, !Counter, !TransformMap),
maybe_tuple_scc_individual_procs(TraceCounts, TuningParams, DepGraph,
Procs, !ModuleInfo, !Counter, !TransformMap).
:- pred maybe_tuple_scc(trace_counts::in, tuning_params::in,
hlds_dependency_graph::in, scc::in,
module_info::in, module_info::out, counter::in, counter::out,
transform_map::in, transform_map::out) is det.
maybe_tuple_scc(TraceCounts, TuningParams, DepGraph, SCC,
!ModuleInfo, !Counter, !TransformMap) :-
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, very_verbose, VeryVerbose),
(
VeryVerbose = yes,
trace [io(!IO)] (
io.write_string("% Considering tupling in ", !IO),
set.foldl(write_pred_proc_id(!.ModuleInfo), SCC, !IO),
io.write_string("...\n", !IO)
)
;
VeryVerbose = no
),
( if scc_has_local_callers(SCC, DepGraph) then
( if set.is_singleton(SCC, SingleProc) then
candidate_headvars_of_proc(!.ModuleInfo, SingleProc,
CandidateHeadVars)
else
common_candidate_headvars_of_procs(!.ModuleInfo, SCC,
CandidateHeadVars)
),
MinArgsToTuple = TuningParams ^ tp_min_args_to_tuple,
( if list.length(CandidateHeadVars) < MinArgsToTuple then
(
VeryVerbose = yes,
trace [io(!IO)] (
io.write_string("% Too few candidate headvars.\n", !IO)
)
;
VeryVerbose = no
)
else
maybe_tuple_scc_2(TraceCounts, TuningParams,
SCC, CandidateHeadVars, !ModuleInfo,
!Counter, !TransformMap, VeryVerbose)
)
else
% No need to work on this SCC if there are no callers to it
% within this module.
%
% XXX: If part of the SCC is exported then we might want
% to look at it, for intermodule tupling.
(
VeryVerbose = yes,
trace [io(!IO)] (
io.write_string("% SCC has no local callers.\n", !IO)
)
;
VeryVerbose = no
)
).
:- pred scc_has_local_callers(set(pred_proc_id)::in,
hlds_dependency_graph::in) is semidet.
scc_has_local_callers(CalleeProcs, DepGraph) :-
some [CalleeProc] (
set.member(CalleeProc, CalleeProcs),
proc_has_local_callers(CalleeProc, DepGraph)
).
:- pred proc_has_local_callers(pred_proc_id::in, hlds_dependency_graph::in)
is semidet.
proc_has_local_callers(CalleeProc, DepGraph) :-
digraph.lookup_key(DepGraph, CalleeProc, CalleeKey),
digraph.lookup_to(DepGraph, CalleeKey, CallingKeys),
set.is_non_empty(CallingKeys).
%-----------------------------------------------------------------------------%
:- pred maybe_tuple_scc_2(trace_counts::in, tuning_params::in, scc::in,
candidate_headvars::in,
module_info::in, module_info::out, counter::in, counter::out,
transform_map::in, transform_map::out, bool::in) is det.
maybe_tuple_scc_2(TraceCounts, TuningParams, PredProcIds, CandidateHeadVars,
!ModuleInfo, !Counter, !TransformMap, VeryVerbose) :-
set.foldl2(prepare_proc_for_counting, PredProcIds,
map.init, ReverseGoalPathMapMap, !ModuleInfo),
% Count the average number of loads/stores without any transformation.
count_load_stores_for_scc(TraceCounts, TuningParams, !.ModuleInfo,
map.init, ReverseGoalPathMapMap, PredProcIds, CostsWithoutTupling),
(
VeryVerbose = yes,
CostsWithoutTupling = costs(LoadsWoTupling, StoresWoTupling),
trace [io(!IO)] (
io.format("%% SCC costs without tupling = {%g, %g}\n",
[f(LoadsWoTupling), f(StoresWoTupling)], !IO)
)
;
VeryVerbose = no
),
( if CostsWithoutTupling = costs(0.0, 0.0) then
% Don't bother continuing.
true
else
maybe_tuple_scc_3(TraceCounts, TuningParams, ReverseGoalPathMapMap,
PredProcIds, CandidateHeadVars, CostsWithoutTupling,
!ModuleInfo, !Counter, !TransformMap, VeryVerbose)
).
:- pred maybe_tuple_scc_3(trace_counts::in, tuning_params::in,
map(pred_proc_id, goal_reverse_path_map)::in, scc::in,
candidate_headvars::in, costs::in, module_info::in, module_info::out,
counter::in, counter::out, transform_map::in, transform_map::out,
bool::in) is det.
maybe_tuple_scc_3(TraceCounts, TuningParams, ReverseGoalPathMapMap,
SCC, CandidateHeadVars, CostsWithoutTupling,
!ModuleInfo, !Counter, !TransformMap, VeryVerbose) :-
find_best_tupling_scheme(TraceCounts, TuningParams, !.ModuleInfo,
ReverseGoalPathMapMap, SCC, CandidateHeadVars, MaybeBestScheme),
(
MaybeBestScheme = no
;
MaybeBestScheme = yes(CostsWithTupling-TuplingScheme),
CostsWithTupling = costs(LoadsWithTupling, StoresWithTupling),
(
VeryVerbose = yes,
trace [io(!IO)] (
io.format("%% SCC costs with tupling = {%g, %g}\n",
[f(LoadsWithTupling), f(StoresWithTupling)], !IO)
)
;
VeryVerbose = no
),
( if
should_use_tupling_scheme(TuningParams,
CostsWithoutTupling, CostsWithTupling)
then
(
VeryVerbose = yes,
trace [io(!IO)] (
io.print("% Proceeding with tupling\n", !IO)
)
;
VeryVerbose = no
),
add_transformed_procs(TuplingScheme,
!ModuleInfo, !Counter, !TransformMap)
else
true
)
).
:- pred should_use_tupling_scheme(tuning_params::in, costs::in, costs::in)
is semidet.
should_use_tupling_scheme(TuningParams,
CostsWithoutTupling, CostsWithTupling) :-
CostsWithoutTupling = costs(LoadsWithoutTupling, StoresWithoutTupling),
CostsWithTupling = costs(LoadsWithTupling, StoresWithTupling),
CostsRatio = float(TuningParams ^ tp_costs_ratio),
TotalWithoutTupling = LoadsWithoutTupling + StoresWithoutTupling,
TotalWithTupling = LoadsWithTupling + StoresWithTupling,
( if TotalWithTupling = 0.0 then
TotalWithoutTupling > 0.0
else
(TotalWithoutTupling * 100.0 / TotalWithTupling) >= CostsRatio
).
%-----------------------------------------------------------------------------%
:- type candidate_headvars == assoc_list(string, candidate_headvar_origins).
:- type candidate_headvar_origins == map(pred_proc_id, prog_var).
% The "candidate headvars" of a procedure are the input arguments of
% a procedure that we are considering to pass to the procedure as a
% tuple.
%
% The "common" candidate headvars of an SCC (of more than one
% procedure) are the input arguments that, when passed as a tuple, we
% hope can be reused in calls to other procedures in the same SCC.
% The heuristic used to find candidates is to look for input arguments
% which have the same name in more than one procedure in the SCC.
%
% For each candidate, the name is put in an association list along
% with a mappping to the actual variable within each procedure (if
% that procedure has an input variable of the given name). The order
% of the elements in the association list is important later on,
% since we only try tupling contiguous runs of the candidate variables.
%
:- pred candidate_headvars_of_proc(module_info::in, pred_proc_id::in,
candidate_headvars::out) is det.
candidate_headvars_of_proc(ModuleInfo, PredProcId @ proc(PredId, ProcId),
CandidateHeadVars) :-
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_get_vartypes(ProcInfo, VarTypes),
proc_info_get_headvars(ProcInfo, HeadVars),
proc_info_get_argmodes(ProcInfo, ArgModes),
CandidateHeadVars = list.filter_map_corresponding(
candidate_headvars_of_proc_2(PredProcId, VarSet, VarTypes, ModuleInfo),
HeadVars, ArgModes).
:- func candidate_headvars_of_proc_2(pred_proc_id, prog_varset, vartypes,
module_info, prog_var, mer_mode)
= pair(string, candidate_headvar_origins) is semidet.
candidate_headvars_of_proc_2(PredProcId, VarSet, VarTypes, ModuleInfo,
HeadVar, ArgMode) = (Name - Origins) :-
% We only tuple input arguments.
mode_is_input(ModuleInfo, ArgMode),
% Don't touch introduced typeinfo arguments.
lookup_var_type(VarTypes, HeadVar, Type),
not is_introduced_type_info_type(Type),
varset.search_name(VarSet, HeadVar, Name),
Origins = map.singleton(PredProcId, HeadVar).
:- pred common_candidate_headvars_of_procs(module_info::in,
scc::in, candidate_headvars::out) is det.
common_candidate_headvars_of_procs(ModuleInfo, SCC, CandidateHeadVars) :-
list.map(candidate_headvars_of_proc(ModuleInfo),
set.to_sorted_list(SCC), ListsOfCandidates),
list.condense(ListsOfCandidates, FlatListOfCandidates),
multi_map.from_flat_assoc_list(FlatListOfCandidates, CandidatesMultiMap),
map.foldl(common_candidate_headvars_of_procs_2, CandidatesMultiMap,
[], CandidateHeadVars).
:- pred common_candidate_headvars_of_procs_2(
string::in, list(candidate_headvar_origins)::in,
candidate_headvars::in, candidate_headvars::out) is det.
common_candidate_headvars_of_procs_2(HeadVarName, ListOfOrigins,
CandidateHeadVars0, CandidateHeadVars) :-
% Only include this variable in the list of candidates if there are two
% or more procedures in the SCC with head variables having the same name.
(
( ListOfOrigins = [] % XXX Can this happen?
; ListOfOrigins = [_]
),
CandidateHeadVars = CandidateHeadVars0
;
ListOfOrigins = [_, _ | _],
list.foldl(map.old_merge, ListOfOrigins, map.init, Origins),
CandidateHeadVars = CandidateHeadVars0 ++ [HeadVarName - Origins]
).
%-----------------------------------------------------------------------------%
% This is a mapping from the id of a procedure to the proposed
% tupling that would be performed on the procedure's input arguments.
%
:- type tupling_scheme == map(pred_proc_id, tupling_proposal).
:- type tupling_proposal
---> no_tupling
; tupling(
cell_var :: prog_var,
field_vars :: list(prog_var),
field_var_arg_pos :: assoc_list(prog_var, int)
).
:- pred find_best_tupling_scheme(trace_counts::in, tuning_params::in,
module_info::in, map(pred_proc_id, goal_reverse_path_map)::in,
scc::in, candidate_headvars::in,
maybe(pair(costs, tupling_scheme))::out) is det.
find_best_tupling_scheme(TraceCounts, TuningParams, ModuleInfo,
ReverseGoalPathMapMap, PredProcIds, CandidateHeadVars,
MaybeBestScheme) :-
MinArgsToTuple = TuningParams ^ tp_min_args_to_tuple,
fold_over_list_runs(
find_best_tupling_scheme_2(TraceCounts, TuningParams,
ModuleInfo, ReverseGoalPathMapMap, PredProcIds),
CandidateHeadVars, MinArgsToTuple,
no, MaybeBestScheme).
:- pred find_best_tupling_scheme_2(trace_counts::in, tuning_params::in,
module_info::in, map(pred_proc_id, goal_reverse_path_map)::in,
scc::in, candidate_headvars::in,
maybe(pair(costs, tupling_scheme))::in,
maybe(pair(costs, tupling_scheme))::out) is det.
find_best_tupling_scheme_2(TraceCounts, TuningParams, ModuleInfo,
ReverseGoalPathMapMap, SCC, CandidateHeadVars,
MaybeBestScheme0, MaybeBestScheme) :-
MinArgsToTuple = TuningParams ^ tp_min_args_to_tuple,
set.foldl(
add_tupling_proposal(ModuleInfo, CandidateHeadVars, MinArgsToTuple),
SCC, map.init, TuplingScheme),
count_load_stores_for_scc(TraceCounts, TuningParams, ModuleInfo,
TuplingScheme, ReverseGoalPathMapMap, SCC, Costs),
( if
(
MaybeBestScheme0 = no
;
MaybeBestScheme0 = yes(PrevCosts - _),
less_total_cost(Costs, PrevCosts)
)
then
MaybeBestScheme = yes(Costs - TuplingScheme)
else
MaybeBestScheme = MaybeBestScheme0
).
:- pred add_tupling_proposal(module_info::in, candidate_headvars::in,
int::in, pred_proc_id::in,
map(pred_proc_id, tupling_proposal)::in,
map(pred_proc_id, tupling_proposal)::out) is det.
add_tupling_proposal(ModuleInfo, CandidateHeadVars, MinArgsToTuple,
PredProcId @ proc(PredId, ProcId), !TuplingScheme) :-
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_get_headvars(ProcInfo, HeadVars),
FieldVarArgPos = list.filter_map(
( func(_ - Annotation) = (Var - Pos) is semidet :-
map.search(Annotation, PredProcId, Var),
list.index1_of_first_occurrence(HeadVars, Var, Pos)
), CandidateHeadVars),
( if list.length(FieldVarArgPos) < MinArgsToTuple then
TuplingProposal = no_tupling
else
% We need a new variable to act as the cell variable while
% counting loads/stores for a proposed tupling, but we don't
% add that variable to the varset permanently.
varset.new_named_var("DummyCellVar", DummyCellVar, VarSet, _),
FieldVars = assoc_list.keys(FieldVarArgPos),
TuplingProposal = tupling(DummyCellVar, FieldVars, FieldVarArgPos)
),
map.det_insert(PredProcId, TuplingProposal, !TuplingScheme).
:- pred less_total_cost(costs::in, costs::in) is semidet.
less_total_cost(costs(LoadsA, StoresA), costs(LoadsB, StoresB)) :-
TotalA = LoadsA + StoresA,
TotalB = LoadsB + StoresB,
TotalA < TotalB.
%-----------------------------------------------------------------------------%
% fold_over_list_runs(Pred, List, MinRunLength, !Acc):
%
% Call Pred for each consecutive run of elements in List of a length
% greater or equal to MinRunLength, threading an accumulator through it.
%
:- pred fold_over_list_runs(pred(list(L), A, A)::in(pred(in, in, out) is det),
list(L)::in, int::in, A::in, A::out) is det.
fold_over_list_runs(_, [], _, !Acc).
fold_over_list_runs(Pred, List @ [_ | Tail], MinLength, !Acc) :-
fold_over_list_runs_2(Pred, List, MinLength, !Acc),
fold_over_list_runs(Pred, Tail, MinLength, !Acc).
:- pred fold_over_list_runs_2(
pred(list(L), A, A)::in(pred(in, in, out) is det),
list(L)::in, int::in, A::in, A::out) is det.
fold_over_list_runs_2(Pred, List, Length, !Acc) :-
( if list.take(Length, List, Front) then
Pred(Front, !Acc),
fold_over_list_runs_2(Pred, List, Length+1, !Acc)
else
true
).
%-----------------------------------------------------------------------------%
%
% Transforming procedures.
%
:- pred add_transformed_procs(tupling_scheme::in, module_info::in,
module_info::out, counter::in, counter::out, transform_map::in,
transform_map::out) is det.
add_transformed_procs(TuplingScheme, !ModuleInfo, !Counter, !TransformMap) :-
map.foldl3(add_transformed_proc, TuplingScheme,
!ModuleInfo, !Counter, !TransformMap).
:- pred add_transformed_proc(pred_proc_id::in, tupling_proposal::in,
module_info::in, module_info::out, counter::in, counter::out,
transform_map::in, transform_map::out) is det.
add_transformed_proc(_, no_tupling, !ModuleInfo, !TransformMap, !Counter).
add_transformed_proc(PredProcId, tupling(_, FieldVars, _),
!ModuleInfo, !Counter, !TransformMap) :-
PredProcId = proc(PredId, ProcId),
some [!ProcInfo] (
module_info_pred_proc_info(!.ModuleInfo, PredId, ProcId,
PredInfo, !:ProcInfo),
% Build up information about intervals and which variables
% are needed in each interval.
build_interval_info(!.ModuleInfo, !.ProcInfo, IntervalInfo),
% Create the cell variable.
list.length(FieldVars, TupleArity),
proc_info_get_vartypes(!.ProcInfo, VarTypes),
lookup_var_types(VarTypes, FieldVars, TupleArgTypes),
construct_type(type_ctor(unqualified("{}"), TupleArity), TupleArgTypes,
TupleConsType),
proc_info_create_var_from_type(TupleConsType,
yes("TuplingCellVar"), CellVar, !ProcInfo),
% Get the argument positions of the parameters to be tupled.
proc_info_get_headvars(!.ProcInfo, HeadVars),
ArgsToTuple =
list.map(det_index1_of_first_occurrence(HeadVars), FieldVars),
% Build an insertion map of where the deconstruction
% unifications are needed.
build_insert_map(CellVar, FieldVars, IntervalInfo, InsertMap),
% Make a transformed version of the procedure and add it to
% the module.
make_transformed_proc(CellVar, FieldVars, InsertMap, !ProcInfo),
recompute_instmap_delta_proc(recompute_atomic_instmap_deltas,
!ProcInfo, !ModuleInfo),
counter.allocate(Num, !Counter),
create_aux_pred(PredId, ProcId, PredInfo, !.ProcInfo, Num,
AuxPredProcId, CallAux, !ModuleInfo),
% Add an entry to the transform map for the new procedure.
TransformedProc = transformed_proc(AuxPredProcId, TupleConsType,
ArgsToTuple, CallAux),
map.det_insert(PredProcId, TransformedProc, !TransformMap)
).
%-----------------------------------------------------------------------------%
:- pred make_transformed_proc(prog_var::in, list(prog_var)::in, insert_map::in,
proc_info::in, proc_info::out) is det.
make_transformed_proc(CellVar, FieldVarsList, InsertMap, !ProcInfo) :-
% Modify the procedure's formal parameters.
proc_info_get_headvars(!.ProcInfo, HeadVars0),
proc_info_get_argmodes(!.ProcInfo, ArgModes0),
HeadVarsAndModes = list.filter_map_corresponding(
(func(Var, Mode) = (Var - Mode) is semidet :-
not list.member(Var, FieldVarsList)),
HeadVars0, ArgModes0),
assoc_list.keys_and_values(HeadVarsAndModes, HeadVars, ArgModes),
proc_info_set_headvars(HeadVars ++ [CellVar], !ProcInfo),
proc_info_set_argmodes(ArgModes ++ [in_mode], !ProcInfo),
% Insert the necessary deconstruction unifications.
proc_info_get_goal(!.ProcInfo, Goal0),
proc_info_get_vartypes(!.ProcInfo, VarTypes0),
proc_info_get_varset(!.ProcInfo, VarSet0),
% XXX: I haven't checked if adding this feature has any effect.
MaybeGoalFeature = yes(feature_tuple_opt),
record_decisions_in_goal(Goal0, Goal1, VarSet0, VarSet1,
VarTypes0, VarTypes1, map.init, RenameMapA, InsertMap,
MaybeGoalFeature),
% In some cases some of the field variables need to be available at
% the very beginning of the procedure. The required deconstructions
% for those variables won't show up in the insert map. To handle this
% we just to insert a deconstruction unification at the start of the
% procedure and let a simplification pass remove it later if not required.
%
% We could make build_insert_map add such required unifications to the
% insert map, but record_decisions_in_goal would need to be modified
% as well.
%
deconstruct_tuple(CellVar, FieldVarsList, ProcStartDeconstruct),
ProcStartInsert = insert_spec(ProcStartDeconstruct,
set_of_var.list_to_set(FieldVarsList)),
insert_proc_start_deconstruction(Goal1, Goal2,
VarSet1, VarSet, VarTypes1, VarTypes, RenameMapB, ProcStartInsert),
rename_some_vars_in_goal(RenameMapB, Goal2, Goal3),
map.old_merge(RenameMapA, RenameMapB, RenameMap),
apply_headvar_correction(set_of_var.list_to_set(HeadVars), RenameMap,
Goal3, Goal),
proc_info_set_goal(Goal, !ProcInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
requantify_proc_general(ordinary_nonlocals_no_lambda, !ProcInfo).
:- pred insert_proc_start_deconstruction(hlds_goal::in, hlds_goal::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rename_map::out, insert_spec::in) is det.
insert_proc_start_deconstruction(Goal0, Goal, !VarSet, !VarTypes,
VarRename, Insert) :-
% The tuple_opt feature is not used for this goal as we do want
% other transformations to remove it if possible.
make_inserted_goal(!VarSet, !VarTypes, map.init, VarRename,
Insert, no, InsertGoal),
Goal0 = hlds_goal(_, GoalInfo),
conj_list_to_goal([InsertGoal, Goal0], GoalInfo, Goal).
%-----------------------------------------------------------------------------%
% This predicate makes a new version of the given procedure in a module.
% Amongst other things the new procedure is given a new pred_id and
% proc_id, a new name and a new goal.
%
% CallAux is an output variable, which is unified with a goal that
% can be used as a template for constructing calls to the newly
% created procedure.
%
% See also create_aux_pred in loop_inv.m.
%
:- pred create_aux_pred(pred_id::in, proc_id::in, pred_info::in,
proc_info::in, int::in, pred_proc_id::out, hlds_goal::out,
module_info::in, module_info::out) is det.
create_aux_pred(PredId, ProcId, PredInfo, ProcInfo, Counter,
AuxPredProcId, CallAux, ModuleInfo0, ModuleInfo) :-
proc_info_get_headvars(ProcInfo, AuxHeadVars),
proc_info_get_goal(ProcInfo, Goal @ hlds_goal(_GoalExpr, GoalInfo)),
proc_info_get_initial_instmap(ProcInfo, ModuleInfo0,
InitialAuxInstMap),
pred_info_get_typevarset(PredInfo, TVarSet),
proc_info_get_vartypes(ProcInfo, VarTypes),
pred_info_get_class_context(PredInfo, ClassContext),
proc_info_get_rtti_varmaps(ProcInfo, RttiVarMaps),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_get_inst_varset(ProcInfo, InstVarSet),
pred_info_get_markers(PredInfo, Markers),
pred_info_get_origin(PredInfo, OrigOrigin),
proc_info_get_has_parallel_conj(ProcInfo, HasParallelConj),
pred_info_get_var_name_remap(PredInfo, VarNameRemap),
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
Context = goal_info_get_context(GoalInfo),
term.context_line(Context, Line),
make_pred_name_with_context(PredModule, "tupling",
PredOrFunc, PredName, Line, Counter, AuxPredSymName0),
hlds_pred.proc_id_to_int(ProcId, ProcNo),
Suffix = string.format("_%d", [i(ProcNo)]),
add_sym_name_suffix(AuxPredSymName0, Suffix, AuxPredSymName),
Origin = origin_transformed(transform_tuple(ProcNo), OrigOrigin, PredId),
hlds_pred.define_new_pred(
Origin, % in
Goal, % in
CallAux, % out
AuxHeadVars, % in
_ExtraArgs, % out
InitialAuxInstMap, % in
AuxPredSymName, % in
TVarSet, % in
VarTypes, % in
ClassContext, % in
RttiVarMaps, % in
VarSet, % in
InstVarSet, % in
Markers, % in
address_is_not_taken, % in
HasParallelConj, % in
VarNameRemap, % in
ModuleInfo0,
ModuleInfo,
AuxPredProcId
).
%-----------------------------------------------------------------------------%
%
% Counting loads and stores between the stack and registers.
%
:- type count_info
---> count_info(
ci_module :: module_info,
ci_pred_proc_id :: pred_proc_id,
% Which procedure is being counted.
ci_pred_info :: pred_info,
ci_proc_info :: proc_info,
% The pred_ and proc_info of that
% procedure.
ci_proc_counts :: proc_trace_counts,
ci_params :: tuning_params,
ci_tupling_scheme :: tupling_scheme,
ci_rev_goal_path_map :: goal_reverse_path_map
).
:- type tuning_params
---> tuning_params(
tp_normal_var_load_cost :: int,
tp_normal_var_store_cost :: int,
tp_cell_var_load_cost :: int,
tp_cell_var_store_cost :: int,
tp_field_var_load_cost :: int,
tp_field_var_store_cost :: int,
tp_costs_ratio :: int,
tp_min_args_to_tuple :: int
).
:- type count_state
---> count_state(
cs_reg_vars :: set_of_progvar,
cs_stack_vars :: set_of_progvar,
cs_load_costs :: float,
cs_store_costs :: float
).
:- type costs
---> costs(
avg_loads :: float,
avg_stores :: float
).
:- func get_tupling_proposal(count_info, pred_proc_id) = tupling_proposal
is det.
get_tupling_proposal(CountInfo, PredProcId) = TuplingProposal :-
( if map.search(CountInfo ^ ci_tupling_scheme, PredProcId, Probe) then
TuplingProposal = Probe
else
TuplingProposal = no_tupling
).
:- func get_own_tupling_proposal(count_info) = tupling_proposal is det.
get_own_tupling_proposal(CountInfo) =
get_tupling_proposal(CountInfo, CountInfo ^ ci_pred_proc_id).
%-----------------------------------------------------------------------------%
% Collect all the information for a procedure that is required for
% the count_load_stores_in_proc predicate to work.
%
:- pred prepare_proc_for_counting(pred_proc_id::in,
map(pred_proc_id, goal_reverse_path_map)::in,
map(pred_proc_id, goal_reverse_path_map)::out,
module_info::in, module_info::out) is det.
prepare_proc_for_counting(PredProcId, !ReverseGoalPathMapMap, !ModuleInfo) :-
PredProcId = proc(PredId, ProcId),
some [!ProcInfo] (
module_info_pred_proc_info(!.ModuleInfo, PredId, ProcId,
PredInfo, !:ProcInfo),
pred_info_get_markers(PredInfo, Markers),
pred_info_get_arg_types(PredInfo, ArgTypes),
generate_proc_arg_info(Markers, ArgTypes, !.ModuleInfo, !ProcInfo),
detect_liveness_proc(!.ModuleInfo, PredProcId, !ProcInfo),
initial_liveness(!.ModuleInfo, PredInfo, !.ProcInfo, Liveness0),
module_info_get_globals(!.ModuleInfo, Globals),
body_should_use_typeinfo_liveness(PredInfo, Globals, TypeInfoLiveness),
globals.lookup_bool_option(Globals,
opt_no_return_calls, OptNoReturnCalls),
array.init(1, is_not_dummy_type, DummyDummyTypeArray),
AllocData = alloc_data(!.ModuleInfo, !.ProcInfo, PredProcId,
TypeInfoLiveness, OptNoReturnCalls, DummyDummyTypeArray),
fill_goal_id_slots_in_proc(!.ModuleInfo, ContainingGoalMap, !ProcInfo),
ReverseGoalPathMap = create_reverse_goal_path_map(ContainingGoalMap),
map.det_insert(PredProcId, ReverseGoalPathMap,
!ReverseGoalPathMapMap),
proc_info_get_goal(!.ProcInfo, Goal0),
OptTupleAlloc0 = opt_tuple_alloc,
FailVars = set_of_var.init,
NondetLiveness0 = set_of_var.init,
build_live_sets_in_goal_no_par_stack(Goal0, Goal, FailVars, AllocData,
OptTupleAlloc0, _OptTupleAlloc, Liveness0, _Liveness,
NondetLiveness0, _NondetLiveness),
proc_info_set_goal(Goal, !ProcInfo),
module_info_set_pred_proc_info(PredId, ProcId, PredInfo, !.ProcInfo,
!ModuleInfo)
).
%-----------------------------------------------------------------------------%
% The opt_tuple_alloc structure is constructed by live_vars.m. As far as I can
% tell we don't need such a thing for this module so we just define some stubs.
:- type opt_tuple_alloc
---> opt_tuple_alloc.
:- instance stack_alloc_info(opt_tuple_alloc) where [
pred(at_call_site/4) is opt_at_call_site,
pred(at_resume_site/4) is opt_at_resume_site,
pred(at_par_conj/4) is opt_at_par_conj,
pred(at_recursive_call_for_loop_control/4) is
opt_at_recursive_call_for_loop_control
].
:- pred opt_at_call_site(need_across_call::in, alloc_data::in,
opt_tuple_alloc::in, opt_tuple_alloc::out) is det.
opt_at_call_site(_NeedAtCall, _AllocData, !StackAlloc).
:- pred opt_at_resume_site(need_in_resume::in, alloc_data::in,
opt_tuple_alloc::in, opt_tuple_alloc::out) is det.
opt_at_resume_site(_NeedAtResume, _AllocData, !StackAlloc).
:- pred opt_at_par_conj(need_in_par_conj::in, alloc_data::in,
opt_tuple_alloc::in, opt_tuple_alloc::out) is det.
opt_at_par_conj(_NeedParConj, _AllocData, !StackAlloc).
:- pred opt_at_recursive_call_for_loop_control(need_for_loop_control::in,
alloc_data::in, opt_tuple_alloc::in, opt_tuple_alloc::out) is det.
opt_at_recursive_call_for_loop_control(_NeedLC, _AllocData, !StackAlloc).
%-----------------------------------------------------------------------------%
:- pred count_load_stores_for_scc(trace_counts::in, tuning_params::in,
module_info::in, tupling_scheme::in,
map(pred_proc_id, goal_reverse_path_map)::in,
set(pred_proc_id)::in, costs::out) is det.
count_load_stores_for_scc(TraceCounts, TuningParams, ModuleInfo,
TuplingScheme, ReverseGoalPathMapMap, SCC, Costs) :-
set.foldl2(
count_load_stores_for_scc_2(TraceCounts, TuningParams, ModuleInfo,
TuplingScheme, ReverseGoalPathMapMap),
SCC, 0.0, Loads, 0.0, Stores),
Costs = costs(Loads, Stores).
:- pred count_load_stores_for_scc_2(trace_counts::in, tuning_params::in,
module_info::in, tupling_scheme::in,
map(pred_proc_id, goal_reverse_path_map)::in,
pred_proc_id::in, float::in, float::out, float::in, float::out) is det.
count_load_stores_for_scc_2(TraceCounts, TuningParams, ModuleInfo,
TuplingScheme, ReverseGoalPathMapMap, PredProcId, !Loads, !Stores) :-
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo),
% XXX: Different declaring vs defining modules not handled.
ProcLabel = ordinary_proc_label(pred_info_module(PredInfo),
pred_info_is_pred_or_func(PredInfo),
pred_info_module(PredInfo),
pred_info_name(PredInfo),
pred_info_orig_arity(PredInfo),
proc_id_to_int(ProcId)),
pred_info_get_context(PredInfo, Context),
Context = context(FileName, _),
ProcLabelInContext = proc_label_in_context(pred_info_module(PredInfo),
FileName, ProcLabel),
( if get_proc_counts(TraceCounts, ProcLabelInContext, yes(ProcCounts)) then
map.lookup(ReverseGoalPathMapMap, PredProcId, ReverseGoalPathMap),
CountInfo = count_info(ModuleInfo, PredProcId, PredInfo, ProcInfo,
ProcCounts, TuningParams, TuplingScheme, ReverseGoalPathMap),
count_load_stores_in_proc(CountInfo, ProcLoads, ProcStores),
% XXX: There is a problem somewhere causing CALL and EXIT
% events not to show up for some procedures in trace count files.
% The weighting of the procedure's costs is disabled.
% However, if working, it still wouldn't be ideal, as we don't know
% how many of the calls to the procedure came from within or without
% the SCC.
% get_proc_calls(ProcCounts, Weight),
Weight = 1,
!:Loads = !.Loads + float(Weight) * ProcLoads,
!:Stores = !.Stores + float(Weight) * ProcStores
else
true
).
%-----------------------------------------------------------------------------%
:- pred count_load_stores_in_proc(count_info::in, float::out, float::out)
is det.
count_load_stores_in_proc(CountInfo, Loads, Stores) :-
ModuleInfo = CountInfo ^ ci_module,
PredInfo = CountInfo ^ ci_pred_info,
ProcInfo = CountInfo ^ ci_proc_info,
initial_liveness(ModuleInfo, PredInfo, ProcInfo, InitialLiveness),
CountState0 = count_state(InitialLiveness, set_of_var.init, 0.0, 0.0),
proc_info_get_goal(ProcInfo, Goal),
count_load_stores_in_goal(Goal, CountInfo, CountState0, CountState1),
arg_info.partition_proc_args(ProcInfo, ModuleInfo, _, OutputArgs, _),
cls_require_in_regs(CountInfo, set.to_sorted_list(OutputArgs),
CountState1, CountState),
CountState = count_state(_, _, Loads, Stores).
%-----------------------------------------------------------------------------%
% This code is based on interval.build_interval_info_in_goal.
%
:- pred count_load_stores_in_goal(hlds_goal::in, count_info::in,
count_state::in, count_state::out) is det.
count_load_stores_in_goal(Goal, CountInfo, !CountState) :-
Goal = hlds_goal(GoalExpr, GoalInfo),
(
GoalExpr = unify(_, _, _, Unification, _),
(
Unification = construct(CellVar, _ConsId, ArgVars, _ArgModes,
_HowToConstruct, _, _),
cls_require_in_regs(CountInfo, ArgVars, !CountState),
cls_put_in_regs([CellVar], !CountState)
;
Unification = deconstruct(CellVar, _ConsId, ArgVars, _ArgModes,
_, _),
cls_put_in_regs_via_deconstruct(CountInfo, CellVar, ArgVars,
!CountState)
;
Unification = assign(ToVar, FromVar),
cls_require_in_reg(CountInfo, FromVar, !CountState),
cls_put_in_regs([ToVar], !CountState)
;
Unification = simple_test(Var1, Var2),
cls_require_in_regs(CountInfo, [Var1, Var2], !CountState)
;
Unification = complicated_unify(_, _, _),
unexpected($module, $pred, "complicated_unify")
)
;
GoalExpr = plain_call(PredId, ProcId, _, Builtin, _, _),
( if
Builtin = not_builtin,
TuplingProposal = get_tupling_proposal(CountInfo,
proc(PredId, ProcId)),
TuplingProposal = tupling(_, _, _)
then
count_load_stores_in_call_to_tupled(GoalExpr, GoalInfo,
CountInfo, TuplingProposal, !CountState)
else
count_load_stores_in_call_to_not_tupled(GoalExpr, GoalInfo,
CountInfo, !CountState)
)
;
GoalExpr = generic_call(GenericCall, ArgVars, ArgModes, MaybeArgRegs,
_Detism),
ModuleInfo = CountInfo ^ ci_module,
ProcInfo = CountInfo ^ ci_proc_info,
proc_info_get_vartypes(ProcInfo, VarTypes),
lookup_var_types(VarTypes, ArgVars, ArgTypes),
arg_info.generic_call_arg_reg_types(ModuleInfo, VarTypes,
GenericCall, ArgVars, MaybeArgRegs, ArgRegTypes),
arg_info.compute_in_and_out_vars_sep_regs(ModuleInfo, ArgVars,
ArgModes, ArgTypes, ArgRegTypes, InputArgsR, InputArgsF,
OutputArgsR, OutputArgsF),
InputArgs = InputArgsR ++ InputArgsF,
OutputArgs = OutputArgsR ++ OutputArgsF,
(
( GenericCall = higher_order(_, _, _, _)
; GenericCall = class_method(_, _, _, _)
; GenericCall = event_call(_)
),
module_info_get_globals(ModuleInfo, Globals),
call_gen.generic_call_info(Globals, GenericCall,
length(InputArgsR), length(InputArgsF), _,
GenericVarsArgInfos, _, _),
assoc_list.keys(GenericVarsArgInfos, GenericVars),
list.append(GenericVars, InputArgs, Inputs),
Outputs = set.list_to_set(OutputArgs),
goal_info_get_maybe_need_across_call(GoalInfo,
MaybeNeedAcrossCall),
count_load_stores_for_call(CountInfo, Inputs, Outputs,
MaybeNeedAcrossCall, GoalInfo, !CountState)
;
GenericCall = cast(_),
% Casts are generated inline.
cls_require_in_regs(CountInfo, InputArgs, !CountState),
cls_put_in_regs(OutputArgs, !CountState)
)
;
GoalExpr = call_foreign_proc(_Attributes, PredId, ProcId,
Args, ExtraArgs, _MaybeTraceRuntimeCond, _PragmaCode),
ModuleInfo = CountInfo ^ ci_module,
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_PredInfo, ProcInfo),
ArgVars = list.map(foreign_arg_var, Args),
ExtraVars = list.map(foreign_arg_var, ExtraArgs),
CallingProcInfo = CountInfo ^ ci_proc_info,
proc_info_get_vartypes(CallingProcInfo, VarTypes),
arg_info.partition_proc_call_args(ProcInfo, VarTypes,
ModuleInfo, ArgVars, InputArgVarSet, OutputArgVarSet, _),
set.to_sorted_list(InputArgVarSet, InputArgVars),
list.append(InputArgVars, ExtraVars, InputVars),
( if
goal_info_maybe_get_maybe_need_across_call(GoalInfo,
MaybeNeedAcrossCall),
MaybeNeedAcrossCall = yes(_)
then
count_load_stores_for_call(CountInfo, InputVars, OutputArgVarSet,
MaybeNeedAcrossCall, GoalInfo, !CountState)
else
cls_require_in_regs(CountInfo, InputVars, !CountState),
cls_clobber_regs(OutputArgVarSet, !CountState)
)
;
GoalExpr = scope(Reason, SubGoal),
( if Reason = from_ground_term(_, from_ground_term_construct) then
% There are no loads or stored in these scopes.
true
else
count_load_stores_in_goal(SubGoal, CountInfo, !CountState)
)
;
GoalExpr = conj(ConjType, Goals),
(
ConjType = plain_conj,
count_load_stores_in_conj(Goals, CountInfo, !CountState)
;
ConjType = parallel_conj,
sorry($module, $pred, "tupling with parallel conjunctions")
)
;
GoalExpr = disj(Goals),
count_load_stores_in_disj(Goals, CountInfo, !CountState)
;
GoalExpr = switch(_Var, _Det, Cases),
count_load_stores_in_cases(Cases, CountInfo, !CountState)
;
GoalExpr = negation(SubGoal),
goal_info_get_resume_point(SubGoal ^ hg_info, ResumePoint),
(
ResumePoint = resume_point(LiveVars, _ResumeLocs),
cls_require_flushed(CountInfo, LiveVars, !CountState)
;
ResumePoint = no_resume_point,
unexpected($module, $pred, "no_resume_point for not")
),
count_load_stores_in_goal(SubGoal, CountInfo, !CountState)
;
GoalExpr = if_then_else(_, Cond, Then, Else),
goal_info_get_resume_point(Cond ^ hg_info, ResumePoint),
(
ResumePoint = resume_point(LiveVars, _ResumeLocs),
cls_require_flushed(CountInfo, LiveVars, !CountState),
count_load_stores_in_goal(Cond, CountInfo, !CountState),
reset_count_state_counts(!.CountState, ResetCountInfo),
count_load_stores_in_goal(Then, CountInfo,
ResetCountInfo, ThenCountInfo),
count_load_stores_in_goal(Else, CountInfo,
ResetCountInfo, ElseCountInfo),
ProcCounts = CountInfo ^ ci_proc_counts,
ThenGoalId = goal_info_get_goal_id(Then ^ hg_info),
ElseGoalId = goal_info_get_goal_id(Else ^ hg_info),
get_ite_relative_frequencies(ProcCounts,
CountInfo ^ ci_rev_goal_path_map,
ThenGoalId, ElseGoalId, ThenRelFreq, ElseRelFreq),
add_branch_costs(ThenCountInfo, ThenRelFreq, !CountState),
add_branch_costs(ElseCountInfo, ElseRelFreq, !CountState)
;
ResumePoint = no_resume_point,
unexpected($module, $pred, "no_resume_point for if_then_else")
)
;
GoalExpr = shorthand(_),
% These should have been expanded out by now.
unexpected($module, $pred, "shorthand")
).
%-----------------------------------------------------------------------------%
:- pred count_load_stores_in_call_to_tupled(
hlds_goal_expr::in(goal_expr_plain_call),
hlds_goal_info::in, count_info::in,
tupling_proposal::in(bound(tupling(ground, ground, ground))),
count_state::in, count_state::out) is det.
count_load_stores_in_call_to_tupled(GoalExpr, GoalInfo, CountInfo,
CalleeTuplingProposal, !CountState) :-
GoalExpr = plain_call(CalleePredId, CalleeProcId, ArgVars, _, _, _),
CalleeTuplingProposal = tupling(CellVar, FieldVars, FieldVarArgPos),
ModuleInfo = CountInfo ^ ci_module,
module_info_pred_proc_info(ModuleInfo, CalleePredId, CalleeProcId,
_, CalleeProcInfo),
CallingProcInfo = CountInfo ^ ci_proc_info,
proc_info_get_vartypes(CallingProcInfo, VarTypes),
arg_info.partition_proc_call_args(CalleeProcInfo, VarTypes,
ModuleInfo, ArgVars, InputArgs0, Outputs, _),
( if
% If the caller is a tupled procedure, and every field variable
% of the tuple appears as an input argument to the callee AND
% every such argument is in a position matching the field variable's
% position in the tupling proposal, then the cell var of the caller
% can be reused as the call var for the callee.
%
% TODO: If we kept track of the aliases of field variables,
% then they could be checked also.
get_own_tupling_proposal(CountInfo) = tupling(_, _, _),
all [Var] (
list.member(Var, FieldVars)
=>
(
set.member(Var, InputArgs0),
assoc_list.search(FieldVarArgPos, Var, Pos),
list.index1_of_first_occurrence(ArgVars, Var, Pos)
)
)
then
% In this case, the cell var is not being used to access field
% variables, so it should not incur the cell var cost.
cls_require_normal_var_in_reg(CountInfo, CellVar, !CountState),
set.delete_list(FieldVars, InputArgs0, InputArgs)
else
% The cell var cannot be used for the callee, so we must add
% the cost of constructing a new tuple.
TuplingParams = CountInfo ^ ci_params,
CellVarStoreCost = float(TuplingParams ^ tp_cell_var_store_cost),
!CountState ^ cs_store_costs :=
!.CountState ^ cs_store_costs + CellVarStoreCost,
InputArgs = InputArgs0
),
set.to_sorted_list(InputArgs, Inputs),
goal_info_get_maybe_need_across_call(GoalInfo, MaybeNeedAcrossCall),
count_load_stores_for_call(CountInfo, Inputs, Outputs,
MaybeNeedAcrossCall, GoalInfo, !CountState).
:- pred count_load_stores_in_call_to_not_tupled(
hlds_goal_expr::in(goal_expr_plain_call),
hlds_goal_info::in, count_info::in, count_state::in, count_state::out)
is det.
count_load_stores_in_call_to_not_tupled(GoalExpr, GoalInfo, CountInfo,
!CountState) :-
GoalExpr = plain_call(PredId, ProcId, ArgVars, Builtin, _, _),
ModuleInfo = CountInfo ^ ci_module,
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_PredInfo, CalleeProcInfo),
ProcInfo = CountInfo ^ ci_proc_info,
proc_info_get_vartypes(ProcInfo, VarTypes),
arg_info.partition_proc_call_args(CalleeProcInfo, VarTypes,
ModuleInfo, ArgVars, InputArgs, OutputArgs, _),
set.to_sorted_list(InputArgs, Inputs),
set.to_sorted_list(OutputArgs, Outputs),
(
Builtin = inline_builtin,
cls_require_in_regs(CountInfo, Inputs, !CountState),
cls_put_in_regs(Outputs, !CountState)
;
Builtin = not_builtin,
goal_info_get_maybe_need_across_call(GoalInfo, MaybeNeedAcrossCall),
count_load_stores_for_call(CountInfo, Inputs, OutputArgs,
MaybeNeedAcrossCall, GoalInfo, !CountState)
).
:- pred count_load_stores_for_call(count_info::in, list(prog_var)::in,
set(prog_var)::in, maybe(need_across_call)::in,
hlds_goal_info::in, count_state::in, count_state::out) is det.
count_load_stores_for_call(CountInfo, Inputs, Outputs, MaybeNeedAcrossCall,
_GoalInfo, !CountState) :-
cls_require_in_regs(CountInfo, Inputs, !CountState),
(
MaybeNeedAcrossCall = yes(NeedAcrossCall),
NeedAcrossCall = need_across_call(ForwardVars,
ResumeVars, NondetLiveVars),
AllVars = set_of_var.union_list(
[ForwardVars, ResumeVars, NondetLiveVars]),
cls_require_flushed(CountInfo, AllVars, !CountState),
cls_clobber_regs(Outputs, !CountState)
;
MaybeNeedAcrossCall = no,
unexpected($module, $pred, "no need across call")
).
%-----------------------------------------------------------------------------%
:- pred count_load_stores_in_conj(hlds_goals::in, count_info::in,
count_state::in, count_state::out) is det.
count_load_stores_in_conj([], _CountInfo, !CountState).
count_load_stores_in_conj([Goal | Goals], CountInfo, !CountState) :-
count_load_stores_in_goal(Goal, CountInfo, !CountState),
count_load_stores_in_conj(Goals, CountInfo, !CountState).
:- pred count_load_stores_in_disj(hlds_goals::in, count_info::in,
count_state::in, count_state::out) is det.
count_load_stores_in_disj([], _CountInfo, !CountState).
count_load_stores_in_disj([Goal | Goals], CountInfo, !CountState) :-
Goal = hlds_goal(_, GoalInfo),
goal_info_get_resume_point(GoalInfo, ResumePoint),
(
ResumePoint = resume_point(LiveVars, _ResumeLocs),
cls_require_flushed(CountInfo, LiveVars, !CountState)
;
ResumePoint = no_resume_point
),
reset_count_state_counts(!.CountState, BranchCountState0),
count_load_stores_in_goal(Goal, CountInfo,
BranchCountState0, BranchCountState),
ProcCounts = CountInfo ^ ci_proc_counts,
GoalId = goal_info_get_goal_id(GoalInfo),
get_disjunct_relative_frequency(ProcCounts,
CountInfo ^ ci_rev_goal_path_map, GoalId, RelFreq),
add_branch_costs(BranchCountState, RelFreq, !CountState),
count_load_stores_in_disj(Goals, CountInfo, !CountState).
:- pred count_load_stores_in_cases(list(case)::in, count_info::in,
count_state::in, count_state::out) is det.
count_load_stores_in_cases([], _CountInfo, !CountState).
count_load_stores_in_cases([Case | Cases], CountInfo, !CountState) :-
Case = case(_MainConsId, _OtherConsIds, Goal),
Goal = hlds_goal(_, GoalInfo),
goal_info_get_resume_point(GoalInfo, ResumePoint),
(
ResumePoint = resume_point(LiveVars, _ResumeLocs),
cls_require_flushed(CountInfo, LiveVars, !CountState)
;
ResumePoint = no_resume_point
),
reset_count_state_counts(!.CountState, BranchCountState0),
count_load_stores_in_goal(Goal, CountInfo, BranchCountState0,
BranchCountState),
ProcCounts = CountInfo ^ ci_proc_counts,
GoalId = goal_info_get_goal_id(GoalInfo),
get_case_relative_frequency(ProcCounts,
CountInfo ^ ci_rev_goal_path_map, GoalId, RelFreq),
add_branch_costs(BranchCountState, RelFreq, !CountState),
count_load_stores_in_cases(Cases, CountInfo, !CountState).
%-----------------------------------------------------------------------------%
% Make the values of the given variables available in registers.
%
:- pred cls_require_in_regs(count_info::in, list(prog_var)::in,
count_state::in, count_state::out) is det.
cls_require_in_regs(CountInfo, Vars, !CountState) :-
list.foldl(cls_require_in_reg(CountInfo), Vars, !CountState).
:- pred cls_require_in_reg(count_info::in, prog_var::in, count_state::in,
count_state::out) is det.
cls_require_in_reg(CountInfo, Var, !CountState) :-
( if
TuplingProposal = get_own_tupling_proposal(CountInfo),
TuplingProposal = tupling(_, FieldVars, _),
list.member(Var, FieldVars)
then
cls_require_field_var_in_reg(CountInfo, TuplingProposal,
Var, !CountState)
else
cls_require_normal_var_in_reg(CountInfo, Var, !CountState)
).
:- pred cls_require_normal_var_in_reg(count_info::in, prog_var::in,
count_state::in, count_state::out) is det.
cls_require_normal_var_in_reg(CountInfo, Var, !CountState) :-
TuningParams = CountInfo ^ ci_params,
NormalLoadCost = TuningParams ^ tp_normal_var_load_cost,
cls_require_var_in_reg_with_cost(NormalLoadCost, Var, !CountState).
:- pred cls_require_field_var_in_reg(count_info::in,
tupling_proposal::in(bound(tupling(ground, ground, ground))),
prog_var::in, count_state::in, count_state::out) is det.
cls_require_field_var_in_reg(CountInfo, TuplingProposal, FieldVar,
CountState0, CountState) :-
CountState0 = count_state(RegVars0, StackVars, Loads0, Stores),
( if set_of_var.member(RegVars0, FieldVar) then
CountState = CountState0
else
TuplingProposal = tupling(CellVar, _, _),
TuningParams = CountInfo ^ ci_params,
CvLoadCost = float(TuningParams ^ tp_cell_var_load_cost),
FvLoadCost = float(TuningParams ^ tp_field_var_load_cost),
( if set_of_var.member(RegVars0, CellVar) then
set_of_var.insert(FieldVar, RegVars0, RegVars),
Loads = Loads0 + FvLoadCost
else
set_of_var.insert_list([CellVar, FieldVar], RegVars0, RegVars),
Loads = Loads0 + CvLoadCost + FvLoadCost
),
CountState = count_state(RegVars, StackVars, Loads, Stores)
).
:- pred cls_require_var_in_reg_with_cost(int::in, prog_var::in,
count_state::in, count_state::out) is det.
cls_require_var_in_reg_with_cost(LoadCost, Var, CountState0, CountState) :-
CountState0 = count_state(RegVars0, StackVars, Loads0, Stores),
( if set_of_var.member(RegVars0, Var) then
CountState = CountState0
else
set_of_var.insert(Var, RegVars0, RegVars),
Loads = Loads0 + float(LoadCost),
CountState = count_state(RegVars, StackVars, Loads, Stores)
).
% Put the values of the given variables into registers.
%
:- pred cls_put_in_regs(list(prog_var)::in, count_state::in, count_state::out)
is det.
cls_put_in_regs(Vars, !CountState) :-
RegVars0 = !.CountState ^ cs_reg_vars,
set_of_var.insert_list(Vars, RegVars0, RegVars),
!CountState ^ cs_reg_vars := RegVars.
:- pred cls_put_in_regs_via_deconstruct(count_info::in, prog_var::in,
list(prog_var)::in, count_state::in, count_state::out) is det.
cls_put_in_regs_via_deconstruct(CountInfo,
DeconstructCellVar, DeconstructFieldVars, !State) :-
TuningParams = CountInfo ^ ci_params,
CvLoadCost = TuningParams ^ tp_cell_var_load_cost,
FvLoadCost = TuningParams ^ tp_field_var_load_cost,
TuplingProposal = get_own_tupling_proposal(CountInfo),
(
TuplingProposal = no_tupling,
cls_require_var_in_reg_with_cost(CvLoadCost,
DeconstructCellVar, !State),
list.foldl(cls_require_var_in_reg_with_cost(FvLoadCost),
DeconstructFieldVars, !State)
;
TuplingProposal = tupling(_, TupleFieldVars, _),
VarsToLoad = set.difference(
set.from_list(DeconstructFieldVars),
set.from_list(TupleFieldVars)),
( if set.is_non_empty(VarsToLoad) then
cls_require_var_in_reg_with_cost(CvLoadCost, DeconstructCellVar,
!State),
set.fold(cls_require_var_in_reg_with_cost(FvLoadCost), VarsToLoad,
!State)
else
% All the variables generated by this deconstruction can be
% obtained from the proposed tupling, so the deconstruction
% can be ignored. The costs of loading those variables from
% the tuple will be counted as they come.
true
)
).
%-----------------------------------------------------------------------------%
% Copy the given variables to the stack, if they have not been copied
% previously.
%
:- pred cls_require_flushed(count_info::in, set_of_progvar::in,
count_state::in, count_state::out) is det.
cls_require_flushed(CountInfo, Vars, !CountState) :-
TuplingProposal = get_own_tupling_proposal(CountInfo),
TuningParams = CountInfo ^ ci_params,
set_of_var.fold(cls_require_flushed_2(TuplingProposal, TuningParams),
Vars, !CountState).
:- pred cls_require_flushed_2(tupling_proposal::in, tuning_params::in,
prog_var::in, count_state::in, count_state::out) is det.
cls_require_flushed_2(no_tupling, TuningParams, Var, !CountState) :-
StoreCost = TuningParams ^ tp_normal_var_store_cost,
cls_require_flushed_with_cost(StoreCost, Var, !CountState).
cls_require_flushed_2(tupling(CellVar, FieldVars, _), TuningParams, Var,
!CountState) :-
( if list.member(Var, FieldVars) then
FvStoreCost = TuningParams ^ tp_field_var_store_cost,
cls_require_flushed_with_cost(FvStoreCost, CellVar, !CountState)
else
StoreCost = TuningParams ^ tp_normal_var_store_cost,
cls_require_flushed_with_cost(StoreCost, Var, !CountState)
).
:- pred cls_require_flushed_with_cost(int::in, prog_var::in, count_state::in,
count_state::out) is det.
cls_require_flushed_with_cost(StoreCost, Var,
count_state(RegVars, StackVars0, Loads, Stores0),
count_state(RegVars, StackVars, Loads, Stores)) :-
( if set_of_var.member(StackVars0, Var) then
StackVars = StackVars0,
Stores = Stores0
else
set_of_var.insert(Var, StackVars0, StackVars),
Stores = Stores0 + float(StoreCost)
).
%-----------------------------------------------------------------------------%
% Clear out the contents of the registers and replace them with the
% values of the given variables.
%
:- pred cls_clobber_regs(set(prog_var)::in, count_state::in, count_state::out)
is det.
cls_clobber_regs(NewVars, !CountState) :-
!CountState ^ cs_reg_vars := set_to_bitset(NewVars).
%-----------------------------------------------------------------------------%
:- pred reset_count_state_counts(count_state::in, count_state::out) is det.
reset_count_state_counts(!CountState) :-
!CountState ^ cs_load_costs := 0.0,
!CountState ^ cs_store_costs := 0.0.
:- pred add_branch_costs(count_state::in, float::in,
count_state::in, count_state::out) is det.
add_branch_costs(BranchState, Weight, !CountState) :-
BranchState = count_state(_, _, BranchLoads, BranchStores),
!.CountState = count_state(_, _, Loads0, Stores0),
!CountState ^ cs_load_costs := Loads0 + Weight * BranchLoads,
!CountState ^ cs_store_costs := Stores0 + Weight * BranchStores.
%-----------------------------------------------------------------------------%
%
% Building information about intervals and insert maps.
%
:- pred build_interval_info(module_info::in, proc_info::in, interval_info::out)
is det.
build_interval_info(ModuleInfo, ProcInfo, IntervalInfo) :-
proc_info_get_goal(ProcInfo, Goal),
proc_info_get_vartypes(ProcInfo, VarTypes),
arg_info.partition_proc_args(ProcInfo, ModuleInfo,
_InputArgs, OutputArgs, _UnusedArgs),
Counter0 = counter.init(1),
counter.allocate(CurInterval, Counter0, Counter),
CurIntervalId = interval_id(CurInterval),
EndMap = map.singleton(CurIntervalId, anchor_proc_end),
StartMap = map.init,
SuccMap = map.singleton(CurIntervalId, []),
VarsMap = map.singleton(CurIntervalId, set_to_bitset(OutputArgs)),
IntParams = interval_params(ModuleInfo, VarTypes, no),
IntervalInfo0 = interval_info(IntParams, set_of_var.init,
set_to_bitset(OutputArgs), map.init, map.init, map.init,
CurIntervalId, Counter,
set.make_singleton_set(CurIntervalId),
map.init, set.init, StartMap, EndMap,
SuccMap, VarsMap, map.init),
build_interval_info_in_goal(Goal, IntervalInfo0, IntervalInfo, unit, _).
% This is needed only to satisfy the interface of interval.m
%
:- instance build_interval_info_acc(unit) where [
pred(use_cell/8) is tupling.use_cell
].
:- pred use_cell(prog_var::in, list(prog_var)::in, cons_id::in, hlds_goal::in,
interval_info::in, interval_info::out, unit::in, unit::out) is det.
use_cell(_CellVar, _FieldVarList, _ConsId, _Goal, !IntervalInfo, !Unit).
%-----------------------------------------------------------------------------%
% This predicate uses the interval information built previously to
% build an insertion map, i.e. a mapping from a left anchor to a
% deconstruction unification that is to be inserted _after_ the
% interval beginning with that left anchor.
%
:- pred build_insert_map(prog_var::in, list(prog_var)::in, interval_info::in,
insert_map::out) is det.
build_insert_map(CellVar, FieldVars, IntervalInfo, InsertMap) :-
FieldVarsSet = set_of_var.list_to_set(FieldVars),
map.foldl(build_insert_map_2(CellVar, FieldVars, FieldVarsSet),
IntervalInfo ^ ii_anchor_follow_map, map.init, InsertMap).
:- pred build_insert_map_2(prog_var::in, list(prog_var)::in,
set_of_progvar::in, anchor::in, anchor_follow_info::in,
insert_map::in, insert_map::out) is det.
build_insert_map_2(CellVar, FieldVars, FieldVarsSet, Anchor,
anchor_follow_info(FollowVars, _), !InsertMap) :-
NeededFieldVars = FieldVarsSet `set_of_var.intersect` FollowVars,
( if set_of_var.is_empty(NeededFieldVars) then
true
else
deconstruct_tuple(CellVar, FieldVars, Goal),
InsertSpec = insert_spec(Goal, NeededFieldVars),
add_insert_spec(Anchor, InsertSpec, !InsertMap)
).
:- pred add_insert_spec(anchor::in, insert_spec::in, insert_map::in,
insert_map::out) is det.
add_insert_spec(Anchor, InsertSpec, !InsertMap) :-
( if map.search(!.InsertMap, Anchor, InsertSpecs0) then
combine_inserts(InsertSpec, InsertSpecs0, InsertSpecs),
map.det_update(Anchor, InsertSpecs, !InsertMap)
else
map.det_insert(Anchor, [InsertSpec], !InsertMap)
).
:- pred combine_inserts(insert_spec::in, list(insert_spec)::in,
list(insert_spec)::out) is det.
combine_inserts(A, [], [A]).
combine_inserts(A, [B | Bs], [C | Cs]) :-
( if
A = insert_spec(Goal, ASet),
B = insert_spec(Goal, BSet)
then
C = insert_spec(Goal, ASet `set_of_var.union` BSet),
Cs = Bs
else
C = B,
combine_inserts(A, Bs, Cs)
).
%-----------------------------------------------------------------------------%
%
% Fixing calls to transformed procedures.
%
% The transform_map structure records which procedures were
% transformed into what procedures.
%
:- type transform_map == map(pred_proc_id, transformed_proc).
:- type transformed_proc
---> transformed_proc(
% The pred_proc_id of the transformed version of the procedure.
transformed_pred_proc_id :: pred_proc_id,
% The type of the cell variable created by the transformation.
% This will be a tuple type.
tuple_cons_type :: mer_type,
% The argument positions of the original procedure
% which were tupled.
args_to_tuple :: list(int),
% A template for a call goal that is used to update calls
% of the original procedure to the transformed procedure
% instead. The arguments of the template need to be replaced
% by the actual arguments.
call_template :: hlds_goal
).
:- pred fix_calls_in_procs(transform_map::in, scc::in,
module_info::in, module_info::out) is det.
fix_calls_in_procs(TransformMap, SCC, !ModuleInfo) :-
set.foldl(fix_calls_in_proc(TransformMap), SCC, !ModuleInfo).
:- pred fix_calls_in_transformed_procs(transform_map::in,
module_info::in, module_info::out) is det.
fix_calls_in_transformed_procs(TransformMap, !ModuleInfo) :-
map.foldl(fix_calls_in_transformed_procs_2(TransformMap), TransformMap,
!ModuleInfo).
:- pred fix_calls_in_transformed_procs_2(transform_map::in, pred_proc_id::in,
transformed_proc::in, module_info::in, module_info::out) is det.
fix_calls_in_transformed_procs_2(TransformMap,
_, transformed_proc(PredProcId, _, _, _), !ModuleInfo) :-
fix_calls_in_proc(TransformMap, PredProcId, !ModuleInfo).
:- pred fix_calls_in_proc(transform_map::in, pred_proc_id::in,
module_info::in, module_info::out) is det.
fix_calls_in_proc(TransformMap, proc(PredId, ProcId), !ModuleInfo) :-
some [!ProcInfo] (
module_info_pred_proc_info(!.ModuleInfo, PredId, ProcId,
PredInfo, !:ProcInfo),
% XXX: Don't modify predicates that were created by type
% specialisation. This is a last-minute workaround for some
% linking problems that occurred when such predicates in the
% library were made to call tupled procedures.
pred_info_get_origin(PredInfo, Origin),
( if
Origin = origin_transformed(transform_type_specialization(_), _, _)
then
true
else
proc_info_get_goal(!.ProcInfo, Goal0),
proc_info_get_vartypes(!.ProcInfo, VarTypes0),
proc_info_get_varset(!.ProcInfo, VarSet0),
proc_info_get_rtti_varmaps(!.ProcInfo, RttiVarMaps0),
fix_calls_in_goal(Goal0, Goal, VarSet0, VarSet,
VarTypes0, VarTypes, RttiVarMaps0, RttiVarMaps,
TransformMap),
proc_info_set_goal(Goal, !ProcInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_rtti_varmaps(RttiVarMaps, !ProcInfo),
requantify_proc_general(ordinary_nonlocals_no_lambda, !ProcInfo),
recompute_instmap_delta_proc(recompute_atomic_instmap_deltas,
!ProcInfo, !ModuleInfo),
module_info_set_pred_proc_info(PredId, ProcId,
PredInfo, !.ProcInfo, !ModuleInfo)
)
).
%-----------------------------------------------------------------------------%
:- pred fix_calls_in_goal(hlds_goal::in, hlds_goal::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out, transform_map::in) is det.
fix_calls_in_goal(Goal0, Goal, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo0),
(
( GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _)
; GoalExpr0 = generic_call(_, _, _, _, _)
; GoalExpr0 = unify(_, _, _, _, _)
),
Goal = hlds_goal(GoalExpr0, GoalInfo0)
;
GoalExpr0 = plain_call(CalledPredId0, CalledProcId0, Args0, Builtin,
_Context, _SymName),
( if
Builtin = not_builtin,
map.search(TransformMap, proc(CalledPredId0, CalledProcId0),
TransformedProc),
TransformedProc = transformed_proc(_, TupleConsType, ArgsToTuple,
hlds_goal(CallAux0, CallAuxInfo))
then
varset.new_named_var("TuplingCellVarForCall", CellVar, !VarSet),
add_var_type(CellVar, TupleConsType, !VarTypes),
extract_tupled_args_from_list(Args0, ArgsToTuple,
TupledArgs, UntupledArgs),
construct_tuple(CellVar, TupledArgs, ConstructGoal),
( if
NewArgs = UntupledArgs ++ [CellVar],
CallAux = CallAux0 ^ call_args := NewArgs
then
CallGoal = hlds_goal(CallAux, CallAuxInfo)
else
unexpected($module, $pred, "not a call template")
),
conj_list_to_goal([ConstructGoal, CallGoal], GoalInfo0, Goal1),
RequantifyVars = set_of_var.list_to_set([CellVar | Args0]),
implicitly_quantify_goal_general(ordinary_nonlocals_no_lambda,
RequantifyVars, _, Goal1, Goal,
!VarSet, !VarTypes, !RttiVarMaps)
else
Goal = hlds_goal(GoalExpr0, GoalInfo0)
)
;
GoalExpr0 = negation(SubGoal0),
fix_calls_in_goal(SubGoal0, SubGoal, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
GoalExpr = negation(SubGoal),
Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = scope(Reason, SubGoal0),
( if
Reason = from_ground_term(_, FGT),
( FGT = from_ground_term_construct
; FGT = from_ground_term_deconstruct
)
then
Goal = Goal0
else
fix_calls_in_goal(SubGoal0, SubGoal, !VarSet, !VarTypes,
!RttiVarMaps, TransformMap),
GoalExpr = scope(Reason, SubGoal),
Goal = hlds_goal(GoalExpr, GoalInfo0)
)
;
GoalExpr0 = conj(ConjType, Goals0),
(
ConjType = plain_conj,
fix_calls_in_conj(Goals0, Goals, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap)
;
ConjType = parallel_conj,
% XXX: I am not sure whether parallel conjunctions should be
% treated with fix_calls_in_goal or fix_calls_in_goal_list.
% At any rate, this is untested.
fix_calls_in_goal_list(Goals0, Goals, !VarSet, !VarTypes,
!RttiVarMaps, TransformMap)
),
GoalExpr = conj(ConjType, Goals),
Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = disj(Goals0),
fix_calls_in_goal_list(Goals0, Goals, !VarSet, !VarTypes,
!RttiVarMaps, TransformMap),
GoalExpr = disj(Goals),
Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = switch(Var, CanFail, Cases0),
fix_calls_in_cases(Cases0, Cases, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
GoalExpr = switch(Var, CanFail, Cases),
Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0),
fix_calls_in_goal(Cond0, Cond, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
fix_calls_in_goal(Then0, Then, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
fix_calls_in_goal(Else0, Else, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
GoalExpr = if_then_else(Vars, Cond, Then, Else),
Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = shorthand(_),
% These should have been expanded out by now.
unexpected($module, $pred, "shorthand")
).
%-----------------------------------------------------------------------------%
:- pred fix_calls_in_conj(hlds_goals::in, hlds_goals::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out, transform_map::in) is det.
fix_calls_in_conj([], [], !VarSet, !VarTypes, !RttiVarMaps, _).
fix_calls_in_conj([Goal0 | Goals0], Goals, !VarSet, !VarTypes,
!RttiVarMaps, TransformMap) :-
fix_calls_in_goal(Goal0, Goal1, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
fix_calls_in_conj(Goals0, Goals1, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
( if Goal1 = hlds_goal(conj(plain_conj, ConjGoals), _) then
Goals = ConjGoals ++ Goals1
else
Goals = [Goal1 | Goals1]
).
:- pred fix_calls_in_goal_list(hlds_goals::in, hlds_goals::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out, transform_map::in) is det.
fix_calls_in_goal_list([], [], !VarSet, !VarTypes, !RttiVarMaps, _).
fix_calls_in_goal_list([Goal0 | Goals0], [Goal | Goals], !VarSet, !VarTypes,
!RttiVarMaps, TransformMap) :-
fix_calls_in_goal(Goal0, Goal, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
fix_calls_in_goal_list(Goals0, Goals, !VarSet, !VarTypes,
!RttiVarMaps, TransformMap).
:- pred fix_calls_in_cases(list(case)::in, list(case)::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out, transform_map::in) is det.
fix_calls_in_cases([], [], !VarSet, !VarTypes, !RttiVarMaps, _).
fix_calls_in_cases([Case0 | Cases0], [Case | Cases], !VarSet, !VarTypes,
!RttiVarMaps, TransformMap) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
fix_calls_in_goal(Goal0, Goal, !VarSet, !VarTypes, !RttiVarMaps,
TransformMap),
Case = case(MainConsId, OtherConsIds, Goal),
fix_calls_in_cases(Cases0, Cases, !VarSet, !VarTypes,
!RttiVarMaps, TransformMap).
%-----------------------------------------------------------------------------%
% extract_tupled_args_from_list(ArgList, Indices,
% Selected, NotSelected)
%
% Pick out the elements of ArgList by the indices given and put them
% in the list Selected, in exactly the order that they are referenced
% in Indices. The list NotSelected is to contain all the elements
% of ArgList which did not end up in Selected, in the order that they
% appeared in ArgList.
%
% Note again that the ordering of Selected and NotSelected are
% determined by different lists!
%
:- pred extract_tupled_args_from_list(list(prog_var)::in, list(int)::in,
list(prog_var)::out, list(prog_var)::out) is det.
extract_tupled_args_from_list(ArgList, Indices, Selected, NotSelected) :-
list.map(list.det_index1(ArgList), Indices, Selected),
extract_tupled_args_from_list_2(ArgList, 1, Indices, NotSelected).
:- pred extract_tupled_args_from_list_2(list(prog_var)::in, int::in,
list(int)::in, list(prog_var)::out) is det.
extract_tupled_args_from_list_2([], _Num, _Indices, []).
extract_tupled_args_from_list_2([H | T], Num, Indices, NotSelected) :-
( if list.member(Num, Indices) then
extract_tupled_args_from_list_2(T, Num+1, Indices, NotSelected)
else
extract_tupled_args_from_list_2(T, Num+1, Indices, NotSelectedTail),
NotSelected = [H | NotSelectedTail]
).
%-----------------------------------------------------------------------------%
%
% Trace count summaries.
%
:- pred get_proc_counts(trace_counts::in, proc_label_in_context::in,
maybe(proc_trace_counts)::out) is det.
get_proc_counts(TraceCounts, ProcLabelInContext, MaybeProcCounts) :-
( if map.search(TraceCounts, ProcLabelInContext, ProcCounts) then
MaybeProcCounts = yes(ProcCounts)
else
MaybeProcCounts = no
).
:- pred get_proc_calls(proc_trace_counts::in, int::out) is det.
:- pragma consider_used(get_proc_calls/2).
% While the call above is commented out.
get_proc_calls(ProcCounts, Count) :-
map.lookup(ProcCounts, port_only(port_call), ContextCount),
Count = ContextCount ^ exec_count.
:- pred get_path_only_count(proc_trace_counts::in, reverse_goal_path::in,
int::out) is det.
get_path_only_count(ProcCounts, GoalPath, Count) :-
PathPort = path_only(GoalPath),
( if map.search(ProcCounts, PathPort, ContextCount) then
Count = ContextCount ^ exec_count
else
Count = 0
).
:- pred get_ite_relative_frequencies(proc_trace_counts::in,
goal_reverse_path_map::in, goal_id::in, goal_id::in,
float::out, float::out) is det.
get_ite_relative_frequencies(ProcCounts, ReverseGoalPathMap,
ThenGoalId, ElseGoalId, ThenRelFreq, ElseRelFreq) :-
map.lookup(ReverseGoalPathMap, ThenGoalId, ThenGoalPath),
map.lookup(ReverseGoalPathMap, ElseGoalId, ElseGoalPath),
get_path_only_count(ProcCounts, ThenGoalPath, ThenCounts),
get_path_only_count(ProcCounts, ElseGoalPath, ElseCounts),
Total = ThenCounts + ElseCounts,
( if Total > 0 then
ThenRelFreq = float(ThenCounts) / float(Total),
ElseRelFreq = float(ElseCounts) / float(Total)
else
ThenRelFreq = 0.5,
ElseRelFreq = 0.5
).
:- pred get_disjunct_relative_frequency(proc_trace_counts::in,
goal_reverse_path_map::in, goal_id::in, float::out) is det.
get_disjunct_relative_frequency(ProcCounts, ReverseGoalPathMap,
GoalId, RelFreq) :-
map.lookup(ReverseGoalPathMap, GoalId, RevGoalPath),
( if
RevGoalPath = rgp_cons(RevPrevGoalPath, LastStep),
LastStep = step_disj(_)
then
RevFirstDisjGoalPath = rgp_cons(RevPrevGoalPath, step_disj(1)),
get_path_only_count(ProcCounts, RevGoalPath, DisjCount),
get_path_only_count(ProcCounts, RevFirstDisjGoalPath, FirstDisjCount),
( if FirstDisjCount = 0 then
RelFreq = 0.0
else
RelFreq = float(DisjCount) / float(FirstDisjCount)
)
else
unexpected($module, $pred, "did not see disj(N) at head of goal path")
).
:- pred get_case_relative_frequency(proc_trace_counts::in,
goal_reverse_path_map::in, goal_id::in, float::out) is det.
get_case_relative_frequency(ProcCounts, ReverseGoalPathMap, GoalId, RelFreq) :-
map.lookup(ReverseGoalPathMap, GoalId, GoalPath),
get_path_only_count(ProcCounts, GoalPath, CaseTotal),
get_switch_total_count(ProcCounts, GoalPath, SwitchTotal),
( if SwitchTotal = 0 then
RelFreq = 0.0
else
RelFreq = float(CaseTotal) / float(SwitchTotal)
).
:- pred get_switch_total_count(proc_trace_counts::in, reverse_goal_path::in,
int::out) is det.
get_switch_total_count(ProcCounts, GoalPath, Total) :-
% XXX This is very inefficient.
map.foldl(get_switch_total_count_2(GoalPath), ProcCounts, 0, Total).
:- pred get_switch_total_count_2(reverse_goal_path::in, path_port::in,
line_no_and_count::in, int::in, int::out) is det.
get_switch_total_count_2(SwitchGoalPath, PathPort, LineNoAndCount,
!TotalAcc) :-
( if case_in_switch(SwitchGoalPath, PathPort) then
!:TotalAcc = !.TotalAcc + LineNoAndCount ^ exec_count
else
true
).
:- pred case_in_switch(reverse_goal_path::in, path_port::in) is semidet.
case_in_switch(GoalPath, path_only(GoalPath)) :-
GoalPath = rgp_cons(_, LastStep),
LastStep = step_switch(_, _).
%-----------------------------------------------------------------------------%
:- end_module transform_hlds.tupling.
%-----------------------------------------------------------------------------%